Method for order changing in corrugating machines

Information

  • Patent Grant
  • 6568304
  • Patent Number
    6,568,304
  • Date Filed
    Friday, October 29, 1999
    24 years ago
  • Date Issued
    Tuesday, May 27, 2003
    21 years ago
Abstract
An order changing method in a corrugating machine having a slitter scorer devices and a plurality of cut-off devices includes a step of aligning a dividing slit of an old order corrugated fiberboard web, which does not coincide with a centerline of the old order corrugated fiberboard web, with a dividing slit of a new order corrugated fiberboard web, which does not coincide with a centerline of the new order corrugated fiberboard web, wherein the new order corrugated fiberboard web has a width different from a width of the old order corrugated fiberboard web such that the method can decrease the number of defective sheets generated during an order change.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an order changing method in a corrugating machine for manufacturing a corrugated fiberboard sheet. More particularly, the present invention relates to an order changing method in a corrugating machine having the paper patch and sheet taking arrangement of a corrugated fiberboard web in such a manner that dividing slits of the corrugated fiberboard web are set on an almost straight line before and after an order change.




2. Description of the Related Art





FIG. 5

is a conceptual view showing a part of the downstream side of a corrugating machine for manufacturing a corrugated fiberboard sheet. In

FIG. 5

, a slitter scorer state


101


is provided on the right side and a cut-off stage


102


is provided on the left side. Cutting and creasing are performed while a corrugated fiberboard web


103


is running from the slitter scorer stage


101


toward the cut-off stage.




The slitter scorer stage


101


comprises one cutter


104


and two slitter scorer devices


105




a


and


105




b


. One of the slitter scorer devices


105




a


and


105




b


is usually operated, and the other is kept with the setting switched to cutting conditions corresponding to the next order.




Trim ducts


150




a


and


150




b


for sucking a trim of the corrugated fiberboard web


103


are provided behind the slitter scorer devices


105




a


and


105




b


, respectively.




The cut-off stage


102


positioned on the downstream side of the slitter scorer step


101


comprises upper- and lower-stage cut-off devices


106


and


107


for cutting the corrugated fiberboard web


103


in a transverse direction orthogonal to a running direction thereof (hereinafter referred to as a flow direction or a progress direction).




According to such a corrugating machine


110


, the corrugated fiberboard web


103


stuck by means of a double facer (not shown) which is provided on the upstream side is in the progress direction of the corrugated fiberboard web


103


at the slitter scorer stage


101


, and is then cut to have the same length in the transverse direction at the cut-off stage


102


. Consequently, a plurality of rectangular corrugated fiberboard sheets


111


and


112


shown in

FIG. 6

can be manufactured. The corrugated fiberboard sheets


111


and


112


are stacked by means of a stacker.




Next, description will be given to a sheet taking operation to be performed by the corrugating machine


110


. The above-mentioned cut-off operation means a so-called double cut-off operation to be performed by the two cut-off devices


106


and


107


.

FIG. 6

is a plan view showing the sheet taking operation for processing the corrugated fiberboard web


103


by the double cut-off operation.




The corrugated fiberboard web


103


is cut into a plurality of portions along slitter cutting lines


120


in the flow direction of the corrugated fiberboard web


103


at the slitter scorer step


101


. By using, as a boundary, a dividing slit M which is one of the slitter cutting lines


120


, for example, an upper web


103




a


positioned on the upper side in

FIG. 6 and a

lower web


103




b


are fed to the upper-stage cut-off device


106


and the lower-stage cut-off device


107


respectively, and are cut by cut-off lines


121


and


122


in the transverse direction of the corrugated fiberboard web


103


and are cut away at equal intervals in the flow direction respectively. Thus, the rectangular corrugated fiberboard sheets


111


and


112


having different dimensions can be manufactured in the upper-stage cut-off device


106


and the lower-stage cut-off device


107


, respectively.




For example, when the corrugated fiberboard sheets


111


and


112


having different sizes are being processed by the upper-stage cut-off device


106


and the lower-stage cut-off device


107


, a dimension of the sheet to be cut by the cut-off devices


106


and


107


is changed in some cases. This change is referred to as an order change. The order change is performed in the following two cases.




(1) Only one of the upper- and lower-stage cut-off devices


106


and


107


is subjected to the order change.




For example, the corrugated fiberboard sheets


111


and


112


are manufactured in independent production lots by the upper- and lower-stage cut-off devices


106


and


107


, respectively. Therefore, even if a predetermined number of corrugated fiberboard sheets have been manufactured in one of the upper and lower stages, the production is rarely finished at the same time in the other stage. Accordingly, if the production is completed in one of the upper and lower stages (for example, the upper stage side


106


), it is necessary to newly change the order. In addition, if the kind of paper does not need to be changed but only the width of the paper is to be changed, the production should be continued with the same order in another stage (for example, the lower stage side


107


).




(2) Before and after the order change, both the upper- and lower-stage cut-off devices


106


and


107


are subjected to the order change. At this time, it does not matter if the kind of paper is changed.




Various order changing methods to be used in the corrugating machine


110


have conventionally been proposed. As one of examples, a method described in Japanese Unexamined Patent Publication No. Hei 6-210772 will be described below with reference to FIG.


7


.

FIG. 5

described above illustrates equipment based on the method.





FIG. 7

shows a case in which the upper-stage cut-off device


106


maintains the same order and the lower-stage cut-off device


107


performs an order change to manufacture a product having a smaller width. Accordingly, a web width is reduced according to the width of the product before and after the order change.




First of all, a corrugated fiberboard web


103




x


having an old order is processed by the slitter scorer device


105




a


shown in FIG.


5


. In the slitter scorer device


105




a


, the corrugated fiberboard web


103




x


is cut by a slitter cutting line


120




x


and a dividing slit Mx shown in FIG.


7


. Therefore, both ends


160




x


and


160




x


of the corrugated fiberboard web


103




x


in a transverse direction act as trims. The trims


160




x


and


160




x


are sucked into the above-mentioned trim duct


150




a


(


150




b


) and are removed.




Next, upper and lower shafts of the slitter scorer device


105




a


are opened in a proper position on this side of a paper patch portion, thereby stopping the cutting. In advance, a trim cutting line


130


should be formed on the ends of the corrugated fiberboard webs


103




x


and


103




y


by a rotary shear (not shown).




The reason why the trim cutting line


130


should be formed will be described below. In a case where the trim cutting line


130


is not formed on the trim


160




x


of the corrugated fiberboard web


103




x


having an old order, there is a possibility that the corrugated fiberboard web


103




x


might be pulled by the trim


160




x


and hit against the trim duct


150




a


, thereby causing jam-up or the like.




Furthermore, if the trim cutting line


130


is not formed on trims


160




y


and


160




y


of the corrugated fiberboard web


103




y


having a new order, the trims


160




y


and


160




y


are kept coupled to the corrugated fiberboard web


103




y


so that the corrugated fiberboard web


103




y


is not sucked into the trim duct


150




a


. Alternatively, if the corrugated fiberboard web


103




y


is forcedly sucked into the trim duct


150




a


with the trims


160




y


and


160




y


kept coupled to the corrugated fiberboard web


103




y


, there is a possibility that an inconvenience might be caused, that is, the trim duct


150




a


becomes clogged.




In order to denote parts before and after the order change by designations, particularly, an old order before the order change is indicated as x, and a new order after the order change is indicated as y.




Next, a paper patch portion is interposed to form a proper space, thereby operating the slitter scorer device


105




b


. Thus, the cutting of the corrugated fiberboard web


103




y


having a new order is started. In an order changing area


131


, slitter cutting lines


120




x


and


120




y


having old and new orders are not provided. A dividing slit N is formed in the order changing area OC by a cutter


104


and the corrugated fiberboard web


103


to be fed to the upper- and lower-stage cut-off devices


106


and


107


is divided into two portions. Consequently, the order change can be performed without separating the corrugated fiberboard web


103




x


having the old order from the corrugated fiberboard web


103




y


having the new order before and after the order change.




Conventionally, the corrugated fiberboard web


103


is generally passed with the centers of the old and new corrugated fiberboard webs


103




x


and


103




y


in the transverse direction aligned with the center of the corrugating machine


110


. On the assumption that such a method is used, equipment itself has been designed. For example, generally, a stage roll and a pressure roll are pressurized by a single facer, a double facer and the like symmetrically horizontally based on the center of a machine. Accordingly, dividing slits Mx and My of the old and new webs for dividing the corrugated fiberboard webs


103




x


and


103




y


to be fed to the upper- and lower-stage cut-off devices


106


and


107


are changed in the transverse direction, respectively.




However, the conventional order changing method in the corrugating machine described above has had the following problems.




(1) The order changing area OC is provided on the paper patch portions of the old and new corrugated fiberboard webs


103




x


and


103




y


. Correspondingly, defective sheets


131




x


and


131




y


which cannot become products have lengths increased.




(2) Moreover, the positions of the dividing slits Mx and My are moved in the transverse direction. Consequently, it is necessary to reset the vertical distributing position of a slat of a web director


132


shown in

FIG. 5

in a very short time according to a timing of passage through the order changing area OC. If the setting cannot be well performed, the corrugated fiberboard web


103


cannot be supported stably so that jam-up and poor precision are caused.




(3) Furthermore, the stacking portion of the stacker provided on the upper-stage cut-off device


106


cannot perform a continuous stacking operation because a sheet discharge position is changed in the transverse direction irrespective of the same order. Therefore, it is necessary to expel a stack once during the stacking operation and to newly perform the stacking operation.




SUMMARY OF THE INVENTION




In consideration of the above-mentioned conventional problems, it is an object of the present invention to provide an order changing method in a corrugating machine which can decrease the number of defective sheets generated during an order change and can perform a continuous stacking operation in a stacking portion of an upper-stage stacker.




In order to achieve the above-mentioned object, the present invention provides an order changing method in a corrugating machine comprising a slitter scorer device and a plurality of cut-off devices, the method comprising, in the slitter scorer device, the steps of:




cutting a corrugated fiberboard web along slitter cutting lines in a running direction thereof;




dividing the cut corrugated fiberboard webs into at least two portions by using, as a boundary, a dividing slit which is one of the slitter cutting lines; and




feeding the divided corrugated fiberboard webs to the cut-off device, and




the method comprising, in the cut-off device, the steps of:




cutting and separating each of the corrugated fiberboard webs in a direction orthogonal to the running direction thereof,




supplying the corrugated fiberboard web having a new order followed by the corrugated fiberboard web having an old order; and




setting a dividing slit of the corrugated fiberboard web having an old order and a dividing slit of the corrugated fiberboard web having a new order on almost the same straight line when making a change from the corrugated fiberboard web having an old order to the corrugated fiberboard web having a new order.




The above-mentioned order changing method can be employed in upper- and lower-stage cut-off devices, for example, and can continuously perform production with the same order in the upper-stage cut-off device and can cope with an order change in which the kind of paper is not changed but only a width thereof is to be changed in the lower-stage cut-off device. In this case, it is not necessary to change the position of a stacker provided on the upper-stage cut-off device and to perform a stacking operation again. Furthermore, the order changing method can also cope with an order change in which the web widths should be changed in the upper- and lower-stage cut-off devices.




Moreover, other embodiment of the present invention is the order changing method in a corrugating machine, further comprising the step of cutting both ends in the cross direction of the corrugated fiberboard webs having new and old orders and sucking a trim obtained by the cutting by means of a trim duct.




And, the present invention can further adopt the order changing method in a corrugating machine, wherein means for cutting the corrugated fiberboard web in the slitter scorer device serves to perform the cutting by means of slitter knives provided vertically in the slitter scorer device.




According to the above-mentioned order changing method, the dividing slits are set on almost the same straight line before and after the order change. Therefore, an extra length equivalent to the conventional order changing area is eliminated. Therefore, the loss of sheets can be reduced.




As described above, the order changing method in the corrugating machine according to the present invention has the following effects.




(1) The position of the dividing slit is not changed in the transverse direction before and after the order change. Therefore, it is not necessary to change the setting of a web guide. Consequently, the causes of the generation of jam-up can be reduced.




(2) In a case where one of the cut-off devices continues the same order, the position of the stacker is not changed in the transverse direction after a cut-off operation. Therefore, it is not necessary to perform the stacking operation again. Consequently, the causes of the disorder of sheets on the stacker and the jam-up can be eliminated.




(3) The extra length equivalent to the conventional order changing area is eliminated. Therefore, it is possible to decrease the loss of sheets.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a conceptual view showing a latter half part of a corrugating machine to which an order changing method according to the present invention is applied;





FIG. 2

is a sectional view taken along the line A—A in

FIG. 1

;





FIG. 3

is a plan view showing a corrugated fiberboard web in which a sheet taking operation has been performed by an order changing method according to an embodiment of the present invention;





FIG. 4

is a plan view showing a corrugated fiberboard web in which a sheet taking operation has been performed by an order changing method according to another embodiment of the present invention;





FIG. 5

is a conceptual view showing a latter half part of a corrugating machine to which an order changing method according to the prior art is applied;





FIG. 6

is a plan view showing a corrugated fiberboard web in which a sheet taking operation has been performed; and





FIG. 7

is a plan view showing a corrugated fiberboard web in which the sheet taking operation has been performed by the order changing method according to the prior art.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




A corrugating machine performing an order changing method according to an embodiment of the present invention will be described below in detail with reference to the drawings.

FIG. 1

is a conceptual view showing a latter half part of the corrugating machine


1


. A rotary shear


2


is provided on a right end in

FIG. 1. A

slitter scorer step


3


and a cut-off step


4


are provided on the downstream side of the rotary shear


2


. A double facer which is not shown is provided on the upstream side of the rotary shear


2


.




The rotary shear


2


is a device for cutting a corrugated fiberboard web


5


in a transverse direction which is manufactured continuously at a former step and for forming a notch on both ends of the corrugated fiberboard web


5


in the transverse direction.




The slitter scorer step


3


comprises one cutter


6


, two slitter scorer devices


7




a


and


7




b


, and trim ducts


7




c


and


7




d


. The slitter scorer devices


7




a


and


7




b


serve to perform the creasing of a corrugated fiberboard box on the running corrugated fiberboard web


5


and to cut the corrugated fiberboard web


5


to have a predetermined width in a flow direction. Thus, a plurality of sheets can be manufactured at the same time, that is, a multiple taking operation can be carried out. Furthermore, the trim ducts


7




c


and


7




d


are provided behind the slitter scorer devices


7




a


and


7




b


respectively, and serve to suck trims


23




x


and


23




y


of the corrugated fiberboard web


5


shown in

FIG. 3

by air and to remove them.




With reference to

FIG. 2

, the trims


23




x


and


23




y


will be described below.

FIG. 2

is a sectional view taken along the line A—A in FIG.


1


. In the slitter scorer device


7




a


, rotary shafts


170


and


171


are supported vertically and are provided with slitter knives


172


and


173


at regular intervals. The ends of the corrugated fiberboard web


5


in the transverse direction are cut by the outermost one of the slitter knives


172


and


173


, thereby forming the trims


23




x


and


23




y


.




The trims


23




x


and


23




y


are provided for the following purpose.




The corrugated fiberboard web


5


is formed by sticking a plurality of sheets together. Therefore, the shift of the sheets is easily caused. Furthermore, the corrugated fiberboard web


5


meanders during running. Therefore, the ends should be cut to obtain an accurate sheet width. In addition, the two slitter scorer devices


7




a


and


7




b


are provided in the flow direction of the corrugated fiberboard web


5


. By alternately using the slitter scorer devices


7




a


and


7




b


every order change, consequently, it is possible to shorten a time taken for a resetting operation to be performed along with an order change.




The cut-off step


4


comprises the upper-stage cut-off device


8


and the lower-stage cut-off device


9


, defective removing devices


10


and


11


, and a stacker


13


(a part of which is shown in FIG.


1


). The cut-off devices


8


and


9


serve to cut the corrugated fiberboard web


5


at the slitter scorer step


3


in the transverse direction orthogonal to a progress direction thereof. The defective removing devices


10


and


11


are provided adjacently to the cut-off devices


8


and


9


, and discharge a paper patch portion between an old order and a new order which is cut with a predetermined defective portion cutting length, respectively. Furthermore, the stacker


13


is provided on the downstream side of the defective removing devices


10


and


11


, and serves to stack a rectangular sheet


12


cut by the cut-off devices


8


and


9


. The cut-off devices


8


and


9


, the defective removing devices


10


and


11


, and the stackers


13


and


13


are of a so-called double cut-off type in which two sets are provided, respectively. The cut-off device


9


provided on the upstream side is an upper-stage cut-off device for feeding the corrugated fiberboard web


5


to the lower stage side by a web director


14


and for then cutting the corrugated fiberboard web


5


, and the cut-off device


8


provided on the downstream side is a lower-stage cut-off device for feeding the corrugated fiberboard web


5


to the upper stage side by the web director


14


and for then cutting the corrugated fiberboard web


5


. The corrugating machine


1


performs the creasing of a corrugated fiberboard box on the corrugated fiberboard web


5


stuck by a double facer (not shown) provided on the upstream side at the slitter scorer step


3


, and forms a plurality of slitter cutting lines (hereinafter referred to as cutting lines)


20


shown in

FIG. 3

to have a predetermined length in the progress direction of the corrugated fiberboard web


5


, thereby performing a cutting operation. The corrugated fiberboard web


5


cut into a plurality of portions is divided into two parts in the transverse direction by using, as a boundary, a dividing slit M which is one of the cutting lines


20


. The two parts are fed to the two cut-off devices


8


and


9


, respectively. In the cut-off devices


8


and


9


, the corrugated fiberboard web


5


is cut into rectangular corrugated fiberboard sheets


22




a


and


22




b


having predetermined sizes by a cut-off line


21


shown in

FIG. 3

in the transverse direction orthogonal to the progress direction. The corrugated fiberboard sheets


22




a


and


22




b


are stacked by the stacker


13


.




With reference to

FIG. 3

, description will be given to a sheet taking operation to be performed before and after the order change of the old and new corrugated fiberboard webs


5




x


and


5




y.






The present invention is characterized in that a product is taken in such a manner that the centers of the old and new corrugated fiberboard webs


5




x


and


5




y


in the transverse direction are not conventionally made coincident with each other but a dividing slit Mx before the order change and a dividing slit My after the order change are set on almost the same straight line when the order change is to be performed.





FIG. 3

shows an example of the order change in which continuous production is performed with the same order in one of the two cut-off devices


8


and


9


and the kind of paper is not changed but only a width thereof is varied in the other cut-off device


8


or


9


. For example, in a case where an upper web


5




a


positioned on the upper side in

FIG. 3

is fed to the upper-stage cut-off device


8


and is cut in the transverse direction and a lower web


5




b


provided on the lower side is fed to the lower-stage cut-off device


9


and is cut in the transverse direction, the production is continued with the same order in the upper-stage cut-off device


8


and the order change is performed in the lower-stage cut-off device


9


. In this case, it does not matter if a cutting length is changed.




The corrugated fiberboard webs


5




x


and


5




y


perform a paper patching operation in such a manner that their dividing slits Mx and My are coincident with each other before and after the order change, that is, they are positioned on almost the same straight line. Accordingly, if the trims


23




x


and


23




y


have the same widths before and after the order change, the paper patching operation is carried out with the ends of the paper aligned with each other.




As shown in

FIG. 1

, in a case where the processing is performed with an old order by the slitters scorer device


7




a


and with a new order by the slitter scorer device


7




b


, a slitter cutting line


20




x


is formed up to the vicinity of the paper patch portion of the old order by the slitter scorer device


7




a


. Then, the slitter scorer device


7




b


is actuated to perform a processing in such a manner that at least a part of a slitter cutting line


20




y


of the new order overlaps with the slitter cutting line


20




x


by the slitter scorer device


7




b


as shown in FIG.


3


. The overlapping slitter cutting lines


20




x


and


20




y


are the dividing slits Mx and My. A trim cutting line


24


is formed, by the rotary shear


2


, in the trim


23




y


on the lower side of the new web


5




y


connected to the old web


5




x


in FIG.


3


. As is apparent from the drawing, a cutting groove which has conventionally been provided in an order changing area, that is, a dividing slit N is unnecessary.




While

FIG. 3

has shown the case where one of the orders keeps the same way before and after the order change, the method according to the present invention can also be applied to a case where the order change is performed in the upper and lower stages. An example of the order change in such a case is illustrated in FIG.


4


. In the same manner as the example of

FIG. 3

, the paper patch and sheet taking arrangement of the old and new webs


5




x


and


5




y


is used such that the dividing slits Mx and My are set on almost the same straight line before and after the order change.




Although the ends of the paper are set on an almost straight line in

FIG. 3

, the ends of the paper patch portion make steps in FIG.


4


. For this reason, a trim cutting line


25


is formed on the upper trim


23




x


of the old web


5




x


by a rotary shear


11


as shown. Others are the same as in the order changing method described with reference to FIG.


3


.




In this case, if a total width W of the old and new webs exceeds a maximum width with which papers can pass through a machine as shown, the order change is performed by the above-mentioned conventional method. According to the present embodiment, consequently, the cutter


6


is provided in a conventional manner.



Claims
  • 1. An order changing method in a corrugating machine comprising a slitter scorer device and a plurality of cut-off devices, the method comprising the steps of:cutting an old order corrugated fiberboard web along slitter cutting lines in a running direction thereof by the slitter scorer device; dividing the cut old order corrugated fiberboard web into at least two portions by using, as a boundary between the at least two portions, a dividing slit which is one of the slitter cutting lines wherein the dividing slit does not coincide with a centerline of the old order corrugated fiberboard web; feeding the divided old order corrugated fiberboard web portions to the cut-off devices; cutting and separating each of the old order corrugated fiberboard web portions thus divided in a direction orthogonal to the running direction thereof by the cut-off devices; supplying a new order corrugated fiberboard web subsequent to the old order corrugated fiberboard web wherein the new order corrugated fiberboard web has a width different from a width of the old order corrugated fiberboard web and a dividing slit that does not coincide with a centerline of the new order corrugated fiberboard web; and substantially aligning the dividing slit of the old order corrugated fiberboard web with the dividing slit of the new order corrugated fiberboard web.
  • 2. The order changing method according to claim 1, wherein the cut-off devices include an upper-stage cut-off device and a lower-stage cut-off device, wherein a length from an edge in a cross direction of the new corrugated fiberboard web to the dividing slit of the new order corrugated fiberboard web is substantially equal to a length from an edge in the same side of the new order corrugated fiberboard web in a cross direction of the old corrugated fiberboard web to the dividing slit of the old order corrugated fiberboard web, wherein substantially aligning the dividing slit of the old order corrugated fiberboard web and the dividing slit of the new order corrugated fiberboard web comprises adjusting said edge in the cross direction of the new order corrugated fiberboard web to the edge of the old order corrugated fiberboard web, thereby performing the order changing in either the upper-stage or the lower-stage cut-off device.
  • 3. The order changing method according to claim 1, further comprising the step of cutting both ends in the cross direction of the old and new order corrugated fiberboard webs by the slitter scorer and sucking a trim obtained by the cutting by a trim duct.
  • 4. The order changing method in a corrugating machine according to claim 1, wherein the step of cutting the old order corrugated fiberboard web comprises cutting the old order corrugated fiberboard web with vertically-oriented slitter knives in the slitter scorer device.
Priority Claims (1)
Number Date Country Kind
11-311530 Nov 1998 JP
US Referenced Citations (18)
Number Name Date Kind
4265152 Corradi May 1981 A
4266112 Niedermeyer May 1981 A
4268341 Huhne May 1981 A
5031496 Lobash et al. Jul 1991 A
5152205 Yoshida et al. Oct 1992 A
5360161 Schaller et al. Nov 1994 A
5363730 Besemann Nov 1994 A
5381342 Noe Jan 1995 A
5483856 Smitterberg et al. Jan 1996 A
5496431 Hirakawa et al. Mar 1996 A
5761980 Ima et al. Jun 1998 A
5857395 Bohm et al. Jan 1999 A
5918519 Schnabel et al. Jul 1999 A
5951454 Adami Sep 1999 A
6092452 Adami Jul 2000 A
6103171 Cummings Aug 2000 A
6117381 Cummings Sep 2000 A
6165117 Adami Dec 2000 A
Foreign Referenced Citations (6)
Number Date Country
0065014 Nov 1982 EP
0468374 Jan 1992 EP
0607084 Jul 1994 EP
0737553 Oct 1996 EP
0795382 Sep 1997 EP
06-210772 Aug 1994 JP