This application claims the benefit under 35 U.S.C. §119(a) of two applications entitled “Method For Performing Handover In A Mobile Communication System” filed in the Korean Industrial Property Office, the first filed on Jun. 14, 2005 and assigned Serial No. 2005-50984, and the second filed on Oct. 31, 2005 and assigned Serial No. 103232-2005, the contents of both of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a mobile communication system, and more particularly to a method for performing handover by a mobile station.
2. Description of the Related Art
Generally, in a mobile communication system having a cellular structure, a base station controls one cell and provides mobile stations located within the cell. The cell may be divided into a plurality of sectors. Each mobile station may move from a current cell or sector that currently provides a service to the mobile station, to another cell or sector adjacent to the current cell or sector. According to such movement, the mobile station performs handover for interrupting the call connection with a serving base station of the current cell, and establishing call connection with a target base station of another cell. In the mobile communication system, the handover is an important consideration in relation to the communication quality of the mobile station and the service provided to the mobile station.
Referring to
From among the mobile stations 111, 113, 130, 151, and 153, the mobile station 130 is located in the boundary area between the cell 100 and the cell 150, that is, in the handover area. Therefore, the mobile station 130 satisfies a predetermined handover condition and may thus perform handover to one of the cells.
Referring to
In step 208, the mobile station transmits a message including the measured pilot signal intensities and pseudo noise offset for identifying corresponding base stations to the serving base stations. Then, the serving base station receives the message, determines a target base station which satisfies the predetermined handover condition, and requests the mobile station to handover to the target base station.
According to the conventional handover process as described above, a mobile station measures intensities of pilot signals from neighbor base stations around the mobile station, and transmits a message, which includes information about a neighbor base station, from which the mobile station receives a pilot signal exceeding a predetermined reference value, and the intensity of the pilot signal from the neighbor base station, to a serving base station. The serving base station determines, based on the message from the mobile station, a target base station to which the mobile station will handover, and requests handover of the mobile station by reporting the determined target base station to the mobile station. According to the request for the handover from the serving base station, the mobile station performs the handover to the target base station.
Therefore, in the conventional mobile communication system, in order to determine the handover, a mobile station must periodically receive pilot signals from the serving base station and neighbor base stations and measure the intensities of the received pilot signals. In other words, the operation quantity for the continuous and periodic measurement of the intensities of the pilot signals may act as a load on the mobile station. Therefore, measurement of the intensities of the pilot signals when it is unnecessary for the mobile station to perform handover may serve as an unnecessary function of the mobile station.
Therefore, there a need for a new handover scheme and a reference value adjustment scheme corresponding to the new handover scheme, which can reduce the operation quantity due to the measurement of the intensities of the pilot signals by the mobile station.
Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide a method for handover in a mobile communication system, which can reduce the load or quantity of operations to be performed by a mobile station.
It is another object of the present invention to provide a method for handover in a mobile communication system, in which a base station requests a mobile station to measure the intensities of pilot signals according to communication quality information, so that it is possible to reduce the workload of the mobile station.
It is still another object of the present invention to provide a method for adjustment of a reference value necessary for determination of handover in a mobile communication system.
In order to accomplish this object, there is provided a method for determining handover of a mobile station by a serving base station in a mobile communication system, including measuring a channel state between the mobile station and the serving base station, comparing the measured channel state with a reference level and determining whether to request the mobile station to measure a signal intensity of at least one neighbor base station according to the comparison;, receiving a report from the mobile station about reference signal intensities between the mobile station and a plurality of base stations, and lowering the predetermined reference level when a reference signal intensity of the serving base station is higher than or equal to reference signal intensities of neighbor base stations other than the serving base station.
In accordance with another aspect of the present invention, there is provided a method for determining handover of a mobile station by a mobile station in a mobile communication system, including measuring a downlink reference signal intensity of a serving base station, determining to perform scanning for measurement of reference signal intensities of the serving base station and neighbor base stations, when the measured downlink reference signal intensity of the serving base station is smaller than a predetermined reference value, measuring the reference signal intensities of the serving base station and the neighbor base stations, and resetting the reference value when a reference signal intensity of the serving base station is higher than or equal to reference signal intensities of neighbor base stations.
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, a detailed description of known functions and configurations incorporated herein will be omitted for the sake of clarity and conciseness.
The present invention provides a scheme which can reduce the quantity of operations necessary for measurement of pilot signal intensities during a handover process in a mobile communication system. Specifically, according to the first embodiment of the present invention, a mobile station measures pilot signals only when there is a request from a base station, so that it is possible to reduce the number of times by which the pilot signals are measured, in comparison with the conventional method wherein the pilot signals are periodically measured. Further, according to the second embodiment of the present invention, the reference value for request for measurement of pilot signals, which is a fixed value in the conventional method, is adaptively changeable, so as to reduce the number of times for measurement of the pilot signals, further to the first embodiment. The reference value may be either a pilot signal intensity value or a communication quality value newly proposed by the present invention. Further, instead of requesting a report for measured pilot signal intensities, the base station may request measurement and report of communication quality. Correspondingly, the mobile station also can measure and report the communication quality, instead of the pilot signal intensities. Further, according to the third embodiment of the present invention, the mobile station can determine whether to measure the pilot signal intensities, and can adaptively determine the reference value based on the measured pilot signal intensities.
In the downlink, it is possible to express the communication quality by using the Channel Quality Information (CQI) obtained from periodic measurement of the pilot signals of the serving base station by the mobile station. Further, in the uplink, it is possible to express the communication quality by using headroom information, which corresponds to the difference between the current transmission power and the maximum transmissible power by the mobile station, or a Modulation and Coding Scheme (MCS) level selected by the mobile station from among the MCS level groups recommended by the serving base station. Based on the communication quality measured in consideration of both the uplink and the downlink, the base station can request the mobile station to measure and report the pilot signal intensities.
The MCS level refers to combination of modulation schemes and coding schemes, and it is possible to define multiple MCS levels from level 1 to level N according to the number of MCSs. That is, the MCS level is adaptively determined according to the channel state between the mobile station and the base station. When the channel state between the mobile station and the base station is good, it is possible to use a high MCS level, such as 64 Quadrature Amplitude Modulation (QAM) and 5/6 code rate. In contrast, when the channel state between the mobile station and the base station is poor, it is possible to use a low MCS level, such as Quadrature Phase Shift Keying (QPSK) and 1/12 code rate.
Further, the mobile station either may use an MCS level determined by the serving base station or select one of the MCS levels recommended by the serving base station. When the mobile station uses an MCS level determined by the serving base station, it is of course unnecessary for the mobile station to transmit the MCS level to the base station as communication quality information. However, when the mobile station selects one of the MCS levels recommended by the serving base station, the mobile station must report the selected MCS level to the serving base station.
The mobile station transmits the communication quality information including the CQI and headroom information to the serving base station, and the serving base station requests the mobile station to measure the pilot signal intensities in consideration of the CQI and headroom information. Also, the mobile station may transmit the communication quality information, which includes the CQI, headroom information, and MCS level, to the serving base station, and the serving base station may then request the mobile station to measure the pilot signal intensities in consideration of the CQI, headroom information, and MCS level.
Referring to
In step 306, according to the request from the serving base station to measure and report the intensities of the pilot signals, the mobile station measures the intensities of the pilot signals transmitted from the serving base station and neighbor base stations. Then, in step 308, the mobile station reports the measured intensities of the pilot signals to the serving base station and then proceeds to step 310. The intensity of the pilot signal can be measured by using a Carrier to Interference and Noise Ratio (CINR). In step 310, the mobile station determines whether the mobile station receives from the serving base station a request to perform handover from the serving base station to another neighbor base station. When the mobile station has received the request, the mobile station proceeds to step 312 and performs handover to the neighbor base station appointed by the serving base station. When the mobile station has not received such a request, the mobile station performs the process again from step 302.
Referring to
As described above, the mobile station according to the first embodiment of the present invention measures the intensities of the pilot signals or the communication quality only when there is a request from the base station. Therefore, the present invention can reduce unnecessary signaling .
Referring to
When the measured communication quality value is lower than or equal to a predetermined reference value, the serving base station requests the mobile station to measure the intensities of the pilot signals of the serving base station and the neighbor base stations (step 501). When the serving base station receives a report about the pilot signal intensities instead of the communication quality information from the mobile station, the reference value is a value corresponding to a reference pilot signal intensity.
In response to the request of the serving base station for measurement of the serving base station, the mobile station measures the intensities of the pilot signals of the serving base station and the neighbor base stations and reports the measured intensities to the serving base station.
The serving base station determines whether each of the intensities of the pilot signals of the neighbor base stations reported by the mobile station is larger than the intensity of the pilot signal of the serving base station. Referring to
Referring to
In response to the request from the serving base station for the measurement of the pilot signal intensities, the mobile station measures the intensities of the pilot signals from the serving base station and the neighbor base stations and reports the measured intensities to the serving base station.
Then, the serving base station determines whether a pilot signal intensity of a neighbor base station is higher than the pilot signal intensity of the serving base station. When the pilot signal intensity of the neighbor base station is higher than the pilot signal intensity of the serving base station, the serving base station lowers the maximum reference value h0. The lowered reference value is determined by a function of the difference ΔPSi between the pilot signal intensity of the serving base station and the pilot signal intensity of the neighbor base station, as defined by Equation (1) below.
hi=hi−1−λ1·ΔPSi,0<λ1<1,i=1,2, (1)
In Equation (1), hi refers to the reference value obtained after i times of adjustment, and λ1 refers to a proportional constant applied in the case of lowering the reference value.
The serving base station replaces the maximum reference value h0 with the new reference value h0 determined by Equation (1), thereby setting the new reference value h1 as the reference value for the communication quality comparison. Then, the serving base station repeatedly measures the communication quality at a predetermined time interval. When the re-measured communication quality has a value lower than the new reference value h1, the serving base station sets the second reference value h2 by using Equation (1).
Accordingly, the serving base station in the second embodiment of the present invention performs the measurement of communication quality, comparison of the current reference value with the measured communication quality, request for measurement of the pilot signal intensities according to the result of the comparison, and reset of the reference value according to the measured pilot signal intensities (step 603). It is noted that the serving base station requests eight times the mobile station to measure the pilot signal intensities in the embodiment shown in
In the meantime, although the serving base station adaptively lowers the reference value for the measurement of the pilot signal intensities according to the channel states in the embodiment shown in
Referring to
hi=hi−1+λ2·ΔTQi,0<λ2<1,i=1,2, (2)
In Equation (2), ΔTQi refers to a function value corresponding to the difference between the communication quality measured at the i-th time and the communication quality measured at the (i−1)-th time, and λ2 refers to a proportional constant applied in the case of raising the reference value.
As described above, the serving base station can reduce the number of times by which the serving base station requests the mobile station to measure the pilot signal intensities, by adaptively adjusting the predetermined maximum reference value according to the channel state.
As a premise to the description with reference to
Referring to
Either upon detecting that the mobile station will perform handover or periodically, the serving base station reports through a backbone message the most newly set reference value to the neighbor base stations or the target base station to which the mobile station will handover. By this process, the neighbor base stations or the target base station can reduce the number of times by which they require the mobile station to measure the pilot signal intensities.
Referring to
In response to the request from the serving base station 950, the mobile station 900 measures the intensities of the pilot signals of the serving base station 950 and the neighbor base stations (step 910), and reports the measured intensities the pilot signals of the base stations to the serving base station 950 (step 912).
Based on the pilot signal intensities reported by the mobile station 900, the serving base station 950 determines whether its own pilot signal intensity is greater than or equal to the pilot signal intensities of the neighbor base stations (step 914). As a result of the determination, when the pilot signal intensity of the serving base station is greater than or equal to the pilot signal intensities of the neighbor base stations, the serving base station lowers the current reference value (step 916) and measures the communication quality after passage of a predetermined time interval (step 902). However, when the pilot signal intensity of the serving base station is lower than one of the pilot signal intensities of the neighbor base stations, the serving base station recognizes that it is necessary for the mobile station 900 to handover to a corresponding neighbor base station. Then, the serving base station 950 reports to all of the neighbor base stations or only the corresponding target base station the current reference value set in the serving base station together with the necessity for the mobile station 900 to perform the handover (step 918). Further, the serving base station 950 requests the mobile station 900 to perform the handover (step 920).
Then, the mobile station 900 performs the handover process in response to the request for the handover by the serving base station 950 (step 922).
Referring to
However, when the measured communication quality has a value lower than the current reference value, the serving base station proceeds to step 1008, in which the serving base station requests the mobile station to measure the intensities of the serving base station and the neighbor base stations. Then, in step 1010, the serving base station receives the report of the measured pilot signal intensities of the base stations from the mobile station. In step 1012, based on the pilot signal intensities reported by the mobile station, the serving base station compares the pilot signal intensity between itself and the mobile station with the pilot signal intensity between the mobile station and each neighbor base station. As a result of the comparison, when the pilot signal intensity of the serving base station is stronger than or equal to the pilot signal intensities of the neighbor base stations, the serving base station proceeds to step 1014, in which the serving base station lowers the current reference value by using Equation (1). Then, the serving base station performs the process from step 1002 again. In determining the lowered reference value, the serving base station takes the predetermined hysterisis range or the minimum reference value.
As a result of the comparison in step 1012, when the pilot signal intensity of the serving base station is lower than pilot signal intensities of the neighbor base stations, the serving base station proceeds to step 1016, in which the serving base station recognizes that it is necessary for the mobile station to handover to a corresponding neighbor base station. Therefore, the serving base station reports to all of the neighbor base stations or only the corresponding target base station the current reference value set in the serving base station together with the necessity for the mobile station to perform the handover. Then, in step 1018, the serving base station requests the mobile station to perform the handover.
Referring to
In step 1105, the mobile station agrees with the serving base station about the scanning period and the number of scanning repetitions. In order to determine the scanning period and the number of scanning repetitions, the mobile station may perform negotiation with the serving base station.
Then, in step 1107, the mobile station measures the signal intensities of the serving base station and the neighbor base stations. In step 1109, the mobile station determines based on the measured signal intensities whether to perform the handover. When the signal intensity of a neighbor base station is higher than the signal intensity of the serving base station or when the signal intensity of the serving base station is lower than a predetermined handover threshold, the mobile station determines that it is necessary to perform the handover and proceeds to step 1111, in which the mobile station performs the handover.
However, when the condition for handover as described above is not satisfied, the mobile station proceeds to step 1113, in which the mobile station raises or lowers the current reference value. When the currently measured signal intensity of the serving base station is stronger than the previously measured signal intensity thereof, the mobile station raises the current reference value. In contrast, when the currently measured signal intensity of the serving base station is weaker than the previously measured signal intensity thereof and has a value higher than the current reference value, the mobile station sets a new reference value by lowering the current reference value.
As described above, in a mobile communication system according to the present invention, the serving base station can adaptively raise or lower the reference value for determining whether to make a request for measurement of the pilot signal intensities, so that the present invention can reduce the number of times by which the mobile station measures the pilot signal intensities of multiple base stations. As a result, the present invention can reduce the quantity of operations due to the measurement of the pilot signal intensities by the mobile station.
While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
50948/2005 | Jun 2005 | KR | national |
103232/2005 | Oct 2005 | KR | national |