The present invention relates to the field of hydrocarbon resource processing, and, more particularly, to a method for operating a hydrocarbon resource recovery system and related systems.
Energy consumption worldwide is generally increasing, and conventional hydrocarbon resources are being consumed. In an attempt to meet demand, the exploitation of unconventional resources may be desired. For example, highly viscous hydrocarbon resources, such as heavy oils, may be trapped in sands where their viscous nature does not permit conventional oil well production. This category of hydrocarbon resource is generally referred to as oil sands. Estimates are that trillions of barrels of oil reserves may be found in such oil sand formations.
In some instances, these oil sand deposits are currently extracted via open-pit mining. Another approach for in situ extraction for deeper deposits is known as Steam-Assisted Gravity Drainage (SAGD). The heavy oil is immobile at reservoir temperatures, and therefore, the oil is typically heated to reduce its viscosity and mobilize the oil flow. In SAGD, pairs of injector and producer wells are formed to be laterally extending in the ground. Each pair of injector/producer wells includes a lower producer well and an upper injector well. The injector/production wells are typically located in the payzone of the subterranean formation between an underburden layer and an overburden layer.
The upper injector well is typically used to inject steam, and the lower producer well collects the heated crude oil or bitumen that flows out of the formation, along with any water from the condensation of injected steam. The injected steam forms a steam chamber that expands vertically and horizontally in the formation. The heat from the steam reduces the viscosity of the heavy crude oil or bitumen, which allows it to flow down into the lower producer well where it is collected and recovered. The steam and gases rise due to their lower density. Gases, such as methane, carbon dioxide, and hydrogen sulfide, for example, may tend to rise in the steam chamber and fill the void space left by the oil defining an insulating layer above the steam. Oil and water flow is by gravity driven drainage urged into the lower producer well.
Operating the injection and production wells at approximately reservoir pressure may address the instability problems that adversely affect high-pressure steam processes. SAGD may produce a smooth, even production that can be as high as 70% to 80% of the original oil in place (OOIP) in suitable reservoirs. The SAGD process may be relatively sensitive to shale streaks and other vertical barriers since, as the rock is heated, differential thermal expansion causes fractures in it, allowing steam and fluids to flow through. SAGD may be twice as efficient as the older cyclic steam stimulation (CSS) process.
Many countries in the world have large deposits of oil sands, including the United States, Russia, and various countries in the Middle East. Oil sands may represent as much as two-thirds of the world's total petroleum resource, with at least 1.7 trillion barrels in the Canadian Athabasca Oil Sands, for example. At the present time, only Canada has a large-scale commercial oil sands industry, though a small amount of oil from oil sands is also produced in Venezuela. Because of increasing oil sands production, Canada has become the largest single supplier of oil and products to the United States. Oil sands now are the source of almost half of Canada's oil production, while Venezuelan production has been declining in recent years. Oil is not yet produced from oil sands on a significant level in other countries.
U.S. Published Patent Application No. 2010/0078163 to Banerjee et al. discloses a hydrocarbon recovery process whereby three wells are provided: an uppermost well used to inject water, a middle well used to introduce microwaves into the reservoir, and a lowermost well for production. A microwave generator generates microwaves which are directed into a zone above the middle well through a series of waveguides. The frequency of the microwaves is at a frequency substantially equivalent to the resonant frequency of the water so that the water is heated.
Along these lines, U.S. Published Patent Application No. 2010/0294489 to Dreher, Jr. et al. discloses using microwaves to provide heating. An activator is injected below the surface and is heated by the microwaves, and the activator then heats the heavy oil in the production well. U.S. Published Patent Application No. 2010/0294488 to Wheeler et al. discloses a similar approach.
U.S. Pat. No. 7,441,597 to Kasevich discloses using a radio frequency generator to apply radio frequency (RF) energy to a horizontal portion of an RF well positioned above a horizontal portion of an oil/gas producing well. The viscosity of the oil is reduced as a result of the RF energy, which causes the oil to drain due to gravity. The oil is recovered through the oil/gas producing well.
U.S. Pat. No. 7,891,421, also to Kasevich, discloses a choke assembly coupled to an outer conductor of a coaxial cable in a horizontal portion of a well. The inner conductor of the coaxial cable is coupled to a contact ring. An insulator is between the choke assembly and the contact ring. The coaxial cable is coupled to an RF source to apply RF energy to the horizontal portion of the well.
Unfortunately, long production times, for example, due to a failed start-up, to extract oil using SAGD may lead to significant heat loss to the adjacent soil, excessive consumption of steam, and a high cost for recovery. Significant water resources are also typically used to recover oil using SAGD, which impacts the environment. Limited water resources may also limit oil recovery. SAGD is also not an available process in permafrost regions, for example, or in areas that may lack sufficient cap rock, are considered “thin” payzones, or payzones that have interstitial layers of shale. While RF heating may address some of these shortcomings, further improvements to RF heating may be desirable. For example, it may be relatively difficult to install or integrate RF heating equipment into existing wells.
Generally speaking, a method is for hydrocarbon resource recovery and may comprise positioning an RF antenna assembly within a wellbore in a subterranean formation. The RF antenna assembly may include first and second tubular conductors and a dielectric isolator therebetween defining a dipole antenna, and a dielectric coating surrounding the dielectric isolator and extending along a predetermined portion of the first and second tubular conductors. The method may include operating an RF source coupled to the RF antenna assembly during a start-up phase to desiccate water adjacent the RF antenna assembly, and operating the RF source coupled to the RF antenna assembly during a sustainment phase to recover hydrocarbons from the subterranean formation.
In some embodiments, the operating of the RF source during the start-up phase comprises operating the RF source at a first power level, and the operating of the RF source during the sustainment phase comprises operating the RF source at a second power level less than or equal to the first power level. Also, the positioning of the RF antenna assembly within the wellbore in the subterranean formation comprises positioning the RF antenna assembly in an injector well. The method may also include recovering the hydrocarbon from a producer well in the subterranean formation adjacent the injector well.
Moreover, the method may further comprise purging an interior of the dielectric isolator with a fluid during at least one of the start-up phase and the sustainment phase. The fluid may enter the interior of the dielectric isolator through a fluid passageway defined by an inner conductor of an RF transmission line coupled to the RF antenna assembly. The fluid may exit the interior of the dielectric isolator through first and second electrical contact sleeves respectively coupled between the first and second tubular conductors and the dielectric isolator. The method may further comprise operating the RF source at a frequency between 1 kHz and 1 MHz. The dielectric coating may comprise a polytetrafluoroethylene (PTFE) coating, for example. For instance, the dielectric coating may be between 10 meters and 200 meters in length.
Another aspect is directed to a method for hydrocarbon resource recovery with an RF antenna assembly within a wellbore in a subterranean formation. The RF antenna assembly may comprise first and second tubular conductors, a dielectric isolator defining a dipole antenna, first and second electrical contact sleeves respectively coupled between the first and second tubular conductors and the dielectric isolator, and a dielectric coating surrounding the dielectric isolator, the first and second electrical contact sleeves, and extending along a predetermined portion of the first and second tubular conductors. The method may include operating an RF source coupled to the RF antenna assembly during a start-up phase at a first power level and to desiccate water adjacent the RF antenna assembly, and operating the RF source coupled to the RF antenna assembly at a second power level less than or equal to the first power level during a sustainment phase to recover hydrocarbons from the subterranean formation.
Another aspect is directed to a hydrocarbon resource recovery system. The hydrocarbon resource recovery system may comprise an RF antenna assembly within a wellbore in a subterranean formation for hydrocarbon resource recovery. The RF antenna assembly may include first and second tubular conductors, a dielectric isolator between the first and second tubular conductors so that the first and second tubular conductors define a dipole antenna, a dielectric coating surrounding the dielectric isolator, and extending along a predetermined portion of the first and second tubular conductors, and an RF transmission line comprising an inner conductor and an outer conductor extending within the first tubular conductor. The hydrocarbon resource recovery system also includes an RF source coupled to the RF transmission line and configured to, during a start-up phase, operate at a first power level to desiccate water adjacent the RF antenna assembly, and during a sustainment phase, operate at a second power level less than or equal to the first power level to recover hydrocarbons from the subterranean formation.
The present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which several embodiments of the invention are shown. This present disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
Referring to
The hydrocarbon resource recovery system 60 illustratively includes a coaxial RF transmission line 64 coupled between the RF antenna 65 and the RF source 62 and having an aboveground portion extending along the surface of the subterranean formation 73. The coaxial RF transmission line 64 also includes a belowground portion extending within the first wellbore 71.
The hydrocarbon resource recovery system 60 illustratively includes a dielectric fluid pressure source 61, and a plurality of pressure members joined 74a-74d, 75a-75c together in end-to-end relation to define a pressure housing 63 coupled to the dielectric fluid pressure source and surrounding the aboveground portion of the coaxial RF transmission line 64. In some advantageous embodiments, the dielectric fluid pressure source 61 may integrate a cooling feature to cool and recirculate the dielectric fluid.
The RF power source 62 may have a power level of greater than one megawatt (e.g. 1-20 megawatts). The plurality of pressure members 74a-74d, 75a-75c illustratively includes a plurality of straight tubular pressure members 74a-74d and a plurality of elbow pressure members 75a-75c coupled thereto. The hydrocarbon resource recovery system 60 illustratively includes a producer well 69 within a second wellbore 72 of the subterranean formation 73, which produces hydrocarbons.
The hydrocarbon resource recovery system 60 illustratively includes flanged joints 76a-76e between adjacent pressure members 74a-74d, 75a-75c. As shown in the illustrated embodiment, the flanged joints 76a-76e include a plurality of fasteners, such as a bolts, and may include additionally or alternatively welding.
As perhaps best seen in
In another embodiment, each elbow pressure member 75a-75c could be formed as a single piece, i.e. without the upper and lower longitudinal halves 77a-77b. For example, the outer body of each elbow pressure member 75a-75c may be forged, and the outer conductor liner can be electroplated on the inner surface of the forged piece, or hydroformed on the forged piece.
As shown, each elbow pressure member 75a-75c includes opposing longitudinal flanges 82a-82b, 83a-83b for defining the respective flanged joints 76a-76e with female and male conductor mating ends. Each elbow pressure member 75a-75c illustratively includes an O-ring seal 84 carried by the male interface end, and a plurality of lift points 85, 89 configured to permit easy installation of the elbow pressure member. As perhaps best seen in
Referring additionally now to
The coaxial RF transmission line 64 illustratively includes a first metal having a first strength, and the pressure housing 63 (i.e. the tubular housing 94 and the upper and lower longitudinal halves 77a-77b) illustratively includes a second metal having a second strength greater than the first strength. In some embodiments, the first metal has a first electrical conductivity, and the second metal has a second electrical conductivity less than the first electrical conductivity. For example, the first metal may include one or more of copper, aluminum, or beryllium copper, and the second metal may include steel. Also, the pressure housing 63 illustratively has a pressure rating of at least 100 pounds per square inch (psi).
Aboveground, the coaxial RF transmission line 64 is defined by the inner conductor segments 90, 99 and the outer conductor segments 78, 98, and the dielectric fluid pressure source 61 is configured to circulate pressurized dielectric fluid between the inner conductor segments 90, 99 and the outer conductor segments 78, 98. The pressurized dielectric fluid may include a pressurized gas, for example, N2, CO2, or SF6.
Belowground, the coaxial RF transmission line 64 is defined by inner conductor segments and outer conductor segments (not shown), and is filled with a dielectric fluid (e.g. mineral oil). The hydrocarbon resource recovery system 60 includes an IOB device at the wellhead and configured to manage the transition from the liquid cooled RF transmission line 64 underground to the gas filled RF transmission line 64 aboveground.
Another aspect is directed to a hydrocarbon resource recovery component in a hydrocarbon resource recovery system 60 for a subterranean formation 73. The hydrocarbon resource recovery system 60 illustratively includes an RF antenna 65 within the subterranean formation 73 for hydrocarbon resource recovery, an RF source 62 aboveground, and a dielectric fluid pressure source 61. The hydrocarbon resource recovery component illustratively includes a coaxial RF transmission line 64 coupled between the RF antenna 65 and the RF source 62 and having an aboveground portion, and a plurality of pressure members 74a-74d, 75a-75c joined together in end-to-end relation to define a pressure housing 63 coupled to the dielectric fluid pressure source 61 and surrounding the aboveground portion of the coaxial RF transmission line. The plurality of pressure members 74a-74d, 75a-75c illustratively includes at least one straight tubular pressure member 74a-74d, and at least one elbow pressure member 75a-75c coupled thereto.
Another aspect is directed to a method for assembling a hydrocarbon resource recovery system 60 for a subterranean formation 73. The method comprises positioning an RF antenna 65 within the subterranean formation 73 for hydrocarbon resource recovery, positioning an RF source 62 aboveground, and coupling a coaxial RF transmission line 64 between the RF antenna and the RF source and having an aboveground portion. The method comprises coupling a plurality of pressure members 74a-74d, 75a-75c joined together in end-to-end relation to define a pressure housing 63 coupled to a dielectric fluid pressure 61 source and surrounding the aboveground portion of the coaxial RF transmission line 64. The plurality of pressure members 74a-74d, 75a-75c comprises at least one straight tubular pressure member 74a-74d, and at least one elbow pressure member 75a-75c coupled thereto.
Referring now additionally to
As will be appreciated, during a typical hydrocarbon resource recovery operation, the aboveground portion of the operation is quite complicated and intricate (e.g. complicated by routing of power, fluids, produced hydrocarbons). Indeed, the path for the coaxial RF transmission line 64 is far from a straight line path. Advantageously, the hydrocarbon resource recovery system 60 includes both straight tubular pressure members 74a-74d and elbow pressure members 75a-75c, which can be rotated before assembly to permit intricate paths, as perhaps best seen in
Indeed, in typical approaches, the pressurized dielectric fluid is pumped into a typical coaxial RF transmission line, and the corresponding pressure (typically 15 psi) is limited by the mechanical strength of the outer conductor and respective weld joints between segments. This is due to the annealing of the metal at the welding joints made from aluminum and copper, which are desirable electrical conductors. Moreover, these materials have scrap value and have increased theft rates at secluded sites. In the hydrocarbon resource recovery system 60, the outer conductor no longer is a limit to pressure, and the dielectric fluid pressure source 61 is configured to pressurize the dielectric fluid at within a range of 100-500 psi.
The advantage of this greater pressure is that the RF source 62 can operate at greater power levels without commensurate increases in the size of the coaxial RF transmission line 64 (usually done to achieve high voltage standoff safety requirements). In other words, with the high pressure dielectric fluid between the inner and outer conductors in the hydrocarbon resource recovery system 60, the power level can be safely increased without changing out the coaxial RF transmission line 64 (commonly done between start-up and sustainment phases), which reduces operational costs.
Moreover, the high pressure dielectric fluid keeps moisture out of the system and reduces risk of corrosion, and provides a medium with greater thermal conductivity. Indeed, since the pressure housing 65 components are made from corrosion resistant stainless steel, in some embodiments, the internal sensitive components are protected from the external environment. In short, the pressure housing 65 and the coaxial RF transmission line 64 therein of the disclosed hydrocarbon resource recovery system 60 provide for a more rugged, and more flexible platform for RF heating with the RF antenna 65.
Referring now to
The RF antenna assembly 107 illustratively includes a dielectric coupler 108 between the first and second electrical contact sleeves 110a-110b, a distal guide string 109 coupled to the second electrical contact sleeve, and an RF transmission line 139 comprising an inner conductor (e.g. one or more of beryllium copper, copper, aluminum) 140 and an outer conductor (e.g. one or more of beryllium copper, copper, aluminum) 141 extending within the first tubular conductor 116a. The outer conductor 141 is coupled to the first tubular conductor 116a. The RF antenna assembly 107 illustratively includes a feed structure 122 coupled to the second tubular conductor 116b. The RF antenna assembly 107 illustratively includes a heel isolator 114 coupled to the first tubular conductor 116a.
The inner conductor 140 illustratively has a distal end 117 being slidable within the outer conductor 141 and cooperating with the feed structure 122 to define a latching arrangement having a latching threshold (e.g. 100 lb.) lower than an unlatching threshold (e.g. >3,000 lb.). The hydrocarbon resource recovery system 105 illustratively includes a wellhead 111 on a surface of the subterranean formation 112. After installation of the inner conductor 140, the inner conductor string is hung on the wellhead 111 via hanger components 142-143 (
In the illustrated embodiment, the distal end 117 of the inner conductor 140 comprises a plug body 118 having a tapered front end 120, a radial recess 121 spaced therefrom, and a flanged back end 132 defining a “no-go feature”. The tapered front end 120 illustratively has a slope being shallower than a slope of the radial recess 121. The plug body 118 defines a passageway (e.g. for a fluid passageway or a thermal probe access point) 119 extending therethrough.
Also, the feed structure 122 illustratively includes a receptacle body 126 configured to receive the plug body 118, and a plurality of biased roller members carried by the receptacle body and configured to sequentially engage the tapered front end 120 and the radial recess 121 of the plug body 118. Each biased roller member illustratively includes a roller 125a-125b, an arm 134 having a proximal end pivotally coupled to the receptacle body 126 and a distal end carrying the roller, a pin 135 within the proximal end of the arm and permitting the arm to pivot, and a spring (e.g. Bellville spring) 136 configured to bias the proximal end of the arm. Each biased roller member illustratively includes a load adjustment screw 137, a spring interface 232 between the load adjustment screw and the spring 136, and a pawl plunger 231 configured to contact the proximal end of the arm 134.
As will be appreciated, the load adjustment screw 137 permits setting of the unlatching threshold. Before installation, the unlatching threshold is calculated so that preloading the inner conductor string can be accomplished without unintentional unlatching of the distal end 117 of the inner conductor 140.
Moreover, the receptacle body 126 is illustratively slidably moveable within the second tubular conductor 116b for accommodating thermal expansion of the inner conductor string. As perhaps best seen in
Referring now specifically to
The RF antenna assembly 107 illustratively includes a centralizer 128 configured to position the second tubular conductor 116b within the wellbore 113. The centralizer 128 illustratively includes first and second opposing caps 129a-129b, a medial tubular coupler 131 coupled between the first and second opposing caps, and a plurality of watchband spring connectors 130a-130b carried by the medial tubular coupler.
As seen in
Advantageously, the hydrocarbon resource recovery system 105 permits the inner conductor string to be installed separately from the outer conductor string and the RF antenna assembly 107. Since the size and weight of the inner conductor string is much less (inner conductor segments 133a-133b being 1.167″ outer diameter tube, 5′ length), this is easier for onsite personnel. Furthermore, since the inner conductor string is a common failure point in typical use, the hydrocarbon resource recovery system 105 is readily repaired since the distal end 117 of the inner conductor 140 can be unlatched from the feed structure 122 and removed for subsequent replacement. In typical approaches, the entire RF antenna assembly string has to come out to replace the inner conductor. Because of the substantial cost in typical approaches, some wells may go abandoned when this occurs. Positively, the hydrocarbon resource recovery system 105 permits easy replacement of the inner conductor string.
Furthermore, since the feed structure 122 can accommodate thermal expansion of the inner conductor 140, the inner conductor is not damaged by thermal expansion. Indeed, this is a common cause of failure of the inner conductor string.
Another aspect is directed to an RF antenna assembly 107 for a hydrocarbon resource recovery system 105 and being positioned within a wellbore in a subterranean formation 112 for hydrocarbon resource recovery. The RF antenna assembly 107 illustratively includes first and second tubular conductors 116a-116b, a dielectric isolator 115 coupled between the first and second tubular conductors, an RF transmission line 139 comprising an inner conductor 140 and an outer conductor 141 extending within the first tubular conductor, the outer conductor being coupled to the first tubular conductor, and a feed structure 122 coupled to the second tubular conductor. The inner conductor 140 includes a distal end 117 being slidable within the outer conductor 141 and cooperating with the feed structure 122 to define a latching arrangement having a latching threshold lower than an unlatching threshold.
Another aspect is directed to a method for assembling a hydrocarbon resource recovery system 105. The method includes positioning first and second tubular conductors 116a-116b in a wellbore with a dielectric isolator 115 coupled between the first and second tubular conductors, and positioning an outer conductor 141 of an RF transmission line 139 in the wellbore, the outer conductor extending within the first tubular conductor and being coupled to the first tubular conductor. The method comprises positioning a feed structure 122 coupled to the second tubular conductor 116b, and positioning an inner conductor 140 of the RF transmission line 139 in the wellbore, the inner conductor having a distal end 117 being slidable within the outer conductor 141 and cooperating with the feed structure to define a latching arrangement having a latching threshold lower than an unlatching threshold. The method includes latching the distal end 117 of the inner conductor 140 to the feed structure 122 to define the RF antenna assembly 107 coupled to an RF source.
Another aspect is directed to a method for hydrocarbon resource recovery from a subterranean formation 112. The method includes positioning first and second tubular conductors 116a-116b in a wellbore 113 in the subterranean formation 112 with a dielectric isolator 115 coupled between the first and second tubular conductors, and positioning an outer conductor 141 of an RF transmission line 139 within the first tubular conductor and being coupled to the first tubular conductor. The method includes positioning an inner conductor 140 of the RF transmission line 139 within the outer conductor 141 and cooperating with a feed structure 122 coupled to the second tubular conductor 116b to define a latching arrangement having a latching threshold lower than an unlatching threshold. In some embodiments, the method may include supplying RF power to the RF transmission line 139.
Another aspect is directed to a method for assembling a hydrocarbon resource recovery system 105. The method includes coupling an RF antenna assembly 107 to an RF source 106 and within a wellbore in a subterranean formation 112 for hydrocarbon resource recovery. The RF antenna assembly 107 includes first and second tubular conductors 116a-116b, a dielectric isolator 115 coupled between the first and second tubular conductors, an RF transmission line 139 comprising an inner conductor 140 and an outer conductor 141 extending within the first tubular conductor, the outer conductor being coupled to the first tubular conductor, and a feed structure 122 coupled to the second tubular conductor. The inner conductor 140 has a distal end 117 being slidable within the outer conductor 141 and cooperating with the feed structure 122 to define a latching arrangement having a latching threshold lower than an unlatching threshold.
Referring now to
The RF antenna assembly 147 illustratively includes an RF transmission line 155 comprising an inner conductor and an outer conductor extending within the first tubular conductor. The hydrocarbon resource recovery system 144 also includes an RF source 145 coupled to the RF transmission line 155 and configured to during a start-up phase, operate at a first power level to desiccate water adjacent the RF antenna assembly 147, and during a sustainment phase, operate at a second power level less than or equal to the first power level to recover hydrocarbons from the subterranean formation 146.
The hydrocarbon resource recovery system 144 also includes a producer well 150 within a second wellbore 149, and includes a pump 158 configured to move produced hydrocarbons to the surface of the subterranean formation 146. The dielectric coating 159 may be 1 m up to the full length of the antenna.
The RF antenna assembly 147 illustratively includes a dielectric coupler 153 between the first and second electrical contact sleeves 161, 162, a distal guide string 156 coupled to the second electrical contact sleeve, and an RF transmission line 155 comprising an inner conductor (e.g. one or more of Beryllium copper, copper, aluminum) and an outer conductor (e.g. one or more of Beryllium copper, copper, aluminum) extending within the first tubular conductor 151. The RF antenna assembly 147 illustratively includes a dielectric heel isolator 157 coupled to first tubular conductor 151.
Referring now particularly to
Referring now particularly to
In some embodiments, the operating of the RF source 145 during the start-up phase comprises operating the RF source at a first power level, and the operating of the RF source during the sustainment phase comprises operating the RF source at a second power level less than or equal to the first power level. Also, the positioning of the RF antenna assembly 147 within the first wellbore 148 in the subterranean formation 146 comprises positioning the RF antenna assembly in an injector well. The method also includes recovering the hydrocarbon from a producer well 150 in the subterranean formation 146 adjacent the injector well. Moreover, the method illustratively includes purging an interior of the dielectric isolator 154 with a fluid 160 during at least one of the start-up phase and the sustainment phase. (Block 168).
In some embodiments, the fluid 160 may enter the interior of the dielectric isolator 154 through a fluid passageway defined by an inner conductor 163 of an RF transmission line 155 coupled to the RF antenna assembly 147. The fluid 160 may exit the interior of the dielectric isolator 154 through first and second electrical contact sleeves 161, 162 respectively coupled between the first and second tubular conductors 151, 152 and the dielectric isolator. The method further comprises operating the RF source 145 at a frequency between 10 kHz and 10 MHz. The dielectric coating 159 may comprise PTFE material, for example. For instance, the dielectric coating 159 may be between 1 m to full length of antenna with preferred embodiment being 10 m.
Another aspect is directed to a method for hydrocarbon resource recovery with an RF antenna assembly 147 within a first wellbore 148 in a subterranean formation 146. The RF antenna assembly 147 includes first and second tubular conductors 151, 152, a dielectric isolator 154 defining a dipole antenna, first and second electrical contact sleeves 161, 162 respectively coupled between the first and second tubular conductors and the dielectric isolator, and a dielectric coating 159 surrounding the dielectric isolator, the first and second electrical contact sleeves, and extending along a predetermined portion of the first and second tubular conductors defining a start-up antenna length. The method includes operating an RF source 145 coupled to the RF antenna assembly 147 during a start-up phase at a first power level and to desiccate water adjacent the RF antenna assembly, and operating the RF source coupled to the RF antenna assembly at a second power level less than or equal to the first power level during a sustainment phase to recover hydrocarbons from the subterranean formation 146.
In some embodiments, the first and second tubular conductors 151, 152, the dielectric isolator 153, the first and second electrical contact sleeves 161, 162 are all part of the well casing. Since the first wellbore 148 can be a damp environment with high conductivity water present, in typical approaches, the impedance of the dipole antenna would be very low, approaching a short circuit with increasing water conductivity. In particular, the bare antenna increases the Voltage Standing Wave Ratio (VSWR), drastically increasing the difficulty (and expense) of the required impedance matching network of the transmitter. For example, the expense of a matching network that could match a 5:1 VSWR load for any phase of reflection coefficient is higher than one designed for a 2:1 VSWR load. This is due not only to the required higher values and tuning ranges of the inductors and capacitors, but the resulting higher currents and voltage stresses that these components would need to tolerate as well. If the VSWR were too high, this would potentially prevent the transmitter from delivering sufficient power to the formation.
Accordingly, in typical approaches, the RF source 145 would comprise multiple RF transmitters, such as a first initial high VSWR start-up RF transmitter and a second sustaining transmitter having a lower VSWR requirement. The start-up phase can be quite long, for example, up to six months. The first transmitter would enable desiccation of the adjacent portions of the first wellbore 148, and the second transmitter (e.g. lower VSWR sustainment) would be subsequently coupled to the RF transmission line 155. The sustainment phase could last 6-15 years, but due to the costly nature of the start-up transmitter, the operational power costs are about the same, ˜$10-12 million. In a typical hydrocarbon resource recovery operation, efficiency is important. This is due to the costly nature of powering RF transmitters in hydrocarbon resource recovery.
Advantageously, in the disclosed embodiments, the RF antenna assembly 147 has the dielectric coating 159 on the first and second electrical contact sleeves 161, 162 and at least a portion of the first and second tubular conductors 151, 152. In other words, the dipole antenna has a minimum starting antenna length, and a single RF transmitter can be used, i.e. the first RF transmitter can be eliminated, saving more than $10 million. Since the first RF transmitter is not needed, capital expenditures are reduced. Moreover, these RF transmitters are large and ungainly, making them expensive to swap out. The dielectric coating 159 helpfully provides for impedance control for the dipole antenna, and improves electrical breakdown across the surface of the dielectric isolator 154.
The dielectric coating 159 may be formed on the dielectric isolator 154 and the first and second tubular conductors 151, 152 via one or more of the following: composite wrap on the exterior, spraying on the dielectric coating, or via a thermal shrink fit of the dielectric material.
Other features relating to the dielectric coating 159 and the manufacture thereof are found in U.S. patent application Ser. No. 15/426,168 filed Feb. 7, 2017, assigned to the present applications assignee, which is incorporated herein by reference in its entirety.
Other features relating to hydrocarbon resource recovery are disclosed in U.S. Pat. No. 9,376,897 to Ayers et al., which is incorporated herein by reference in its entirety.
Referring now to
The RF antenna assembly 172 illustratively includes first and second tubular conductors 178, 179, a dielectric isolator 176, and first and second electrical contact sleeves 174, 175 respectively coupled between the first and second tubular conductors and the dielectric isolator so that the first and second tubular conductors define a dipole antenna. The RF antenna assembly 172 illustratively includes a heel dielectric isolator 180 coupled to the first tubular conductor 178.
The RF antenna assembly 172 illustratively includes a thermal expansion accommodation device 177 configured to provide a sliding arrangement between the second tubular conductor 179 and the second electrical contact sleeve 175 when a compressive force therebetween exceeds a threshold. In the illustrated embodiment, the thermal expansion accommodation device 172 illustratively includes a first tubular sleeve 182 coupled to the second electrical contact sleeve 175, and a second tubular sleeve 183 coupled to the second tubular conductor 179 and arranged in telescopic relation with the first tubular sleeve. The first and second tubular sleeves 182, 183 may each comprise stainless steel, for example. In the illustrated embodiment, the diameter of the first tubular sleeve 182 is greater than that of the second tubular sleeve 183, but in other embodiments, this may be reversed (i.e. the diameter of the first tubular sleeve 182 is less than that of the second tubular sleeve 183).
The thermal expansion accommodation device 177 illustratively includes a first tubular sleeve extension 184 coupled to the first tubular sleeve 182 via a threaded interface 188, and a plurality of shear pins 187a-187f extending transversely through the first and second tubular sleeves 182, 183, and the first tubular sleeve extension 183. When the compressive force therebetween exceeds the threshold, the plurality of shear pins 187a-187f will break and permit telescoping action of the second tubular sleeve 183 within along an internal surface 190 of the first tubular sleeve 182.
The thermal expansion accommodation device 172 illustratively includes a proximal end cap 185 coupled between the first tubular sleeve 182 and the second electrical contact sleeve 175. The second tubular sleeve 183 also illustratively includes a threaded interface 186 on a distal end to be coupled to the second tubular conductor 179.
The thermal expansion accommodation device 177 illustratively includes a plurality of watchband springs 194a-194b electrically coupling the first and second tubular sleeves 182, 183. The second tubular sleeve 183 illustratively has a threaded surface 188 on an end thereof. The thermal expansion accommodation device 177 illustratively includes an end cap 189 having an inner threaded surface 191 (
The thermal expansion accommodation device 177 illustratively includes a plurality of seals 192a-192b between the first and second tubular sleeves 182, 183, and a lubricant injection port 195 configured to provide access to areas adjacent the plurality of seals. The thermal expansion accommodation device 177 illustratively includes a plurality of fasteners 193a-193c extending through the end cap 189 and the second tubular sleeve 183.
Also, the RF antenna assembly 172 illustratively includes an RF transmission line 233 comprising an inner conductor 234 and an outer conductor 235 extending within the first tubular conductor 178. The dielectric isolator 176 may include a tubular dielectric member and a PTFE coating (e.g. as noted in the hereinabove disclosed embodiments) thereon.
As perhaps best seen in
Another aspect is directed to an RF antenna assembly 172 coupled to a RF source 171 and being within a wellbore 181 in a subterranean formation 173 for hydrocarbon resource recovery. The RF antenna assembly 172 includes first and second tubular conductors 178, 179, a dielectric isolator 176, and first and second electrical contact sleeves 174, 175 respectively coupled between the first and second tubular conductors and the dielectric isolator so that the first and second tubular conductors define a dipole antenna. The RF antenna assembly 172 comprises a thermal expansion accommodation device 177 configured to provide a sliding arrangement between the second tubular conductor 179 and the second electrical contact sleeve 175 when a compressive force therebetween exceeds a threshold.
Another aspect is directed to a method of hydrocarbon resource recovery. The method includes positioning an RF antenna assembly 172 within a wellbore 181 in a subterranean formation 173. The RF antenna assembly 172 includes first and second tubular conductors 178, 179, a dielectric isolator 176, first and second electrical contact sleeves 174, 175 respectively coupled between the first and second tubular conductors and the dielectric isolator so that the first and second tubular conductors define a dipole antenna, and a thermal expansion accommodation device 177 configured to provide a sliding arrangement between the second tubular conductor and the second electrical contact sleeve when a compressive force therebetween exceeds a threshold.
Referring now additionally to
In the illustrated embodiments, the thermal expansion accommodation device 177 uses threaded interfaces for coupling components together. Of course, in other embodiments, the threaded interfaces can be replaced with fastener based couplings or weld based couplings. Also, in another embodiment, the first tubular sleeve 182 may include an outer sleeve configured to provide a corrosion shield. Also, in another embodiment, the first tubular sleeve 182 may be elongated to protect the inside wall from both internal and external environment.
Advantageously, the thermal expansion accommodation device 177 provides an approach to thermal expansion issues within the RF antenna assembly 172. In typical approaches, one common point of failure when the first and second tubular conductors 178, 179 experience thermal expansion is the dielectric isolator 176 and the heel dielectric isolator 180. In the hydrocarbon resource recovery system 170 disclosed herein, instead of the dielectric isolator 176 or the heel dielectric isolator 180 buckling under compressive pressure, the plurality of shear pins 187a-187f will break and permit telescoping action of the second tubular sleeve 183 within along an internal surface 190 of the first tubular sleeve 182. Indeed, during typical operation, the plurality of shear pins 187a-187f will shear, and when the RF antenna assembly 172 is removed from the wellbore 181, the mechanical stop formed by the proximal end of the first tubular sleeve extension 184 will enable the thermal expansion accommodation device 177 to be removed.
Moreover, the thermal expansion accommodation device 177 is flexible in that the threshold for the compressive force is settable via the plurality of shear pins 187a-187f. Also, the thermal expansion accommodation device 177 provides a solid electrical connection during the thermal growth of the first and second tubular sleeves 182, 183, which provides corrosion resistance and reservoir fluid isolation.
Referring now to
The hydrocarbon resource recovery system 203 illustratively includes a plurality of solvent injectors 205a-205c within respective laterally extending wellbores extending transverse (i.e. between 65-115 degrees of canting) and above the RF antenna assemblies 206a-206c and configured to selectively inject solvent into the subterranean formation 208 adjacent the RF antenna assemblies. Also, the hydrocarbon resource recovery system 203 illustratively includes a plurality of producer wells 207a-207c extending laterally in respective second wellbores 237 in the subterranean formation 208 for hydrocarbon resource recovery and being below the RF antenna assemblies 206a-206c, and a pump 216 within each producer well and configured to move produced hydrocarbons to a surface of the subterranean formation 208. Although in the illustrated embodiment, there are a plurality of RF antenna assemblies 206a-206c and a corresponding plurality of producer wells 207a-207c, in other embodiments, there may be more or fewer well pairs within the subterranean formation 208.
In the illustrated embodiment, the plurality of RF antenna assemblies 206a-206c and the plurality of producer wells 207a-207c extend from the producer well pad 240. Also, the plurality of solvent injectors 205a-205c extends from the injector well pad 241.
In the illustrated embodiment, each solvent injector 205a-205c includes a plurality of flow regulators (e.g. injection valves, chokes, multi-position valves that may include chokes, or other flow controlling devices) 217a-217f respectively aligned with respective ones of the plurality of RF antenna assemblies 206a-206c. It is noted that for enhanced clarity of explanation, only three well pairs are depicted in
Each solvent injector 205a-205c may comprise a lateral well (e.g. 7″ in diameter) with a blank casing with slotted liner or wire wrapped sections aligned with the RF antenna assemblies 206a-206c. The plurality of solvent injectors 205a-205c is situated above the plurality of RF antenna assemblies 206a-206c, for example, about 3 m±1 m.
Each solvent injector 205a-205c illustratively includes a plurality of isolation packers 218, 219 (e.g. a thermal diverter pair, as available from the Halliburton Company of Houston, Tex.) with a respective flow regulator 217a-217f therebetween. Each of the plurality of isolation packers 218, 219 may enable feedthrough of control lines and measurement lines, hydraulic, electric, and optic fiber. The exemplary thermal diverter is suitable for high temperature applications which do not require perfect sealing, such as SAGD. For lower temperature applications, like this solvent injection method, other types of packers should also be considered, for example, swellable elastomeric packers, or cup type packers that use more common elastomers (e.g. Hydrogenated Nitrile Butadiene Rubber (HNBR)) than the high temperature thermoplastics used for thermal diverters.
Moreover, the plurality of solvent injectors 205a-205c includes a first solvent injector well 205a aligned with a proximal end (i.e. a heel portion of the injector well) of the plurality of RF antenna assemblies 206a-206c, a second solvent injector 205b aligned with a medial portion (i.e. the first tubular conductor 213 of the plurality of producer wells 207a-207c) of the plurality of RF antenna assemblies 206a-206c, and a third solvent injector 205c aligned with a distal end (i.e. the second tubular conductor 215 of the injector well) of the plurality of RF antenna assemblies 206a-206c.
Each RF antenna assembly 206a-206c illustratively includes a dielectric heel isolator 212 coupled to the first tubular conductor 213. Also, each RF antenna assembly 206a-206c illustratively includes an RF transmission line 209 coupled to the RF source 204, first and second electrical contact sleeves 239a-239b respectively coupled between the first and second tubular conductors 213, 215 and the RF transmission line, a dielectric coupler 211 coupled between the first and second electrical contact sleeves, and a guide string 210 coupled to the second electrical contact sleeve. In some embodiments (
In
Another aspect is directed to a method of hydrocarbon resource recovery with a hydrocarbon resource recovery system 203. The hydrocarbon resource recovery system 203 includes an RF source 204, and at least one RF antenna assembly 206a-206c coupled to the RF source and extending laterally within a first wellbore 236 in a subterranean formation 208 for hydrocarbon resource recovery. The at least one RF antenna assembly 206a-206c includes first and second tubular conductors 213, 215, and a dielectric isolator 214 coupled between the first and second tubular conductors to define a dipole antenna. The method comprises operating a plurality of solvent injectors 205a-205c within respective laterally extending wellbores extending transverse and above the at least one RF antenna assembly 206a-206c, the plurality of solvent injectors selectively injecting solvent into the subterranean formation 208 adjacent the at least one RF antenna assembly.
In operation, the RF source 204 is operated in two phases. During the start-up phase, the power level of the RF source 204 is slowly ramped up to a target power level of 2.0 kW/m of antenna length or greater. Once fluid communication is established with the producer well 207a-207c, the solvent injection can begin. The heating pattern around the plurality of RF antenna assemblies 206a-206c should follow a zip line path. Once antenna impedance is stabilized, the power level of the RF source 204 is reduced to 1-1.5 kW/m for the sustainment
Also, helpfully, this embodiment of the hydrocarbon resource recovery system 203 provides an alternative approach to other systems where the solvent injecting apparatus and the RF antenna are integrated within the same wellbore. In the hydrocarbon resource recovery system 203, the separation of the solvent injection feature from the RF antenna assemblies 206a-206c may reduce complexity and enhance reliability. Moreover, the plurality of solvent injectors 205a-205c may provide improved selectivity as solvent application can be tightly controlled over several injector/producer well pairs.
Several benefits are derived from the hydrocarbon resource recovery system 203. First, the antenna liner is reduced in diameter, which reduces drilling and material costs. Additionally, since the injector well pumps are removed, costs and complexity are further reduced. Also, the complex solvent crossing at the dielectric heel isolator 212 is removed.
Referring now to
Advantageously, this embodiment may cause the antenna to be instantly in electromagnetic mode, i.e. no start-up phase or zip lining. Also, the thermal limits on dielectric isolator 214 are reduced and corrosion concerns are largely eliminated. The cased wellbore 223 would be circulated clean and filled with a high temperature mineral oil or dielectric type fluid. Positively, the antenna liner could be reduce to 9⅝″ (from 10¾″ with in typical approaches) in diameter, and electrical corner cases would be reduced using this configuration. Lastly, this embodiment provides for a known fluid within the dielectric isolator 212, and around the common mode current choke XXX.
This embodiment controls the fluid around the electromagnetic heating tool and puts a known fluid around the center node and choke assembly. Here, the antenna wellbore (case hole) was cemented, which allows the antenna of this embodiment to have a electrically isolating layer around it which could allow the antenna to instantly be in electromagnetic mode, i.e. no zip lining, or at least allow zip lining to occur at a much fast rate.
Referring now additionally to
The first wellbore 236′ illustratively includes a cased wellbore 229′ defining first, second, and third fluid passageways 225′, 227′, 228′ between a respective RF antenna assembly 206′ and the cased wellbore, and an N2 core 226′ surrounding the first fluid passageway. Here, the cased wellbore 229′ refers to an antenna that has been cemented into place, i.e. fully cased in concert. The first and second fluid passageways 225′, 227′ are the supply path from a surface of the subterranean formation 208′, and the third fluid passageway 228′ is the return path back to the surface of the subterranean formation.
This embodiment may cause the antenna to be instantly in electromagnetic mode, i.e. no start-up or zip lining. The RF transmission line is N2 filled with oil flowing down inner and outer bodies and returning up casing annulus, which will provide for a power efficiency improvement. Also, the antenna liner could be reduced to 9⅝″ in diameter, providing the benefits noted above.
Other features relating to hydrocarbon resource recovery systems are disclosed in co-pending applications: titled “HYDROCARBON RESOURCE RECOVERY SYSTEM AND COMPONENT WITH PRESSURE HOUSING AND RELATED METHODS,” Attorney Docket No. 62510; titled “HYDROCARBON RESOURCE RECOVERY SYSTEM AND RF ANTENNA ASSEMBLY WITH LATCHING INNER CONDUCTOR AND RELATED METHODS,” Attorney Docket No. 62511; titled “HYDROCARBON RESOURCE RECOVERY SYSTEM AND RF ANTENNA ASSEMBLY WITH THERMAL EXPANSION DEVICE AND RELATED METHODS,” Attorney Docket No. 62513; and titled “HYDROCARBON RESOURCE RECOVERY SYSTEM WITH TRANSVERSE SOLVENT INJECTORS AND RELATED METHODS,” Attorney Docket No. 62514, all incorporated herein by reference in their entirety.
Many modifications and other embodiments of the present disclosure will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the present disclosure is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.