METHOD FOR PERFORMANT DATA TRANSMISSION IN A DATA NETWORK WITH, IN PART, REAL-TIME REQUIREMENTS AND APPARATUS FOR CARRYING OUT THE METHOD

Information

  • Patent Application
  • 20200228457
  • Publication Number
    20200228457
  • Date Filed
    July 06, 2017
    7 years ago
  • Date Published
    July 16, 2020
    4 years ago
Abstract
The invention relates to a method and to a device that describe a real-time network plan for industrial control and monitoring applications, wherein standard Ethernet switching elements are used for the communication network, in particular on the basis of the new mechanisms according to the IEEE 802.1 TSN Task Group. The sequence plan combines clocked data transfer with the stream reservation concept and thus provides determinism with guaranteed maximum latency and access controls at runtime.
Description

Method for performant data transmission in a data network with, in part, real-time requirements and apparatus for carrying out the method


Industrial applications, such as distributed IO systems in industrial automation, are dependent on the availability and reliability of deterministic data transport. This means that the data to be transmitted are delivered to the receiver as far as possible in real time, in a reliable manner and with little latency. In this case, the data transmission in these networks is distinguished, inter alia, by virtue of the fact that smaller predictable volumes of data are transmitted here at regular intervals in a preplannable manner, for example measured values from sensors or control commands to actuators in the industrial installation. The volumes of data are usually combined in a burst, or else called a stream, that is to say a set of a plurality of data frames.


In the past, hardware developed specifically for this purpose and for use in the industrial environment was used to set up industrial networks, preferably in a bus topology, that is to say all users are connected by a common message path. Such a bus system is illustrated, by way of example, in FIG. 1, wherein various users 11, 12, 13 which can communicate with one another are connected via the transmission path NB containing the network elements B0 . . . B3.


However, the bus system is not exclusively used; an alternative topology is, for example, the ring NR, as illustrated in FIG. 2; in this case, the network elements B0 . . . B3 are connected to one another in a ring structure, which allows two transmission directions when transmitting data packets between the connected users 11, 12, 13. At present, the standardized Ethernet technology is used to transport data in virtually all modern networks.


The manufacturers of industrial automation installations are therefore developing solutions based on Ethernet, with dedicated hardware expansions in order to meet the requirements of the applications, and guarantee the desired real-time behavior of the network.


One of these systems designed in this manner is PROFINET, short for Process Field Network. Profinet uses TCP/IP and IT standards, has real-time Ethernet capability and makes it possible to integrate field bus systems. PROFINET itself defines two real-time protocols: RT (Real Time) and IRT (Isochronous Real Time) in order to transmit time-critical data for the Profinet IO applications with different real-time requirements.


Profinet RT runs on standard Ethernet hardware and handles the Profinet IO applications with cycle times of up to 10 ms. On the data plane, it uses priorities of the standard Ethernet switching technology in order to transmit real-time data with a higher priority than the normal data which need not be transmitted in real time. The advantage of Profinet RT is that operation does not require any time synchronization of the network elements and therefore manages with little engineering effort.


However, the sole use of Profinet RT provides only a slight real-time behavior because the transmission of a high-priority data packet has a transmission delay of up to a data frame of maximum size for each hop from one network element to the next.


For IO applications with fast control loops, such as in motion control in a drive system, Profinet IRT provides a high degree of determinism and can offer cycle times of less than 1 ms to 31.25 μs.


Profin6et IRT uses time synchronization with jitter (that is to say temporal clock jitter when transmitting digital signals) of less than 1 μs, transmission with scheduling (time-scheduled, similar to TDMA, Time Division Multiple Access) and so-called “cut-through” switching, that is to say the switching station already forwards the data frame to be transmitted before it has been completely received from the preceding switching station. As already explained, these two transmission methods require specific hardware which is suitable for use in an industrial Ethernet.


The principle of IRT provides for the IRT data transfer (the transmission of IRT data) to be protected from interference from another data transfer (RT and further, non-RT data). This is effected by using dedicated time windows (reserved bandwidths for the “red phase”, “green phase” and “yellow phase” of Profinet IRT) and by minimizing the time delay of the IRT data frames at the bridges (switching centers) by using the cut-through switching described above.


In this case, the “red phase” is strictly reserved for Class 3 PROFINET RT which has the highest priority, that is to say no other data packets can be transmitted in this time.


In order to implement these requirements, an off-line engineering tool is needed to calculate the transmission time of each IRT data frame at the source (also “injection time”) and the IRT schedule at each bridge. In order to guarantee that all IRT frames at each stage are forwarded by means of cut-through switching without hindering one another, the IRT scheduling tool must plan with the maximum synchronization error and calculates a sufficiently large time gap as a safety buffer for the respective injection time between two arbitrary data frames which were generated/transmitted by two different data sources and are intended to be successively forwarded from the same output port (egress port) of a switching center (bridge) along a transmission path. The forwarding process itself is highly dependent on the underlying hardware implementation. The schedule takes into account all HW influences and can therefore be used only in the known technology with HW devices which were taken into account in the planning. Such conflicts would result in a loss of data because buffering/queueing is usually not offered by the cut-through switching and the data frame is discarded.


Reference is also made to system design below. This is understood as meaning the fact that a previously known set of data frames must be able to be transmitted in a network in a guaranteed manner, that is to say without a loss of data and within a guaranteed transmission time, irrespective of the underlying topology. For this purpose, the maximum number of RT data frames which can be transmitted in a guaranteed manner in the network without a loss of data is determined for a known maximum number of hops in the network and a maximum packet length of the RT frames (also called streams in TSN) and a known latency (delay time) at the switching centers.


Protocols for Ethernet are being constantly further developed. The AVB (Audio Video Bridging) Working Group of the IEEE has defined a set of features for the reliable transmission of audio and video data within a maximum latency.


A new type of data traffic, the so-called “reserved traffic”, is introduced. Audio and video data which occur periodically are transmitted in so-called “streams”. The information relating to the network configuration is concealed from the user by the Stream Reservation Protocol (SRP, IEEE 802.1Qat). It provides a mechanism for access control implemented in combination with the reservation of resources; an end-to-end latency can therefore be guaranteed for this periodically occurring data traffic (stream).


TSN has also introduced, as a new forwarding behavior, the TAS (Time-Aware-Shaper, IEEE 802.1 QBR) mechanism in order to achieve the shortest possible latency.


The forwarding is tackled by means of a schedule—similar to the IRT—and makes it possible to develop real-time systems with the shortest latency for each data frame.


In summary, it can be stated that virtually all manufacturers of industrial real-time systems currently use hardware specifically developed for this purpose in order to obtain high-performance systems. However, these have little flexibility with respect to a change in the application scenario. Alternatively, use is made of standardized hardware which has a poorer performance with more flexible possible applications.


As already described above, PROFINET defines RT (Real Time) and IRT (Isochronous Real Time) for the Profinet IO applications with different real-time requirements.


Profinet RT is executed on standardized hardware and is not dependent on time synchronization mechanisms. It requires little engineering effort in advance. Since the concept is based on the prioritization of data packets, it offers only limited real-time possibilities.


Profinet IRT requires special hardware in order to offer a high degree of determinism based on advance off-line engineering and planning. The scheduling concept is less flexible and must offer safety buffers for stability reasons.


AVB introduces a highly flexible system which provides a simple protocol for the end stations in order to comply with the requirements of the industrial applications in terms of flexibility. The performance of an AVB network is sufficient to meet the requirements of audio and video applications, but the AVB systems are not strong enough to meet the requirements imposed on the latencies of the industrial applications.


TSN is a highly deterministic system which provides a mechanism for configuring time-based transmission within the switching centers/bridges. This offers the provider, a TDMA-based system, the calculation method and the scheduling concept for the required configuration of these systems outside the IEEE standardization activities.


The object of the invention is to specify an improved method and an apparatus for performant data transmission in an industrial data network with, at least in part, real-time requirements, which method can be implemented using standard Ethernet switching elements for the communication network.


This object is achieved by means of a method for switching real-time data having the features according to patent claim 1.


The method according to the invention for the preferred, performant transmission of a set of data packets in an industrial network consisting of switching nodes from a data transmitter to a data receiver respectively from a first switching node to a second switching mode, wherein a time window of the transmission bandwidth is respectively exclusively reserved for transmitting the set of data packets, and the start of the transmission time window is time-synchronized in all transmitting switching nodes in the network.


The object is likewise achieved by means of an apparatus having the features according to patent claim 9.


The apparatus, in particular the switching node, is suitable for the preferred, performant transmission of a set of data packets on the way from a data transmitter to a data receiver is received by the switching node via an input port and is transmitted to a second switching node via an output port, wherein a time window of the transmission bandwidth is respectively exclusively reserved, and the start of the transmission time window is time-synchronized in all transmitting switching nodes in the network.


Further advantageous configurations of the invention are described in the subclaims.


The proposed method and the apparatus describe a real-time network plan for industrial control and monitoring applications, wherein standard Ethernet switching elements are used for the communication network, in particular on the basis of the new mechanisms according to the IEEE 802.1 TSN Task Group. The schedule combines time-clocked data transmission with the stream reservation concept and therefore provides determinism with a guaranteed maximum latency and access controls at runtime.


The above-mentioned system design can be determined, as described below, in the following four steps:

    • A worst-case topology is assumed (for example a bus system with a maximum distance between transmitters and receivers).
    • The TAS window length for the cycle is determined, for example 50% of the time for the planned real-time transmission and 50% for other data traffic.
    • The remaining burst length results from the difference of the window length minus the latency component.
    • The burst length calculated in this manner then results in the number of possible RT frames which can be transmitted in the time.


As long as the assumed boundary conditions are satisfied, users with RT data frames can be added and removed at any location in the network without jeopardizing the guaranteed transmission. The boundary conditions (that is to say maximum packet length and maximum number of RT data frames) are checked by means of a reservation protocol and a further registration is possibly rejected.


The approach introduces a new resource reservation mechanism and simplifies the switching of data packets via the industrial Ethernet by using a so-called “daisy-chain” topology (that is to say the switching nodes are lined up, like in a “chain”, in a bus or ring topology, see FIG. 1 or 2) which is widespread in industrial control systems.


In other topologies, the maximum number of stations must be restricted; star topologies and meshed networks (that is to say completely networked topologies) can be theoretically used as long as a maximum “hop count”, that is to say the number of stations from transmitter to receiver, can be defined on the basis of the currently used topology. Such a transport network consisting of switching centers/bridges and end stations can be modeled, wherein the bridges are connected to one another, as described, via trunk ports to form a transport network.


The switching centers/bridges are connected to the end stations (the sources and sinks of the generated data) via so-called “edge ports”. An exemplary structure is shown in FIG. 1.


The described scheme is independent of topology and requires less configuration information in comparison with pure TDMA (or similar) systems. The configuration is based on a special model for the conventional reservation mechanism/stream reservation for RT real-time data transfer in a preconfigured RT phase.


Data Plane

As a first measure for achieving a guaranteed latency in the network, planned data traffic is similarly transmitted in a manner standardized in IEEE 802.1 Qbv-2016. Like in Profinet IRT with its red and green phases, the cycle time is divided into two phases. The process begins with a protected time window which is exclusively reserved for the transmission of real-time data (RT phase). This is respectively followed by an unprotected window for other data transfer.


Unlike Profinet IRT which requires an explicit configuration of the yellow phase, the data transfer which is scheduled according to the IEEE standard provides an implied “guard band” function in the gate operations. In order to adjust the planned time phases of all switching centers/bridges to common start and end times which are the basis for the scheduled data transfer on the basis of IEEE 802.1AS-2011, for example, or another time-synchronized protocol such as IEEE 1588, it is a prerequisite that all network elements (bridges and end stations) are time-synchronized.


The end stations must inject the cyclical real-time data streams into the network at the start of each cycle via the so-called “edge” input ports and must transmit all data frames to be transmitted as burst traffic. The received real-time data packets are buffered in each bridge with real-time capability and are buffered in the correct output queue, which belongs to the protected transmission window, and are then transmitted in the store & forward mode.


Configuration

In contrast to PROFINET IRT which must be planned/engineered completely off-line and in advance, this design adopts a configuration model which combines both approaches, the off-line configuration and access control at runtime. An advantage of the proposed procedure is the lower engineering effort and the offered support for dynamic configurations of real-time data streams in comparison with other time-based real-time solutions such as PROFINET IRT.


The main configuration tasks which have to be carried out off-line in advance are primarily in the field of transport classes (QoS—Quality of Service), including transport class parameters and the set-up of the planned data transfer.


A network-wide consistent priority value must be defined as a QoS identifier and must be used by all real-time streams. The application of this priority value to a transport class (outgoing queue for real-time transmission) on each individual bridge belongs to the local bridge configuration. In order to draw up the cyclical schedules for the time-clocked data transmission, it is necessary to configure a checklist for each port gate on each bridge using the managed objects specified in IEEE 802.1 Qbr. All bridges in the network must operate with the same schedule.


In order to achieve automatic network configuration on the stream plane at runtime, the principle of the Stream Reservation Protocol (SRP), IEEE 802.1 Q 2014, can be used in one advantageous embodiment. It was developed as a plug-and-play stream configuration mechanism for AVB systems.


The basic principle involves applying the protocol to the network in order to carry out access control, latency control, bandwidth and resource reservation, inclusive for every data stream which must be transmitted in the network.


Worst-Case Latency

An important aspect of the stream reservation mechanism is the possibility of calculating the worst-case latency which is dependent on the maximum frame size and the maximum number of hops in this design. The calculation is based on the synchronized injection of RT data frames by the end stations at the start of the RT phase and a known maximum network diameter which defines the worst-case latency of an individual frame in the network. This enables simplified resource planning inside the network.


RT frames are transmitted in the network in a scheduled transmission window which is reserved for real-time data transmission, which is intended to prevent other data traffic from influencing the transmission. The previously known injection times provide the possibility of simplification—all bridges are configured with the same starting point and the same size of the temporal transmission window.


A further simplification is based on the previously known maximum PDU (Protocol Data Unit, data frame) size of the real-time transmission; the introduction of a maximum size of the RT class simplifies the calculation of the worst-case latency and enables a new simplified model for the SRP (Stream Reservation Protocol).


A guaranteed maximum latency can be achieved if all real-time streams in the current cycle complete their data transmission before expiry of the estimated transmission window of the current transmission cycle, which results in a linked maximum latency (processing time, also referred to as a “make span” for communication between industrial control devices).


This principle behind the calculation of the worst-case latency is similar to the concept used in stream reservation for AVB systems with CBSA (Credit based Shaper) for forwarding in each subnetwork section, wherein the latency in a subnetwork section is not calculated in an end-to-end manner in this approach. Therefore, the described system enables shorter latencies than the AVB network. An AVB network can be interpreted as an individual AVB bridge and the reservation scheme of stream reservation can be used.


The described system combines a simplified scheduling concept with dynamic stream reservation and access control. The advantage is the reduced effort for engineering and provides support for dynamic configuration of real-time streams. The new scheme is independent of topology and requires only very little precalculation of the time schedule, which results in simplified configuration information. The configuration of the schedule depends on the maximum hop count and transmission cycles in the network and is identical for each individual bridge.


All bridges receive the same configuration for the planned data traffic during the design and configuration phase.


All end stations transmit their data in a burst at the start of the transmission phase, and there is no need for any frame-granular coordination between different end stations.


For each schedule window, the effect of the jitter in the time synchronization and in the injection mechanisms must be taken into account only once.


Consequently, the performance of the described system may be better than that of PN IRT in networks with higher connection speeds.


The effort needed for configurations is minimized and makes it possible to dynamically add end stations and communication relationships.


The described system can be used to build strong transport networks which achieve high performance with existing TSN mechanisms by using a simple network configuration, and to avoid overload situations and to guarantee a deterministic behavior of the network.





For explanation, further figures are attached, in which



FIG. 3 shows the transmission of streams in a protected window,



FIG. 4 shows the transmission of streams with additional transmission gaps between the data packets,



FIG. 5 shows a switching delay during data transmission 802.1,



FIG. 6 shows a switching delay during data transmission with a storing delay,



FIG. 7 shows a situation with sequential switching,



FIG. 8 shows a situation with parallel switching, and



FIG. 9 shows an example with a ring topology and a maximum hop count <=4.






FIGS. 3 and 4 show exemplary transmission of data frames F1, F2, . . . Fm in their stations from the transmitters 1 . . . m to the receiver L (also called listener). The transmission is carried out using a plurality of hops B0, B1, . . . Bn in the network and is respectively carried out with a slight time delay (forwarding delay D1, D2, . . . Dn). Further time gaps G1, G2 can also arise between two data frames during transmission and are also included in the calculation of the total transmission time MS of the data stream. In this case, the total transmission time MS is shorter than the transmission time window RW reserved for the transmission of the data stream. It is possible to discern a time delay between the first injection of the data packets at the first switching center B0 and the first injection of the data packets at the last bridge Bn, also referred to as a forwarding delay FDxn.


The total transmission time MS is composed of this forwarding delay FDxn and the burst length BL.



FIG. 3 shows an embodiment with the forwarding of packets in the store & forward method, that is to say the individual frame is first of all completely transmitted and is forwarded to the next station only after it has been completely received. As an alternative, FIG. 4 shows a cut-through method, wherein the forwarding of the data packets is already initiated before the data packets have been completely transmitted; the forwarding delay D1, . . . Dn is considerably shorter here. Interframe gaps G11, . . . Gn2 are provided between the individual frames in order to obtain collision-free transmission. The burst length BL is therefore presumably longer as a result of the gaps which are present, but the forwarding delay is somewhat shorter than in the first example.


As a result of the system design (topology with a line and bundled transmission), the maximum possible number of streams can be generally determined, see FIG. 4.


During operation, FIG. 9, if there is a new reservation, a check is carried out in order to determine whether this reservation is still allowed on the basis of the “max. burst length” from the system design. In the example shown, the number of maximum hops is 4.


In this case, the real network may have fewer hops and a different topology. The transmitters and receivers can be connected at any desired locations in the network.


The system design guarantees that the determined maximum number of streams (see “max. burst length”) can always be transmitted in the network, even in the worst-case topology with the worst-case arrangement of the listeners and talkers (as “bundles of frames”). Yet further streams can also be registered later. In the example illustrated, there are always 6 streams, but a check is then no longer carried out on the basis of the current network topology and the paths used by the stream.


During operation, the resources which are still available are checked and this value was already determined during network design by taking into account the worst-case topology.



FIGS. 5 to 8 now show different configurations with regard to what happens inside a switching center Bx, at the input port Rx (burst in) and at the output port Tx (burst out).


Each data frame F1, F2 consists of a data header, called header or else preamble, PRE, and the data part MPDU_1, MPDU_2. A gap, IFG, also called the interframe gap, is situated here between the data packets.



FIG. 5 shows an example where the first frame F1 is completely received when receiving data, but (storing delay) corresponding forwarding of the data burst at least from the first frame F1′ via the output port is initiated already during the reception of a second frame F2.


The switching delay time is therefore shorter than the sum of (IFG+PRE+MPDU)*bit time. The switching delay is only the time in the transmission gap IFG. The data packets MPDU_1 and MPDU_2 are transmitted in a row.



FIG. 6 shows an example in which the switching delay time is exactly equal to the sum of (IFG+PRE+MPDU)*bit time. In this case, the transmission of each individual data packet is buffered virtually separately.


The transmission gaps in the illustration in FIG. 6 are produced if a bridge is not powerful enough and therefore generates these gaps during transmission—that is to say cannot transmit frames in an uninterrupted manner. This is produced during transmission, is undesirable but must be taken into account in the system design.


In the situation illustrated in FIG. 7, the switching delay time is greater than the sum of (IFG+PRE+MPDU)*bit time. Here, there is a transmission gap (gap) in the output port. In this case, switching is carried out sequentially, that is to say the first data frame MPDU_1 is processed first, then the second etc.


In a similar manner, FIG. 8 then shows a situation with parallel switching which shows dashed regions indicating that the switching for the second data packet has already started before the switching of the first data packet has been concluded.

Claims
  • 1. A method for a preferred, performant, regular transmission of a set of data packets in an industrial network, the industrial network comprising switching nodes, the method comprising: transmitting the set of data packets, respectively, on the way from a data transmitter to a data receiver from a first switching node of the switching nodes to a second switching node of the switching nodes;exclusively reserving a time window of transmission bandwidth for transmitting the set of data packets, respectively, from the first switching node to the second switching node; andtime-synchronizing a start of the transmission time window in all transmitting switching nodes in the network.
  • 2. The method of claim 1, wherein a system design of the industrial network is known and planned before the transmitting of the set of data packets, and wherein exclusively reserving the transmission time window comprises exclusively reserving the transmission time window taking into account a number of switching nodes to be run through, which results from a topology of the industrial network, such that a maximum number of transmissions is always provided within the transmission time window irrespective of the topology of the industrial network.
  • 3. The method of claim 1, wherein the set of data packets to be transmitted is provided with a flag.
  • 4. The method of claim 1, wherein the time-synchronizing of the start of the transmission time window is carried out in the industrial network according to the TSN IEEE 802.1 AS-2011 standard.
  • 5. The method of claim 1, wherein the transmission time window (RW) is reserved according to the Profinet IRT IEEE 802.1 Qbv standard.
  • 6. The method of claim 1, wherein transmitting the set of data packets comprises transmitting the set of data packets in one of the switching nodes using a store and forward method.
  • 7. The method of claim 1, wherein transmitting the set of data packets comprises transmitting the set of data packets in one of the switching nodes using a cut-through method.
  • 8. The method of claim 1, wherein at least one transmission gap is planned in the set of data packets for transmission between data packets of the set of data packets in order to avoid collisions.
  • 9. The method of claim 1, wherein transmitting the set of data packets comprises transmitting the set of data packets for a real-time application.
  • 10. A switching node for a preferred, performant transmission of a set of data packets in an industrial network, the industrial network comprising switching nodes the switching node comprising: an input port configured to receive the set of data packets on the way from a data transmitter to a data receiver; andan output port configured to transmit the set of data packets to another switching nodewherein a time window of a transmission bandwidth is respectively exclusively reserved for transmission of the set of data packets from a first switching node to a second switching node, andwherein a start of the transmission time window is time-synchronized in all transmitting switching nodes in the industrial network.
  • 11. The apparatus of claim 10, wherein the set of data packets to be transmitted is provided with a flag.
  • 12. The apparatus of claim 10, wherein the time synchronization of the transmission time window is carried out in the industrial network according to the TSN IEEE 802.1 AS-2011 standard.
  • 13. The apparatus of claim 10, wherein the transmission time window is reserved according to the Profinet IRT IEEE 802.1 Qbv standard.
  • 14. The apparatus of claim 10, wherein a store and forward method is used to transmit the set of data packets in the switching node.
  • 15. The apparatus of claim 10, wherein a cut-through method is used to transmit the set of data packets in the switching node.
  • 16. The apparatus of claim 10, wherein at least one transmission gap is planned in the set of data packets for transmission between the data packets.
  • 17. The apparatus of claim 10, wherein the transmission of the data packets is for a real-time application.
  • 18. The method of claim 6, wherein a first data packet of the set of data packets to be transmitted is completely received by the one switching node before the first data packet is transmitted on to a subsequent switching node of the switching nodes.
  • 19. The method of claim 7, wherein a first data packet of the set of data packets to be transmitted has not yet been completely received by the one switching node before the first data packet is transmitted on to a subsequent switching node of the switching nodes.
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/066989 7/6/2017 WO 00