The invention relates generally to the field of medical imaging and more particularly to a method for identifying features in full-spine x-ray and pelvic radiographic images and obtaining measurements therefrom.
Among tools used by chiropractors to quantify the condition of the lower spine and pelvis are utilities such as the Gonstead technique. The Gonstead Technique is a highly effective, full spine technique of chiropractic science that helps to locate misalignment of the spine and other problems that may cause various types of nerve irritation and pain. Using Gonstead analysis helps to identify disease processes, fractures, vertebral misalignments, and other conditions, and to evaluate posture, joint, and disc integrity.
To use the Gonstead analysis in conventional chiropractic procedure, X-rays of the full spine and pelvis are employed to obtain a series of measurements that allow the practitioner to visualize and evaluate the entire spine, sacrum and pelvic region. Features are identified from the x-rays and measurements related to these features are obtained and used in patient assessment. Features are located manually, by careful examination and marking of the x-ray film. Similarly, measurements between features are also made manually. The task of marking up the x-ray film and making correct measurements between marked features is time-consuming and error-prone. Moreover, repeatability can be a problem, since results for the same patient can differ from one practitioner to the next.
Thus, there is a need for a computer-aided utility for identifying anatomical features and generating measurements suitable for Gonstead analysis and similar assessment of anatomical features.
Embodiments of the present invention advance the art of medical imaging by providing improved methods for assessment of anatomical structures used in Gonstead pelvic analysis and other techniques. A sequence of image processing steps is used to mark and measure the x-ray image for use by the medical practitioner.
An advantage of the present invention is the use of automated techniques that can be guided by the practitioner to provide useful information for Gonstead pelvic analysis and other methods.
These objects are given only by way of illustrative example, and such objects may be exemplary of one or more embodiments of the invention. Other desirable objectives and advantages inherently achieved by the disclosed invention may occur or become apparent to those skilled in the art. The invention is defined by the appended claims.
According to one aspect of the invention, there is provided a method for obtaining measurement information about a patient's anatomy from a radiography image. The method comprises: positioning one or more anatomy models with respect to image features, with the image in a predetermined orientation; defining one or more search regions within the image according to the one or more positioned anatomy models; and detecting and displaying one or more anatomy feature points in the radiography image according to search results from within the one or more defined search regions.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of the embodiments of the invention, as illustrated in the accompanying drawings. The elements of the drawings are not necessarily to scale relative to each other.
The following is a detailed description of the preferred embodiments of the invention, reference being made to the drawings in which the same reference numerals identify the same elements of structure in each of the several figures.
In the context of the present disclosure, it should be understood that ordinal terms such as “first”, “second”, and “third”, and so on do not necessarily connote any priority, precedence, or order of one element or process over another, or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
The term “highlighting” for a displayed feature has its conventional meaning as is understood to those skilled in the information and image display arts. In general, highlighting uses some form of localized display enhancement to attract the attention of the viewer. Highlighting a portion of an image, such as an individual organ, bone, or structure, or a path from one chamber to the next, for example, can be achieved in any of a number of ways, including, but not limited to, annotating, displaying a nearby or overlaying symbol, outlining or tracing, display in a different color or at a markedly different intensity or gray scale value than other image or information content, blinking or animation of a portion of a display, or display at higher sharpness or contrast.
Gonstead pelvic image analysis employs a well-defined sequence of steps for identifying and marking a number of particular features on the x-ray film. Once these points are located, subsequent steps generate lines and make various measurements that aid the practitioner in quantifying various aspects of patient condition.
Embodiments of the present invention utilize various image processing techniques and tools to perform the initial point identification in an automated manner. Interactive utilities enable the viewing practitioner or other type of operator to verify correct point locations as well as to edit the automated results. In addition, image analysis tools then allow straightforward dimensional measurement and reporting of results to be displayed to the operator.
There is provided a workflow used for point-by-point anatomy identification and measurement in Gonstead analysis. One sequence proceeds as follows:
(1) Identify the 5 lumbar vertebrae, L1, L2, L3, L4, and L5.
(2) Identify the highest points or head points on the right and left femur.
(3) Connect the head points to form the femoral head line.
(4) Identify the highest points on right and left iliac crests and lowest points on the right and left ischial tuberosity.
(5) Construct lines parallel to the femoral head line through the added points in step (4).
(6) Measure distances between iliac crest lines and ischial tuberosity lines. These measurements are made perpendicular to lines constructed in step (5).
(7) Identify points on the S2 (or S1) tubercle and in the center of the pubic symphysis.
(8) Construct a line perpendicular to the femoral head line and pointing through the Si tubercle.
(9) Measure the distance between line constructed in step (8) and the pubic symphysis point.
(10) Locate a point at the lateral aspect of each S1 facet base and construct a line through these points to form a sacral base line.
(11) Identify points on the most lateral aspects of the right and left sacral wing.
(12) Extend lines perpendicular to the femur head line from these points to the sacral base line. Measure the distance between intersections.
(13) Calculate the measured deficiency (M.D.) For this purpose, a line is extended horizontally from the most superior aspect of the two femur heads and above the lower femur head line. The true vertical distance from the femur head line gives a measurement of measured deficiency.
(14) Identify a point at the most lateral aspect of the right iliac wing and another point on the most medial aspect of the posterior superior iliac spine. Construct lines perpendicular to the femur head line through these added points and measure the perpendicular distance between these lines. Repeat this process for the left side.
Consistent with described embodiments, the logic flow diagram of
Continuing with the sequence of
Continuing with the processing sequence of
The models that are used are previously defined, having been developed by edge analysis of different patients of different types having different sizes, for example. Edge contours of the models are enlarged to accommodate different patient types. In one embodiment of the present invention, there are five anatomy models that can be individually applied and combined: two iliac wing models, a pubic bone model and two femur head models. The composite image of
Referring to
Continuing with the sequence of
An exemplary embodiment of the present invention employs the sequence described in
According to at least one embodiment of the present invention, the operator enters one or more instructions or other input prior to, during, or following execution of processing for Gonstead analysis or other analysis, such as that processing described with reference to
For the Gonstead analysis sequence described previously, a succession of operator interface screens and prompts are displayed in a sequence that shows the results of each processing step and, at each step, guides the operator by indicating what information can be entered or modified as a next step. By way of example, the plan view of
It is noted that there can be some dependencies between point locations. Because of this, shifting the positions of one or more points that define outer or boundary features also recalculates and adjusts the positions of points that lie within bounded portions of the image. In the example of
The operator interface provides a number of useful utilities for operator entry and adjustment of points and other geometric features, for image enhancement, and for obtaining measurement data that can be of value for analysis of the patient. Utilities include:
(i) Capability to position and re-position points. Where points of interest are detected using an automated process, as described previously, the operator has the option of reviewing points placement and manually adjusting this placement accordingly. Various operator interface tools are available to allow coarse and fine adjustment of point position. As operator adjustments are made, feature points that are associated with the re-positioned points are automatically adjusted accordingly.
(ii) Capability to select points or lines, highlight them on the display, and use this information to instruct the system about these features.
(iii) Capability to obtain distance between points or between lines. For example, the operator may desire to verify a measurement or obtain some non-standard measurement between points. Consistent with an embodiment of the present invention, a utility is provided that indicates, in response to a viewer command, the distance between any two points or other geometric constructions formed on the displayed image.
(iv) Capability to step through the processing one operation at a time, allowing the viewer to sequence through processing results for monitoring the progress of the overall analysis.
(v) Color and animated display capability. This can be useful for line and point placement. According to at least one embodiment of the present invention, the viewer clicks/selects a point or line and makes a color selection.
(vi) Text annotation, either directly overlaid on the image or linked to the image in a readily accessed manner. This can include audio message annotation, so that a recorded comment, statement, or other observation can be coupled to the image, such as in a file header or by an electronic link or address, for example, and can be accessible to the viewer of an image.
(vii) Zoom, crop, pan, and related image viewing utilities.
(viii) Guided sequence with operator prompts. For standard Gonstead analysis, for example, a script can be executed prompting the operator for each step in the process and offering options for processing operation. According to an embodiment of the present invention, prompting is done following a specific point identification sequence. The operator or practitioner responds to blinking points on the display that indicate calculated points, such as those described with reference to
(ix) Image enhancement tools, such as utilities that improve image contrast or edge detection.
(x) Storage of the processed image in memory, such as for later access and review, for example.
(xi) Capability to track the patient's improvement after chiropractic treatment, to compare patient condition before and after treatment on appropriate images, and to measure and display difference values on both images or both differences on the improved image. The display of results allows the practitioner and patient to view progress of ongoing treatment, for example.
(xii) Capability to generate a standard chiropractic report from the image results, including measurement results and image evaluation results.
(xiii) Capability to generate a patient central display that includes stored images, overlay measurement results, and improvement results. This capability further allows the user to obtain a hard copy of results, one or more images, and information for future reference.
Consistent with at least one embodiment of the present invention, a computer executes a program with stored instructions that perform on image data accessed from an electronic memory. As can be appreciated by those skilled in the image processing arts, a computer program of an embodiment of the present invention can be utilized by a suitable, general-purpose computer system, such as a personal computer or workstation. However, other types of computer systems can be used to execute the computer program of the present invention, including networked processors. The computer program for performing the method of the present invention may be stored in a computer readable storage medium. This medium may comprise, for example; magnetic storage media such as a magnetic disk (such as a hard drive) or magnetic tape or other portable type of magnetic disk; optical storage media such as an optical disc, optical tape, or machine readable bar code; solid state electronic storage devices such as random access memory (RAM), or read only memory (ROM); or any other physical device or medium employed to store a computer program. The computer program for performing the method of the present invention may also be stored on computer readable storage medium that is connected to the image processor by way of the internet or other communication medium. Those skilled in the art will recognize that the equivalent of such a computer program product may also be constructed in hardware.
It will be understood that the computer program product of the present invention may make use of various image manipulation algorithms and processes that are well known. It will be further understood that the computer program product embodiment of the present invention may embody algorithms and processes not specifically shown or described herein that are useful for implementation. Such algorithms and processes may include conventional utilities that are within the ordinary skill of the image processing arts. Additional aspects of such algorithms and systems, and hardware and/or software for producing and otherwise processing the images or co-operating with the computer program product of the present invention, are not specifically shown or described herein and may be selected from such algorithms, systems, hardware, components and elements known in the art.
It is noted that the term “memory”, equivalent to “computer-accessible memory” in the context of the present disclosure, can refer to any type of temporary or more enduring data storage workspace used for storing and operating upon image data and accessible to a computer system. The memory could be non-volatile, using, for example, a long-term storage medium such as magnetic or optical storage. Alternately, the memory could be of a more volatile nature, using an electronic circuit, such as random-access memory (RAM) that is used as a temporary buffer or workspace by a microprocessor or other control logic processor device. Display data, for example, is typically stored in a temporary storage buffer that is directly associated with a display device and is periodically refreshed as needed in order to provide displayed data. This temporary storage buffer can also be considered to be a memory, as the term is used in the present disclosure. Memory is also used as the data workspace for executing and storing intermediate and final results of calculations and other processing. Computer-accessible memory can be volatile, non-volatile, or a hybrid combination of volatile and non-volatile types. Computer-accessible memory of various types is provided on different components throughout the system for storing, processing, transferring, and displaying data, and for other functions.
The invention has been described in detail with particular reference to a presently preferred embodiment, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.