The present invention relates to maintaining linearity of the hardware circuitry for a wide frequency range, and more particularly, to a method for performing phase shift control for timing recovery in an electronic device, and an associated apparatus.
In ultra-high speed Serializer/Deserializer (SerDes) or Analog-to-Digital Convertor (ADC) applications, the sub-rate (e.g. half-rate, quarter-rate, oct-rate, etc.) Serdes or interleave ADC architecture may have become the main stream since it is possible to reduce the samplers timing budget or the noise specification requirement. While the techniques progresses, however, some problems such as some side effects may occur. For example, the related art may suffer from one or more of high power consumption, large area, and poor timing recovery. Thus, a novel method and associated architecture are required for achieving lower power consumption, smaller area, and better timing recovery.
It is an objective of the claimed invention to provide a method for performing phase shift control for timing recovery in an electronic device, and an associated apparatus, in order to solve the above-mentioned problems.
It is another objective of the claimed invention to provide a method for performing phase shift control for timing recovery in an electronic device, and an associated apparatus, in order to guarantee the overall performance of the electronic device.
According to at least one preferred embodiment, a method for performing phase shift control in an electronic device is provided, where the method comprises the steps of: obtaining a set of clock signals corresponding to a set of phases; and controlling a phase shift of an output signal of an oscillator by selectively mixing the set of clock signals into the oscillator according to a set of digital control signals, wherein the phase shift corresponds to the set of digital control signals, and the set of digital control signals carries a set of digital weightings for selectively mixing the set of clock signals. More particularly, the oscillator may comprise a plurality of stages, and the step of controlling the phase shift of the output signal of the oscillator by selectively mixing the set of clock signals into the oscillator according to the set of digital control signals may further comprise: controlling the phase shift of the output signal of the oscillator by selectively mixing the set of clock signals into a specific stage of the plurality of stages according to the set of digital control signals.
According to at least one preferred embodiment, an apparatus for performing phase shift control in an electronic device is provided, where the apparatus comprises at least one portion of the electronic device. The apparatus comprises an oscillator, and further comprises at least one mixing circuit that is electrically connected to the oscillator. The oscillator is arranged to generate an output signal. In addition, the aforementioned at least one mixing circuit comprises a set of clock receiving terminals that is arranged to obtain a set of clock signals corresponding to a set of phases. Additionally, the aforementioned at least one mixing circuit is arranged to perform phase shift control on the output signal of the oscillator. For example, the aforementioned at least one mixing circuit may control a phase shift of the output signal of the oscillator by selectively mixing the set of clock signals into the oscillator according to a set of digital control signals, wherein the phase shift corresponds to the set of digital control signals, and the set of digital control signals carries a set of digital weightings for selectively mixing the set of clock signals. More particularly, the oscillator may comprise a plurality of stages, and the aforementioned at least one mixing circuit may control the phase shift of the output signal of the oscillator by selectively mixing the set of clock signals into a specific stage of the plurality of stages according to the set of digital control signals.
According to at least one preferred embodiment, a method for performing phase shift control for timing recovery in an electronic device is provided, where the method may comprise: generating an output signal of an oscillator, wherein a phase shift of the output signal of the oscillator is controlled by selectively combining a set of clock signals into the oscillator according to a set of digital control signals, and the set of clock signals is obtained from a clock generator, wherein the phase shift corresponds to the set of digital control signals, and the set of digital control signals carries a set of digital weightings for selectively mixing the set of clock signals; and performing timing recovery and sampling on a receiver input signal of a receiver in the electronic device according to the output signal of the oscillator to reproduce data from the receiver input signal, wherein the reproduced data are reproduced at a data bus of the receiver, and the set of digital control signals is generated according to feedback signals from the data bus. For example, the method may further comprise utilizing a digital low pass filter to perform digital low pass filtering on derivatives of the feedback signals to generate the set of digital control signals. For example, the method may further comprise utilizing a phase detector to perform phase detection on the feedback signals from the data bus of the receiver to generate phase detection results, wherein the derivatives of the feedback signals comprise the phase detection results. In some embodiments, the timing recovery and sampling may be performed with Analog-to-Digital Converters (ADCs) of an interleave ADC architecture or edge/data samplers of a Serializer/Deserializer (SerDes) architecture.
According to at least one preferred embodiment, an apparatus for performing phase shift control for timing recovery in an electronic device is provided, where the apparatus may comprise at least one portion (e.g. a portion or all) of the electronic device. For example, the apparatus may comprise an oscillator, and further comprise at least one mixing circuit that is electrically connected to the oscillator. The oscillator is arranged to generate an output signal, and the aforementioned at least one mixing circuit comprises a set of clock receiving terminals that is arranged to obtain a set of clock signals. In addition, the aforementioned at least one mixing circuit is arranged to perform phase shift control on the output signal of the oscillator. For example, the aforementioned at least one mixing circuit may control a phase shift of the output signal of the oscillator by selectively combining the set of clock signals into the oscillator according to a set of digital control signals, wherein the phase shift corresponds to the set of digital control signals, and the set of digital control signals carries a set of digital weightings for selectively mixing the set of clock signals. Additionally, the apparatus may further comprise a clock generator, and comprise a sampling circuit that is positioned in a receiver in the electronic device. The clock generator is arranged to generate the set of clock signals, and the sampling circuit is arranged to perform timing recovery and sampling on a receiver input signal of the receiver according to the output signal of the oscillator to reproduce data from the receiver input signal, wherein the reproduced data are reproduced at a data bus of the receiver, and the set of digital control signals is generated according to feedback signals from the data bus. For example, the apparatus may further comprise a digital low pass filter arranged to perform digital low pass filtering on derivatives of the feedback signals to generate the set of digital control signals. For example, the apparatus may further comprise a phase detector arranged to perform phase detection on the feedback signals from the data bus of the receiver to generate phase detection results, wherein the derivatives of the feedback signals comprise the phase detection results. In some embodiments, the sampling circuit may be implemented with ADCs of an interleave ADC architecture or edge/data samplers of a SerDes architecture.
It is an advantage of the present invention that the present invention method and the associated apparatus can guarantee the overall performance of the electronic device. In comparison with the related art, the present invention method and the associated apparatus can achieve lower power consumption, smaller area, and better timing recovery. As a result, the related art problems may no longer be an issue.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims, which refer to particular components. As one skilled in the art will appreciate, electronic equipment manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not in function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
As shown in
According to the embodiment shown in
Based on the architecture shown in
Based on the architecture shown in
According to some embodiments, such as any of the embodiments respectively shown in
With aid of the digital control phase shift oscillator 16, the present invention apparatus (e.g. the apparatus 10 or the apparatus 10′) and the associated method (e.g. a method for controlling operations of the apparatus 10 or the apparatus 10′) can guarantee the overall performance of the electronic device. In comparison with the related art, the present invention method and the associated apparatus can achieve lower power consumption, smaller area, and better timing recovery. As a result, the related art problems may no longer be an issue.
According to this embodiment, the aforementioned at least one mixing circuit such as the injection circuits INJ+ and INJ− shown in
According to this embodiment, the apparatus 10 may utilize the set of adjustable current sources respectively corresponding to the set of clock signals such as the clock signal ck(π+π*(0/NX)), the clock signal ck(π+π*(1/NX)), the clock signal ck(π*(0/NX)), and the clock signal ck(π*(1/NX)), to selectively mix the set of clock signals into the oscillator circuit according to the set of digital weighting control signals. For example, the set of digital weighting control signals of this embodiment may carry the set of digital weightings such as the digital weightings {{(1−W), W}, {(1−W), W}}, and therefore, the set of adjustable current sources respectively corresponding to the set of clock signals such as the clock signal ck(π+π*(0/NX)), the clock signal ck(π+π*(1/NX)), the clock signal ck(π*(0/NX)), and the clock signal ck(π*(1/NX)) may generate the currents of ((1−W)*I), (W*I), ((1−W)*I), and (W*I), respectively. In addition, the set of adjustable current sources is controlled by the set of digital weighting control signals, and each adjustable current source of the set of adjustable current sources selectively mixes a corresponding clock signal of the set of clock signals, such as the corresponding clock signal within the clock signal ck(π+π*(0/NX)), the clock signal ck(π+π*(1/NX)), the clock signal ck(π*(0/NX)), and the clock signal ck(π*(1/NX)), into the oscillator circuit according to a corresponding digital weighting control signal of the set of digital weighting control signals, such as the corresponding digital weighting control signal within the digital weighting control signals carrying the digital weightings {{(1−W), W}, {(1−W), W}}.
Please note that, in the embodiment shown in
According to some embodiments, each stage of the plurality of stages within the digital control phase shift oscillator 16, such as any of the stages 310-1, 310-2, . . . , and 310-NS shown in
In general, the number NS of stages within the stages 310-1, 310-2, . . . , and 310-NS may be unrelated to the number N of phases within the N phases mentioned above. For example, the number NS of stages within the stages 310-1, 310-2, . . . , and 310-NS of some embodiments may be different from the number N of phases within the N phases. This is for illustrative purposes only, and is not meant to be a limitation of the present invention. In some other embodiments, the number NS of stages within the stages 310-1, 310-2, . . . , and 310-NS may be the same as the number N of phases within the N phases.
In addition, the phase parameter NX regarding the phases of some clock signals described above (e.g. the clock signal ck(π+π*(0/NX)) having the phase of (π+π*(0/NX)), the clock signal ck(π+π*(1/NX)) having the phase of (π+π*(1/NX)), the clock signal ck(π*(0/NX)) having the phase of (π*(0/NX)), and the clock signal ck(π*(1/NX)) having the phase of (π*(1/NX)) that are shown in
Additionally, the phase parameter NX regarding the phases of some clock signals described above (e.g. the clock signal ck(π+π*(0/NX)) having the phase of (π+π*(0/NX)), the clock signal ck(π+π*(1/NX)) having the phase of (π+π*(1/NX)), the clock signal ck(π*(0/NX)) having the phase of (π*(0/NX)), and the clock signal ck(π*(1/NX)) having the phase of (π*(1/NX)) that are shown in
Regarding the first sub-circuit, the terminal VB thereof may receive the clock signal ck(π+π*(0/NX)) having the phase of (π+π*(0/NX)), and the (NR+1) switches {MB(0), MB(1), . . . , MB(NR)} thereof (e.g. (NR+1) Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)) may perform switching operations according to the clock signal ck(π+π*(0/NX)). In addition, the terminals {B[0], B[1], . . . , B[NR]} thereof may receive the digital weighting control signals corresponding to the left branch of the two branches in the injection circuit INJ+, and the digital weighting (1−W) for this branch may be equivalent to the ratio of the number NR-ON(1) of turn-on switch(es) within the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} thereof (e.g. (NR+1) MOSFETs) to the number (NR+1) of all of these (NR+1) switches {MS(0), MS(1), . . . , MS(NR)}, where the notation “NR-ON(1)” may represent an integer that falls within the range of the interval [0, NR+1]. For example, suppose that the digital weighting (1−W) for this branch is not equal to zero. As a result, the number NR-ON(1) may be a positive integer that falls within the range of the interval [1, NR+1]. In another example, suppose that each of the digital weighting (1−W) for this branch and the digital weighting W for the other branch within the two branches in the injection circuit INJ+ is not equal to zero. As a result, the number NR-ON(1) may be a positive integer that falls within the range of the interval [1, NR].
Regarding the second sub-circuit, the terminal VB thereof may receive the clock signal ck(π+π*(1/NX)) having the phase of (π+π*(1/NX)), and the (NR+1) switches {MB(0), MB(1), . . . , MB(NR)} thereof (e.g. (NR+1) MOSFETs) may perform switching operations according to the clock signal ck(π+π*(1/NX)). In addition, the terminals {B[0], B[1], . . . , B[NR]} thereof may receive the digital weighting control signals corresponding to the right branch of the two branches in the injection circuit INJ+, and the digital weighting W for this branch may be equivalent to the ratio of the number NR-ON(2) of turn-on switch(es) within the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} thereof (e.g. (NR+1) MOSFETs) to the number (NR+1) of all of these (NR+1) switches {MS(0), MS(1), . . . , MS(NR)}, where the notation “NR-ON(2)” may represent an integer that falls within the range of the interval [0, NR+1]. For example, suppose that the digital weighting W for this branch is not equal to zero. As a result, the number NR-ON(2) may be a positive integer that falls within the range of the interval [1, NR+1]. In another example, suppose that each of the digital weighting W for this branch and the digital weighting (1−W) for the other branch within the two branches in the injection circuit INJ+ is not equal to zero. As a result, the number NR-ON(2) may be a positive integer that falls within the range of the interval [1, NR].
Regarding the third sub-circuit, the terminal VB thereof may receive the clock signal ck(π*(0/NX)) having the phase of (π*(0/NX)), and the (NR+1) switches {MB(0), MB(1), . . . , MB(NR)} thereof (e.g. (NR+1) MOSFETs) may perform switching operations according to the clock signal ck(π*(0/NX)). In addition, the terminals {B[0], B[1], . . . , B[NR]} thereof may receive the digital weighting control signals corresponding to the left branch of the two branches in the injection circuit INJ−, and the digital weighting (1−W) for this branch may be equivalent to the ratio of the number NR-ON(3) of turn-on switch(es) within the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} thereof (e.g. (NR+1) MOSFETs) to the number (NR+1) of all of these (NR+1) switches {MS(0), MS(1), MS(NR)}, where the notation “NR-ON(3)” may represent an integer that falls within the range of the interval [0, NR+1]. For example, suppose that the digital weighting (1−W) for this branch is not equal to zero. As a result, the number NR-ON(3) may be a positive integer that falls within the range of the interval [1, NR+1]. In another example, suppose that each of the digital weighting (1−W) for this branch and the digital weighting W for the other branch within the two branches in the injection circuit INJ− is not equal to zero. As a result, the number NR-ON(3) may be a positive integer that falls within the range of the interval [1, NR].
Regarding the fourth sub-circuit, the terminal VB thereof may receive the clock signal ck(π*(1/NX)) having the phase of (π*(1/NX)), and the (NR+1) switches {MB(0), MB(1), . . . , MB(NR)} thereof (e.g. (NR+1) MOSFETs) may perform switching operations according to the clock signal ck(π*(1/NX)). In addition, the terminals {B[0], B[1], . . . , B[NR]} thereof may receive the digital weighting control signals corresponding to the right branch of the two branches in the injection circuit INJ−, and the digital weighting W for this branch may be equivalent to the ratio of the number NR-ON(4) of turn-on switch(es) within the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} thereof (e.g. (NR+1) MOSFETs) to the number (NR+1) of all of these (NR+1) switches {MS(0), MS(1), . . . , MS(NR)}, where the notation “NR-ON(4)” may represent an integer that falls within the range of the interval [0, NR+1]. For example, suppose that the digital weighting W for this branch is not equal to zero. As a result, the number NR-ON(4) may be a positive integer that falls within the range of the interval [1, NR+1]. In another example, suppose that each of the digital weighting W for this branch and the digital weighting (1−W) for the other branch within the two branches in the injection circuit INJ− is not equal to zero. As a result, the number NR-ON(4) may be a positive integer that falls within the range of the interval [1, NR].
According to this embodiment, each of the first sub-circuit, the second sub-circuit, the third sub-circuit, and the fourth sub-circuit mentioned above can be regarded as a current sink. As a result of utilizing the of the first sub-circuit, the second sub-circuit, the third sub-circuit, and the fourth sub-circuit, the injection circuits INJ+ and INJ− shown in
In general, the number (NR+1) of sub-paths corresponding to the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} may be unrelated to the number N of phases within the N phases mentioned above. For example, the number (NR+1) of sub-paths corresponding to the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} of some embodiments may be different from the number N of phases within the N phases. This is for illustrative purposes only, and is not meant to be a limitation of the present invention. In some other embodiments, the number (NR+1) of sub-paths corresponding to the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} may be the same as the number N of phases within the N phases.
In addition, the number (NR+1) of sub-paths corresponding to the (NR+1) switches {MS(0), MS(1), . . . , MS(NR)} may be unrelated to the phase parameter NX regarding the phases of some clock signals described above (e.g. the clock signal ck(π+π*(0/NX)) having the phase of (π+π*(0/NX)), the clock signal ck(π+π*(1/NX)) having the phase of (π+π*(1/NX)), the clock signal ck(π*(0/NX)) having the phase of (π*(0/NX)), and the clock signal ck(π*(1/NX)) having the phase of (π*(1/NX)) that are shown in
According to some embodiments, the phase shift of the output signal of the oscillator (more particularly, the oscillator circuit) within the digital control phase shift oscillator 16 may be controlled by selectively combining the set of clock signals into a specific stage of the plurality of stages according to the set of digital control signals. For example, the phase shift of the output signal of the oscillator (more particularly, the oscillator circuit) within the digital control phase shift oscillator 16 may be controlled by injecting at least one portion (e.g. a portion or all) of the set of clock signals into the specific stage according to the set of digital control signals, where the signal count of the aforementioned at least one portion of the set of clock signals corresponds to the set of digital weightings carried by the set of digital control signals. For brevity, similar descriptions for these embodiments are not repeated in detail here.
According to some embodiments, the phase shift of the output signal of the oscillator (more particularly, the oscillator circuit) within the digital control phase shift oscillator 16 may be controlled by selectively combining the set of clock signals into the specific stage of the plurality of stages according to the set of digital control signals and by selectively combining another set of clock signals into another stage of the plurality of stages according to another set of digital control signals. For example, the phase shift of the output signal of the oscillator (more particularly, the oscillator circuit) within the digital control phase shift oscillator 16 may be controlled by injecting at least one portion (e.g. a portion or all) of the set of clock signals into the specific stage of the plurality of stages according to the set of digital control signals and by injecting at least one portion (e.g. a portion or all) of the other set of clock signals into the other stage of the plurality of stages according to the other set of digital control signals, where the signal count of the aforementioned at least one portion of the set of clock signals corresponds to the set of digital weightings carried by the set of digital control signals, and the signal count of the aforementioned at least one portion of the other set of clock signals corresponds to a set of digital weightings carried by the other set of digital control signals. For example, the other set of clock signals may be equivalent to the set of clock signals. For brevity, similar descriptions for these embodiments are not repeated in detail here.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/298,440, which was filed on Feb. 22, 2016, and is included herein by reference. In addition, this application claims the benefit of U.S. Provisional Application No. 62/246,788, which was filed on Oct. 27, 2015, and is included herein by reference. Additionally, this application is a continuation in part application and claims the benefit of U.S. Non-provisional application Ser. No. 14/968,926, which was filed on Dec. 15, 2015, and is included herein by reference. The U.S. Non-provisional application Ser. No. 14/968,926 is a continuation application and claims the benefit of U.S. Non-provisional application Ser. No. 14/294,130, now U.S. Pat. No. 9,246,480, which was filed on Jun. 2, 2014. All related applications are included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5382921 | Estrada | Jan 1995 | A |
5920220 | Takao | Jul 1999 | A |
6393083 | Beukema | May 2002 | B1 |
6617936 | Dally | Sep 2003 | B2 |
7760833 | Brunner | Jul 2010 | B1 |
8710929 | Naviasky | Apr 2014 | B1 |
20040158420 | Kim | Aug 2004 | A1 |
20070277069 | Bonneau | Nov 2007 | A1 |
20100039157 | Kaeriyama | Feb 2010 | A1 |
20130195234 | Lee | Aug 2013 | A1 |
20150188554 | Chong | Jul 2015 | A1 |
20150349763 | Luo | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2 312 753 | Apr 2011 | EP |
0016331 | Mar 2000 | WO |
Entry |
---|
O'Mahony, A Programmable Phase Rotator based on Time-Modulated Injection-Locking, 2010 Symposium on VLSI Circuits/Technical Digest of Technical Papers, pp. 45-46, 2010. |
Yi-Chieh Huang, Title: Clock Generator Using Resistive Components to Generate Sub-Gate Delays and/or Using Common-Mode Voltage Based Frequency-Locked Loop Circuit for Frequency Offset Reduction, pending U.S. Appl. No. 15/261,884, filed Sep. 10, 2016. |
Masum Hossain et al, 7.4 Gb/s 6.8 mW Source Synchronous Receiver in 65 nm CMOS, IEEE Journal of Solid-State Circuits, vol. 46, No. 6, Jun. 2011, pp. 1337-1348, XP55313279. |
Masum Hossain et al, A Fast-Lock, Jitter Filtering All-Digital DLL Based Burst-Mode Memory Interface, IEEE Journal of Solid-State Circuits, vol. 49, No. 4, Apr. 2014, pp. 1048-1062, XP011543999. |
Number | Date | Country | |
---|---|---|---|
20160308665 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62298440 | Feb 2016 | US | |
62246788 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14294130 | Jun 2014 | US |
Child | 14968926 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14968926 | Dec 2015 | US |
Child | 15194509 | US |