The present invention relies upon the prior provisional application 61743888 filed on Sep. 13, 2012. This substitute specification contains no new matter. A novel method for peptide synthesis is described which utilizes standard Laboratory equipment and reagents, does not require solid phase peptide synthesis facilities, and can be applied to synthesis of peptides with various numbers of amino acids, in both small and large quantities with high purity and yield. The new technology is applicable to all known L and D amino acids and their combinations, and can be used for synthesis of biologically active peptides and drugs.
V-Phenol offers the following advantages: It has a higher molecular weight as compared with Cbz and Boc, it causes none or minimal racemization, it is easily removable by HCl or Trifluoroacetic acid at room temperature, it resists bases and catalytic hydrogenation, and its preparation does not require the use of Phosgen, a highly toxic reagent. Among several compounds synthesized and tested, 4-Benzyloxy-3-Methoxybenzyloxy-Phenoxy Carbonate (V-Phenol) was found to be the most effective compound. V-Phenol is a derivation of Vanillin, is a crystalline product and is stable at room temperature for many years. The synthesis of V-Phenol is described in Scheme 1.
The mixture was refluxed for 18 hours. To the hot mixture 24 g of Sodium Borohydride was added slowly (to keep the reaction under control). Gradually a semisolid mass was formed, which was kept under reflux for additional 2 hours. After cooling, 1,500 ml cold water was added and stirred to give a crystalline colorless compound: 190 g, (83% yield), MP 62-63° C. The structure was confirmed to be 4-benzyloxy-3-methoxy-benzyl alcohol. The alcohol obtained was dried and dissolved in 1140 ml CH2Cl2 and 100 ml pyridine was added. The mixture was cooled in an ice/salt bath for half an hour and then gradually 125 mL phenylchloroformate was added. After 2 hours of stirring at room temperature, cold water was added to give a crystalline compound after removal of most of CH2Cl2. The preparation was filtered and re-crystallized from toluene to give 299 g of white crystals (82% yield), MP: 118-120° C.
V-Phenol reacts with amino acids in mild alkaline solutions in various organic solvents as shown in Scheme 2.
HONE, a new C-Protecting active ester, is exo-N-hydroxy-7-oxabycyclo[2.2.1]hept-5-ene-2,3-dicarboximide. It is prepared by Diels-Alder reaction between maleic anhydride and furan in various non-hydroxylic solvents, such as toluene at room temperature. The tricyclic anhydride is reacted with hydroxylamine hydrochloride and mild bases such as sodium bicarbonate or sodium acetate in water. HONE is re-crystallized in water and is stable at room temperature for several years. See Scheme 3.
a) 80 g maleic anhydride (2 moles) was dissolves in 350 ml toluene by stirring and gentle warming, cooled to room temperature and then 120 ml of furan was gradually added. After cooling, a crystalline compound (anhydride) was formed. 100% yield. MP=118-120° C.
b) To synthesize HONE a mixture of 320 g anhydride (2 mole), 168 g sodium bicarbonate (2 mole) or equivalent Sodium Acetate, 139 g hydroxylamine hydrochloride and 400 ml of water was warmed at 60-70° C. for one hour and then cooled. Crystals were formed, which were filtered by suction and washed with 50 mL cold water. After drying, 350 g (97%) crystalline compound was obtained. Re-crystallization was done in boiling water to give prisms. MP=202-204° C.
Preparation of N-protected Amino acid Active Esters
N-protected amino acids and HONE are dissolved in non-protic solvents and reacted with dicyclohexylcarbodiimide (DCC) at cold to give N-protected amino acid-HONE esters. See Scheme 3.
The general methods for peptide synthesis, using the new agents, are shown in Scheme 4 and 5
Hone can be removed from an amino acid or a peptide by mixing the product with an aqueous solution that contains an equimolar concentration of ammonium hydroxide or ammonium carbonate and stirred at room temperature. This process results is precipitation of HONE, which can be removed by filtration and the amino acid or peptides recovered as ammonium salts. Scheme 5 shows that before the last step, the synthesized peptides are in V-form. V-phenol is removed by adding concentrated HCl or Trifluoroacetic acid. In this process, V-Phenol is converted to 4-benzyloxy-3-methoxy-benzyl alcohol, which is insoluble in acid medium and can be removed by filtration. Peptides are then recovered by addition of NaHCO3, or NH3OH.
Examples for preparation of various peptides are given below. When dicarboxylic acids such as glutamic or aspartic acids are used, α-carboxylic groups should be free but the second carboxylic groups blocked in the form of methyl or benzyl esters. For the use of diamino acids such as lysine or ornithine, the α-amino groups should be free but the second amino groups are usually in Z-form.
C21H23NO6 MW=385
A mixture of 10 g V-Phenol (0.0275 mole), 2.877 g (0.025 mole) and 3 mL of Tetramethylguanidine in 40 mL of dimethoxyethyleneglycol were stirred at 50° C. for two hours and then overnight at room temperature. To the clear solution, 100 mL water was added and acidified with citric acid. The protected proline was extracted with ethyl acetate. The organic layer was extracted with 50 mL of 0.5 N NaOH. The basic solution was acidified with citric acid. An oil was formed that rapidly solidified into V-L-proline. 9.44 g (98%), which was recrystallized from aqueous isopropanol to snow white micro plates. MP=120-122.
C9H28N2O9 MW=548
The mixture was stirred for one hour at ice-salt bath temperature and overnight at room temperature. At completion of the reaction, 1 mL 50% acetic acid in water was added and DCU was removed by filtration. Evaporation of THF produced thick oil.
C27H35N5O MW=541
The mixture was stirred overnight at room temperature. Most of the solvent was then evaporated and the product was extracted with chloroform, filtered on celite and chloroform evaporated. A gum was obtained which gradually changed into a power, 4 g, and yield 92%. MP=84-86° C.
C32H35N3O8 MW=589
The mixture was stirred in an ice-salt bath for 1 hour then for 4 hours at room temperature. It was kept at 4° C. overnight. 1 ml of 50% acetic acid in water was then added and DCU was removed by filtration and washed with acetone. An oily residue was produced after evaporation, which gave a precipitate after water was added and re-crystallized from aqueous acetone.
Yield 11.62 g (98.5%) MP=107-110° C.
C25H25NO6 MW=435
The mixture was stirred at 60° C. for 2 hours and then at room temperature overnight. The product was filtered to remove a precipitate, which was identified as an excess of V-Phenol. The clear solution was then extracted with ethyl acetate and the separated aqueous layer was acidified with citric acid after which oil was produced which rapidly turned into 7.3 g solid.
Yield: 85%, MP=145-147° C.
C20H22N2O7 MW=402
Prepared as described for V-L Phenylalanine. After completion of the reaction, the solution was acidified with citric acid, extracted with ethyl acetate, and then re-extracted using a NaHCO3 solution. The aqueous phase was acidified again with citric acid to produce a white powder. The yield was 78%. If DMSO was used as the reaction solvent, the yield increased to 90%, MP=136-138° C.
C30H33N3O9 MW=579
Stirred at room temperature for 16 fours, filtered, washed with THF. After evaporation, a gum was produced which was extracted with 1:1 ethyl acetate/petroleum ether to give a crystalline powder. Yield 2.65 g (91%) MP101-103° C.
C18H19NO6 MW=345
V-L-Gly was prepared as described for V-Phenylalanine, Yield 75%.
C20 H22N2O7 MW=406
The mixture was stirred and kept at 60° C. for 24 hours. 100 ml water was added and basified with 3 ml of 2N NaOH. The mixture was extracted with 25 ml Chloroform. The aqueous phase was acidified with Citric Acid to give 3.65 g powder, yield 45%.
C28H27N3O10 MW=565
The mixture was stirred at ice temperature overnight, filtered and DCU washed with acetone. Acetone evaporation resulted in 3.1 g of a light colored compound. Yield 61%, MP=130-132° C.
C34H42N4O9 MW=650
The Mixture was stirred at room temperature overnight. Work up as usual. Acidified with citric acid to find a powder.
C18H25N3O6 MW-379
NaHCO3 was dissolved in 150 ml of water and added to the mixture, which was stirred at room temperature for 8 hours. 150 ml of water added again. The product was filtered and the filtrate was acidified with citric acid. A solid was formed which was re-crystallized from aqueous isopropanol to give 20 g of colorless small needles. Yield 80% MP=161-163° C.
C22H24N2O6 MW=488
The above was cooled in ice bath, then 20.6 g DCC was added and stirred at room temperature overnight. At the end, 2 ml of 50% acetic acid in water was added and after half an hour stirring, DCU was filtered and washed with CH3CN. The solvents were evaporated, leaving 42 g of thick oil. Yield near theory.
C19H26N2O7 MW=394
The mixture stirred for 2 hours at ice-salt water temperature, then overnight at room temperature. Work-up resulted in 26.8 g of a white crystal. Yield 94.4%, MP=141-143° C.
C17H32N2O5 MW=349
Stirred for 6 hours then 25 ml more water is added and stirring continued overnight. The product was filtered and the solid was washed with water, cooled and acidified with citric acid to give 2.62 g (76%) of crystal. MP=71-73° C.
C30H30N2O8 MW=546
The mixture was stirred at room temperature overnight, then, 0.5 ml 50% acetic acid was added and filtered to remove the insoluble DCU (washed with acetone). The filtrate was evaporated resulting in a solid, which was dissolved in warm acetone. After cooling and by addition of petroleum ether, a colorless precipitate was formed which crystallized after evaporation. Yield 5.4 g, 100%, MP=110-112° C.
C19H21NO6, MW=359
It was prepared as described for V-L-Alanine, giving a crystal powder.
Yield 84.4%, MP=111-113° C.
C21H35NO6S MW=419
Stirred for 3 hours at 60° C. then overnight at room temperature. At the end, 100 ml of water was added, the solution was charcoaled and acidified with citric acid, following which oil was formed and was extracted with 30 ml ethyl acetate. V-Met was extracted with 0.05N NaOH, acidified with citric acid and a crystalline compound was recovered. Yield 19.35 g (77%).
C30H34N2O7S MW=566
The Mixture was stirred at room temperature overnight, and at the end filtered, the acidified with citric acid, producing a white powder. Yield 3.95 g (85%).
C31H36N2O8S MW=596
Stirred for 2 hours at ice-salt bath temperature then overnight at room temperature. The work-up produced an oil, which turned into a solid form after it was kept for 24 hours under vacuum. Yield 7.8 g (95%) MP=119-121° C. The compound was re-crystallized in isopropanol.
C35H41N3O8 MW=663
V-Methionine was reacted with Proline-Phenylalanine using a mixed anhydride method. A transparent gum was produced. Yield: 100%.
The above V-Tripeptide was treated with 10 ml of concentrated HCl for 10 minutes, generating bubbling CO2 and V-Chloride. The mixture was filtered and neutralized with Amonia. Evaporation resulted in a white crystalline powder, with strong methionine odor. The yield was 65%, MP=>300° C.
C19H21NO6, MW=309
The mixture stirred at room temperature for 6 hours, and then 80 ml water was added and acidified with citric acid. A crystalline compound was produced, 3.23 g, yield=90%. The product was re-crystallized from isopropanol. MP=133-134° C.
Synthesis of Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr. CF3COOH Known as T4 Octapeptide, an HIV-Receptor Inhibitor
C37H56F3N9O18 MW=971
The above was cooled in ice bath, then 20.6 g DCC was added and stirred at room temperature overnight. At the end, 2 ml of 50% acetic acid in water was added and after half an hour stirring, DCU was filtered and washed with CH3CN. The solvents were evaporated, leaving 42 g of thick oil. Yield near theory. The structure was confirmed by amino acid analysis. MP=165-167° C.
Number | Date | Country | |
---|---|---|---|
61743888 | Sep 2012 | US |