This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/DE01/00416 which has an International filing date of Feb. 2, 2001, which designated the United States of America and which claims priority on German Patent Application No. 100 08 812.0 filed Feb. 25, 2000, the entire contents of which are hereby incorporated herein by reference.
The invention generally relates to a method for operating a technical installation. The technical installation preferably includes a number of systems for performing different system management tasks. The invention also generally relates to a device for monitoring a technical installation of this type.
In modern complex technical installations, a control system which registers the states of all the parts of the installation at each point in time during operation and makes all the information necessary for operating the technical installation available to the operating personnel is used for controlling production. It is also possible to use protection systems, which in hazardous situations quickly and reliably shut down all the respectively affected sections of the installation or components—independently of other systems—to avert damage to material and personnel. It is additionally possible to use a system for maintaining operation, in which all the data necessary for advance planning of the operation of the technical installation are managed, such as for example servicing plans, keeping of spare parts, ordering procedures, etc. The business management aspects of a technical installation can also be handled in a separate system. There, the detailed production costs can be calculated for example, these costs arising as a result of boundary conditions such as costs of raw materials, personnel, transport and machine running times, and calculations for cost optimization may also be carried out, for example. The systems of the technical installation that have been mentioned are to be understood as given by way of example, and it is also possible to use a series of further systems, or else fewer individual systems.
It is customary to divide the tasks of a technical installation among a number of specialized systems in this way. However, this involves the difficulty of tracing the underlying cause of an event reported by one of the system, since the information on the operating state of the technical installation is distributed among a number of systems and it is generally necessary to change between a number of systems in order for example to trace the message of a fault back to its underlying triggering causes.
An embodiment of the invention is based on an object of specifying a method for operating a technical installation with a number of systems for performing different system management tasks, with the aid of which the information distributed among the various systems can be brought together in a context-dependent manner.
According to an embodiment of the invention, the method comprises the following steps:
During the operation of the technical installation, items of information which are registered and processed by the respective specialized system according to the task to be performed arise at the various locations. If, for example, a part of the installation or a component has a critical state during operation, this information is registered in the associated specialized system. This message, and possibly further items of information, are generally used to form higher-level messages, known as collective messages, in a number of steps and is passed on to other systems. For example, a collective message that a system section is not available is passed on by a servicing system to the control system, but it is normally not possible from the viewpoint of the control system to ascertain in detail from this passed-on information which component of the system section affected led to the non-availability of the system section. For example, ongoing servicing work on a component of a system section could lead to its non-availability; the said servicing work is managed in a system for maintaining operation, which merely passes on to the control system the collective message concerning the non-availability of the system section affected.
When the aforementioned collective message occurs in the control system, the operating personnel of the technical installation would then have to change to the system for maintaining operation to find out the actual cause of the non-availability—that is the ongoing servicing work on a specific component; in this case it is sometimes necessary also to change between a number of systems. What is more, the relationship between the items of information generated in the various systems often cannot be traced back unequivocally and straight away; a certain degree of intuition on the part of the operating personnel is therefore often essential.
The method of the type according to an embodiment of the invention allows the cause of a reported event to be specifically traced, without having to change between the systems to do so. The method can be implemented for example in a separate system. If the method is applied to the archived information of the systems, a fault analysis looking back in the past until it finds the causally triggering cause is possible. Such knowledge of relationships pertaining to faults of the past can be profitably used for the present and future operation of the technical installation.
In an advantageous refinement of the invention, the locations at which the values to be processed during operation arose are linked with additional information, which during the tracing-back from the at least one marked task via the marked derived information variables to the at least one marked information variable of the lowest hierarchical level can be specifically called up.
This additional information may be, for example, manuals, operating instructions, workshop plans, circuit manuals, printouts of computer programs, etc. In particular in the case of malfunctions, such available additional information can contribute to eliminating the cause of the malfunction more quickly.
An embodiment of the invention therefore leads to a device for monitoring a technical installation. In this device, each system is implemented in a corresponding computing stage, and the monitoring takes place through a corresponding data exchange between the systems themselves and a monitoring stage with a display of the identified information variables and locations where they arose. The function of the monitoring stage and the display may already be integrated in one of the computing stages; in this case, it is possible to dispense with a dedicated monitoring stage.
The drawing illustrates an exemplary embodiment of the invention. Represented in this example are a number of systems for performing the various system management tasks of a technical installation, which are respectively installed in a computer of their own, and also a further system in a separate computer for carrying out the method according to the invention. The dividing up of the systems and their hardware implementation may, however, also be performed in a different way.
A system 1 contains a number of hierarchies 15, 17 and 19 of information variables, in which the information variables of the lowest hierarchical level are provided with current values 9 during the operation of the technical installation. These are used to form derived information values of a higher hierarchical level—known as collective messages. These may also be formed by including information values or derived information values of other systems. A marking M1 is then set if, within the system 1, at least one value of an information variable or derived information variable falls within a fixed significant range of values. The marking M1 thus indicates that within the system 1 there is at least a noteworthy state of a part of the installation or a component.
A system 2 likewise serves for performing another specific task of the system management of the technical installation. Like the system 1, it is similarly supplied with current values 11 of the technical installation which are necessary for performing this task. The forming of a number of hierarchies 21 of information variables takes place in this case in a way corresponding to that in the case of system 1. A marking M2 is set for the system 2 if at least one value of an information variable or derived information variable falls within the significant range of values, that is to say there is at least one noteworthy state of a system section of the system 2 or a component.
The system n is likewise a further system for performing a specific system management task of the technical installation. Like the other systems, it is correspondingly supplied with current values 13 from the technical installation. As in the case of the other systems, a number of hierarchies of information variables are similarly formed in the system n. The marking Mn indicates for the system n whether at least one current value of an information variable or derived information variable falls within the significant range of values, that is to say whether there is at least one noteworthy state of a system section of the system n or a component.
A further system 5 serves for carrying out the method according to the invention. The connection 7 describes a bidirectional communication link between the terminals 8 of the systems 1 to n and of the further system 5. The systems 1 to n pass on to the further system 5 references appertaining to the information variables IV marked in them or derived information variables I{tilde over (V)}, I
With knowledge of the places at which the systems 1 to n have stored their marked information variables or derived information variables with the current values, and with knowledge of the states of the markings M1 to Mn, the system 5 can carry out a specific search for the original cause of an event with the aid of the documented relationships between the information variables and derived information variables. In this search, the operator of the system 5 is guided step by step from at least one of the set markings M1 or M2 via the marked derived information variables IV′, I
Particularly in relatively complex technical installations, the use of the method according to the invention can lead to a significantly accelerated search for the cause of a malfunction. Consequently, hazards can be eliminated more quickly and downtimes can be reduced.
The marked information variable IV is assigned a location 30 at which the cause of the malfunction is located; here in the example it is a defective pump 32. The location 30 is linked with additional information 35, comprising operating instructions 37 and circuit manuals 39, the use of which helps to eliminate the malfunction quickly.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
100 08 812 | Feb 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE01/00416 | 2/2/2001 | WO | 00 | 8/23/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/63371 | 8/30/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4700326 | Florine | Oct 1987 | A |
4740349 | Loftus et al. | Apr 1988 | A |
4754409 | Ashford et al. | Jun 1988 | A |
4970664 | Kaiser et al. | Nov 1990 | A |
5214577 | Sztipanovits et al. | May 1993 | A |
5237518 | Sztipanovits et al. | Aug 1993 | A |
5295244 | Dev et al. | Mar 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5420977 | Sztipanovits et al. | May 1995 | A |
5623109 | Uchida et al. | Apr 1997 | A |
5774121 | Stiegler | Jun 1998 | A |
5864662 | Brownmiller et al. | Jan 1999 | A |
5914875 | Monta et al. | Jun 1999 | A |
6031453 | Brinzer | Feb 2000 | A |
6690274 | Bristol | Feb 2004 | B1 |
6707795 | Noorhosseini et al. | Mar 2004 | B1 |
7085610 | Eryurek et al. | Aug 2006 | B2 |
7206646 | Nixon et al. | Apr 2007 | B2 |
20010039577 | Barkai et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
3609927 | Oct 1987 | DE |
4210420 | Oct 1993 | DE |
19533787 | Mar 1997 | DE |
0482523 | Apr 1992 | EP |
0482523 | Apr 1992 | EP |
482523 | Apr 1992 | EP |
63106810 | May 1988 | JP |
2161567 | Jun 1990 | JP |
5296889 | Nov 1993 | JP |
2000010607 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030014298 A1 | Jan 2003 | US |