Method for operation of an internal combustion engine running on hydrogen

Abstract
A method is provided for operating a bivalent internal combustion engine, which may run lean with using a fuel with wide inflammability limits, such as hydrogen, whereby a first lean region close to the stoichiometric air ratio and a second lean region, adjacent to the first in the direction of greater λ valve are defined. The operation in the first lean region is skipped such that operation occurs either in the second lean region or at an approximately stoichiometric air ratio.
Description
BACKGROUND AND SUMMARY OF THE INVENTION

This application is a continuation of International Patent Application No. PCT/EP2004/003867 filed on Apr. 13, 2004, designating the United States of America, the entire disclosure of which is incorporated herein by reference. Priority is claimed based on German Patent Application No. DE 103 21793.2 filed May 14, 2003.


This invention relates to a method for operating a bivalent internal combustion engine which can be operated under lean conditions at λ>1 using a fuel having wide ignition limits such as hydrogen (H2). A first lean range adjacent to the stoichiometric air ratio (λ=1) is defined and a second lean range following this first range in the direction of larger λ values is also defined.


Internal combustion engines, in particular hydrogen-operated internal combustion engines, can be operated under extremely lean conditions at air ratios far higher than λ=2 over a wide power range, so the level of nitrogen oxide emissions is negligible. Even the crude exhaust has significantly lower concentrations of nitrogen oxides (NOx) in such a hydrogen-based operation in comparison with emissions of a hydrocarbon-based process following aftertreatment of the exhaust using a λ-controlled three-way catalyst. Only if a relatively high power output is required it is necessary to make the fuel-air mixture richer in the range of 1≦λ≦2, which then is associated with a drastic increase in NOx emissions and thus the need for aftertreatment of the exhaust.


Unthrottled and lean operation of the internal combustion engine over a wide power range offers definite advantages in terms of fuel consumption because efficiency is improved with a greater air excess and unthrottled operation.


To prevent problematical NOx emissions in the lean range close to λ=1, DE 195 26 319 A1, proposes always operating with an air ratio of λ<1 and passing the exhaust over a catalytic converter. This approach cannot be regarded as leading to the goal because the special advantage of engine operation that is extremely favorable from the standpoint of consumption with negligible NOx emissions at the same time is not utilized in the extremely lean range of λ>2.


In the case of bivalent internal combustion engines in particular, which can be operated with both hydrogen and hydrocarbons such as gasoline, diesel or natural gas, it is recommended that the exhaust aftertreatment technology required for hydrocarbon operation of the internal combustion engine also be used for hydrogen operation.


The conventional catalytic exhaust aftertreatment method with hydrocarbon-operated internal combustion engines includes three-way catalytic converters and/or NOx storage catalytic converters. It is a disadvantage here that the λ-controlled three-way catalyst converter is effectively capable of reduction of nitrogen oxide in principle only at a stoichiometric air ratio of λ=1. In the lean range at λ>1, its nitrogen oxide reduction behavior is negligible, so that use for lean concepts is out of focus. However, the reduction behavior of NOx storage catalytic converters, which can be used in principle with an excess of oxygen in the exhaust (λ≧1), is definitely inferior to that of three-way catalytic converters at a stoichiometric air ratio, so this technology is not adequate to take into account extremely high demands with regard to fulfilling extremely stringent exhaust emission regulations.


Therefore, the object of this invention is to provide a method for operating an internal combustion engine, in particular a bivalent engine, with hydrogen, whereby excess NOx emissions are effectively prevented even when a high power is demanded.


This object is achieved whereby according to the basic idea, the engine is operated essentially in the second lean range—not directly adjacent to the stoichiometric air ratio λ=1—or at an air ratio that is at least approximately stoichiometric (λ≈1). The first lean range adjacent to the stoichiometric air ratio (λ=1) is faded out so no operation in this range is provided.


Especially preferred refinements and embodiments of the inventive method are the subject of the dependent claims.


It is regarded as highly advantageous if the first lean range includes essentially air ratios (λ) with significant nitrogen oxide emissions (NOx emissions) and the second lean range includes essentially air ratios (λ) with negligible NOx emissions.


Expediently the first lean range is skipped through an appropriate design of the engine control, which also contains the formation of the fuel-air mixture, by increasing the supply of fuel and/or throttling and/or varying the rate of recirculated exhaust gas. Advantageously the use of exhaust gas recirculation offers the possibility of at least largely unthrottled engine operation with a corresponding efficiency advantage.


According to an especially preferred embodiment of the invention, the internal combustion engine is operated over a wide power range in the second lean range with an especially large λ, but when a very high power is demanded in particular, the internal combustion engine is operated at least approximately at a stoichiometric air ratio (λ≈1), with a sudden transition to the at least approximately stoichiometric air ratio (λ≈1) starting from the second lean range, thus skipping the first lean range.


It is very advantageous if there is a catalytic exhaust aftertreatment, in particular when operating at λ≈1, expediently using a three-way catalytic converter and/or an NOx storage catalytic converter.


In particular when using an NOx storage catalytic converter, rich operation at λ<1 is recommended at least briefly, depending on the storage capacity and/or loading of the NOx storage catalytic converter, for regeneration of same.


The nitrogen oxides (NOx) are preferably reduced by means of unburned hydrogen (H2) present in the exhaust.


An especially preferred exemplary embodiment of this invention is illustrated and described in greater detail below with reference to the figures, which show schematically and as an example.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an NOx concentration curve as a function of the air ratio λ, and



FIG. 2 shows a diagram of operation according to this invention with fade-out of the first lean range adjacent to the stoichiometric air ratio λ=1.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 is based on a bivalent internal combustion engine which can be operated with a fuel containing hydrocarbons, e.g., gasoline, diesel or natural gas or with hydrogen, with the formation of the mixture taking place inside and/or outside the combustion chamber. In addition to a conventional fuel tank for a hydrocarbon-based fuel, a cryotank to accommodate cryogenic liquid hydrogen is also provided on board the vehicle (not shown here). The vehicle includes in particular a λ-control three-way catalyst converter and/or an NOx storage catalytic converter for exhaust aftertreatment, in particular with regard to nitrogen oxides (NOx) in the exhaust line. The λ-controlled three-way catalyst also reduces NOx emissions at a stoichiometric air ratio of λ=1 in addition to reducing CO and HC emissions when engine is operated with hydrocarbons. The NOx storage catalyst is also effective at λ≠1 and stores NOx in lean operation at λ≧1, whereas regeneration of the NOx storage catalyst takes place during operating phases with a fuel excess at λ≦1. Unburned hydrogen present in the exhaust supports the reduction of NOx.


Diagram 100 shows qualitatively an NOx concentration curve 102 for an internal combustion engine operated with hydrogen as a function of the air ratio λ in the lean range for λ>1. Based on a stoichiometric air ratio of λ=1, the NOx emissions increase with an increase in the air excess until reaching a maximum value at an air ratio of λ≈1.1 to 1.3. If the air ratio λ increases further, the NOx emissions decline, reaching negligible values in the range of λ≈1.8 to 2.5. This first lean range adjacent to the stoichiometric air ratio λ=1 is labeled as A. The other lean range which is characterized by negligible NOx emissions is labeled as B.


Operation in range B is possible over a wide power range. Only in the top power range is it necessary to make the mixture richer in the direction of λ=1. To minimize NOx emissions even when a high power is demanded, operation conforms to diagram 200, which is shown in FIG. 2 and illustrates the skipping of the first lean range 204 adjacent to the stoichiometric air ratio λ=1.


Starting from operation in range B, the mixture is suddenly made richer up to λ=1 when a particularly high power is required, whereupon the regulated three-way catalytic converter becomes operative. The first lean range 204 is faded out; no operation is provided in this range 204. The limit 206 for the sudden change, marking the lower end of the second lean range B, is independent of the particular NOx limits to be maintained; in the present case the sudden-change limit 206 is in the range of 1.8≦λ≦2.5. The sudden-change limit 206 may be fixed or may be variable depending on boundary conditions. When using an NOx storage catalyst, the sharpness of the sudden-change limit may advantageously be blurred to simplify engine management and to expand the unthrottled lean range where consumption is favorable.


In particular when an NOx storage catalyst is used for the exhaust aftertreatment, the mixture is suddenly made more rich to λ≦1 starting from operation in range B when there is a particularly high power demand, depending on the storage capacity and/or load status of the NOx storage catalyst converter, so that regeneration of the loaded NOx storage catalyst can take place if necessary. After successful regeneration, operation of the engine is continued at an at least approximately stoichiometric air ratio (λ26 1) as long as an especially great power is demanded.

Claims
  • 1. Method for operating a bivalent internal combustion engine using a fuel with broad ignition limits, whereby a first lean range adjacent to a stoichiometric air ratio (λ=1) and a second lean range following the first lean range in a direction of larger λ values are defined, the method comprising the acts of: skipping operation of the engine in the first lean range while operating the engine at least between the second lean range and at approximately the stoichiometric air ratio (λ≈1) throughout operation of the engine, wherein the fuel is hydrogen.
  • 2. Method as claimed in claim 1, wherein the first lean range essentially includes air ratios (λ) with significant nitrogen oxide emissions and the second lean range essentially includes air ratios (λ) with negligible NOx emissions.
  • 3. Method as claimed in claim 1, wherein the first lean range is skipped via engine control.
  • 4. Method as claimed in claim 2, wherein the first lean range is skipped via engine control.
  • 5. Method as claimed in claim 1, wherein the internal combustion engine is operated in the second lean range over a wide power range.
  • 6. Method as claimed in claim 4, wherein the internal combustion engine is operated in the second lean range over a wide power range.
  • 7. Method as claimed in claim 1, wherein the internal combustion engine is operated at approximately the stoichiometric air ratio (λ≈1) when there are great power demands, whereby starting from the second lean range there is a sudden transition to the approximately stoichiometric air ratio (λ≈1).
  • 8. Method as claimed in claim 4, wherein the internal combustion engine is operated at approximately the stoichiometric air ratio (λ≈1) when there are great power demands, whereby starting from the second lean range there is a sudden transition to the approximately stoichiometric air ratio (λ≈1).
  • 9. Method as claimed in claim 5, wherein the internal combustion engine is operated at approximately the stoichiometric air ratio (λ≈1) when there are great power demands, whereby starting from the second lean range there is a sudden transition to the approximately stoichiometric air ratio (λ≈1).
  • 10. Method as claimed in claim 7, wherein the transition to the approximately stoichiometric air ratio (λ≈1) is accomplished by at least one of an increased fuel supply, an increased exhaust recycling rate, and a reduced air supply.
  • 11. Method as claimed in claim 8, wherein the transition to the approximately stoichiometric air ratio (λ≈1) is accomplished by at least one of an increased fuel supply, an increased exhaust recycling rate, and a reduced air supply.
  • 12. Method as claimed in claim 7, wherein an exhaust aftertreatment is performed using a catalytic converter in particular in operation at λ≈1.
  • 13. Method as claimed in claim 8, wherein an exhaust aftertreatment is performed using a catalytic converter in particular in operation at λ≈1.
  • 14. Method as claimed in claim 9, wherein an exhaust aftertreatment is performed using a catalytic converter in particular in operation at λ≈1.
  • 15. Method as claimed in claim 12, wherein the catalytic converter includes a three-way catalyst converter, an NOx storage catalyst, or a combination thereof.
  • 16. Method as claimed in claim 13, wherein the catalytic converter includes a three-way catalyst converter, an NOx storage catalyst, or a combination thereof.
  • 17. Method as claimed in claim 14, wherein the catalytic converter includes a three-way catalyst converter, an NOx storage catalyst, or a combination thereof.
  • 18. Method as claimed in claim 12, wherein the engine is operated in a rich range at λ≦1, when using an NOx storage catalyst, depending at least briefly on at least one of a storage capacity and a loading of the NOx storage catalyst.
  • 19. Method as claimed in claim 13, wherein the engine is operated in a rich range at λ≦1, when using an NOx storage catalyst, depending at least briefly on at least one of a storage capacity and a loading of the NOx storage catalyst.
  • 20. Method as claimed in claim 12, wherein nitrogen oxides (NOx) are reduced by means of unburned hydrogen (H2) present in the exhaust.
  • 21. Method as claimed in claim 13, wherein nitrogen oxides (NOx) are reduced by means of unburned hydrogen (H2) present in the exhaust.
  • 22. Method as claimed in claim 18, wherein nitrogen oxides (NOx) are reduced by means of unburned hydrogen (H2) present in the exhaust.
  • 23. Method as claimed in claim 19, wherein nitrogen oxides (NOx) are reduced by means of unburned hydrogen (H2) present in the exhaust.
  • 24. Method as claimed in claim 1, wherein λ is greater than 1.3 in the second lean range.
  • 25. Method as claimed in claim 1, wherein λ is greater than 1.8 in the second lean range.
  • 26. Method as claimed in claim 7, wherein λ is between 1.8 and 2.5 at the sudden transition to the approximately stoichiometric air ratio (λ≈1).
Priority Claims (1)
Number Date Country Kind
103 21 793 May 2003 DE national
US Referenced Citations (8)
Number Name Date Kind
5271359 Teramoto et al. Dec 1993 A
6079204 Sun et al. Jun 2000 A
6210641 Yamada et al. Apr 2001 B1
6220019 Sugiura et al. Apr 2001 B1
6421599 Lippa et al. Jul 2002 B1
6570265 Shiraishi et al. May 2003 B1
7111452 Miyoshi et al. Sep 2006 B2
20020166515 Ancimer et al. Nov 2002 A1
Foreign Referenced Citations (3)
Number Date Country
195 26 319 Jan 1997 DE
197 47 222 Mar 1999 DE
0 754 844 Jan 1997 EP
Related Publications (1)
Number Date Country
20060000456 A1 Jan 2006 US