The invention relates to a method for automatically packaging empty containers, such as collapsible tubes or the like, that are supplied by a conveyor belt, into a plurality of packaging containers that take up empty containers.
Methods for the manufacture of containers that are, in principle, circular or elliptical in cross-section, practically cylindrical containers with invariable cross-sections, such as preferrably collapsible tubes, cans or tubes, are, for example, known from DE 26 43 089 A1 and WO 9115349, in particular for collapsible tubes. The collapsible tubes thus manufactured can be packaged by a collapsible tube packaging machine to form larger product units which can then be supplied to a filling company. The packaging machines required to this end are, for example, known from EP 1 114 784B1.
Both the manufacturing machines and the packaging machines permit manufacture and packaging respectively of approx. 200 up to no more than 250 units per minute. For the future, however, production and packaging rates are desirable that are within a range of ±500 units per minute. At present, such machines for the manufacture of collapsible tubes are under development and, in part, already in production. Automatic packaging machines with such a high rate of units per minute have not yet been developed because, at such high speeds, the times available for loading individual rows of collapsible tubes are very short. What is more, the problems arising in connection with the time available and with the loading rates are further aggravated because the collapsible tubes are often top-heavy. Furthermore, the time available for changing a packaging container is also insufficient, for example when a last row and a first row are loaded in two successive packaging containers, for example boxes; as a result, the speed cannot be increased.
It is the object of the invention to create a method for automatically packaging empty containers, such as collapsible tubes or the like, that are supplied by a conveyor belt, into a plurality of packaging containers that take up empty containers, said method facilitating high packaging rates of 500 and more containers per minute without any critical cycle times.
This problem is solved by the characteristic elements of claim 1.
Advantageous embodiments of the invention are disclosed in the subordinate claims.
Below, the invention will be illustrated in more detail with reference being made to drawings, in which:
For the most part, the figures shown are schematic representations. A few variants of further executive forms are indicated in the description below.
Below, the invention will be illustrated in more detail by means of an exemplary embodiment.
As shown in
The axial spacing of the fifteen collapsible tubes 1 thus deposited still corresponds to the spacing of the conveyor trays 3, i.e. the said tubes are arranged at the same pitch (see
The initially empty box 14 is arranged in a vertical position behind the intermediate storage 13 and is lowered in steps by a holding fork 17 according to its filling degree. By means of a swivel drive 18, the holding fork 17 is arranged at a linear drive 19 for vertical adjustment. The linear drive 19 permits the holding fork 17 to be placed at various levels that can each be activated preferrably by a mechanical or automatic control system (not illustrated).
Once an empty box 14 is filled with the desired number of collapsible tubes 1, it is turned by 90 degrees from the position behind the intermediate storage 13 by means of the swivel drive 18 and placed on a conveyor belt that may, for example, be designed as a finger belt 20, so that the holding fork 17 can comb through the finger belt 20 into a position below the finger belt 20. On a conveyor belt that is preferrably arranged laterally and is, for example, designed as a roller conveyor 21, the full box 14′ is then conveyed to a filling machine (not illustrated) or a store (not illustrated).
Once the full box 14′ has released the finger belt 20, the holding fork 17 is moved from its bottommost position to its topmost position by the linear drive 19, while first combing through the first lower finger belt 20 and then through a second upper finger belt 20′ arranged parallel to the first finger belt and spaced apart therefrom in height and taking up a new empty box 14 that has been supplied beforehand, for example by a conveyor belt that may, for example, be designed as a second roller conveyor 21′. After having taken over the empty box 14 from the upper finger belt 20′, the holding fork 17 briefly remains in an—uppermost—position just a little above the upper finger belt 20′ where, by means of the swivel drive 18, it is turned by 90 degrees, so that the opening of the box 14 is directed towards the intermediate storage 13, and moved behind the intermediate storage 13 and down to the required working level that is stored if necessary, where it can take up any number of batches of further collapsible tubes 1 until the empty box 14 is filled.
If necessary, further empty boxes 14 can be supplied via the roller conveyor 21′ and to the upper finger belt 20′ by a preferrably controllable stop 22.
The above general illustration of the overall invention will be followed by a description of the individual steps below.
The collection apparatus 4 assigned to the feeder belt 2 for collapsible tubes 1 comprises suction vees 5 that are provided with a number of eight suction vees 5 in the executive example (see
At the transfer sites A, B, C, D, E, F, G, H at the collection apparatus 4, collapsible tubes 1 approaching on the feeder belt 2 are taken up by the suction vees 5 that are assigned to each transfer site A through H, as shown in
If a gap L is now approaching the unoccupied transfer site E, the respectively last assigned suction vee 5 that is not yet occupied by a collapsible tube 1 is not activated, i.e. the empty conveyor tray 3 passes through the collection apparatus 4. The suction vee 5′ at the transfer site E is activated only when a collapsible tube 1 approaches in a conveyor tray 3. If, for example, an optical sensor (not illustrated) detects that a collapsible tube 1 approaches the transfer site E and, thus, the assigned suction vee 5′, the suction vee 5′ is turned in direction of the arrow (see
Once all of the transfer sites A through H are loaded with collapsible tubes 1 and the latter are delivered to the holders 6 at the eight positions a1, through h1, this is followed by a further collapsible tube 1 loading cycle at positions A through G and by a successive corresponding takeover of now only seven collapsible tubes that are now delivered to the holders 6 i1 to o1 of the group transfer unit 7 (see
The holding vees 9 (see
The ganging apparatus 8 comprises fifteen holding vees 9 that are spaced apart from each other. The holding vees 9 including collapsible tubes 1 are slidable, e.g. arranged on two bars 23 where they can be pushed together such that they are all in contact with one another, i.e. all collapsible tubes 1 of a row are in lateral contact with one another (see.
If it is desired to have the collapsible tubes 1 packed in the boxes 14 as closely as possible, the row transfer unit 10 makes a lateral deflecting movement (represented schematically in
After a row of collapsible tubes 1 has been placed on the lowerable bottom strips 12a, 12b, 12c of the intermediate storage 13, the bottom strips 12a, 12b, 12c are lowered by an amount that corresponds to the particular packing pattern desired (see, for example, Figs. a and b). If the packing is close, i.e. with a higher filling degree (see
Once the bottommost layer of stored collapsible tubes 1 reaches the base plate 15 of the intermediate storage 13, wherein the base plate 15 is arranged in a non-removable manner and is provided with cutouts for passage of the bottom strips 12a, 12b, 12c, the slide 16 transfers all collapsible tubes 1 collected in the intermediate storage 13 into an empty or partially filled box 14, wherein adjustable lateral guides 24 that can be adjusted to the particular collapsible tube diameter and the type of packing by any adjusting devices (not illustrated) are provided. The intermediate storage 13 also contains an upper front limiting plate 25 that is arranged at a distance and can, if necessary, also be lowered, in order to permit passage of one, if necessary even more rows of collapsible tubes. Furthermore, a rear limiting plate 25′ is provided the distance of which is adjusted to the collapsible tube length and which is also used to stabilize the collapsible tubes 1 already transferred into the intermediate storage 13 while they are being stored in the intermediate storage 13.
According to a preferred executive form, two sets of bottom strips 12a, 12b, 12c and 12a′, 12b′, 12c′ are arranged in the intermediate storage 13 on three cooperating chain drives 26a, 26b, 26c. All are jointly driven by a single motor via a sprocket wheel shaft 27. After the bottommost of all rows of collapsible tubes 1 stored on the bottom strips 12a, 12b, 12c in the intermediate storage 13 has reached the base plate 15 and the slide 16 transfers all collapsible tubes 1 into a box 14 or loads said box 14 with all collapsible tubes 1, further rows of collapsible tubes 1 are grouped to form a further collapsible tube package in the intermediate storage 13 by means of the chain drives 26a, 26b, 26c and the additional bottom strips 12a′, 12b′, 12c′. Since the two sets of bottom strips 12a, 12b, 12c and 12a′, 12b′, 12c′ are arranged on the chain drives 26a, 26b, 26c in a staggered manner and, with equal chain lengths, are driven by a single joint sprocket wheel shaft 27, the chain drives 26a, 26b, 26c each comprise different sequences that compensate their respectively different arrangement.
As shown in
The apparatus is characterized in that there is always enough time for completing the respectively next working step, so that there are practically no problems arising in connection with the time available.
Number | Date | Country | Kind |
---|---|---|---|
10316853.2 | Apr 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/03649 | 4/6/2004 | WO | 8/10/2006 |