1. Field of the Invention
The invention relates to array microphones, and more particularly to phase mismatch calibration of output signals of array microphones.
2. Description of the Related Art
An array microphone is an apparatus comprising a plurality of microphones. When a sound propagates to a vicinity of the array microphone, each of the microphones of the array microphone respectively converts the sound to a microphone signal, thus obtaining a plurality of microphone signals. Due to slight spatial differences in sound receiving locations of the microphones, the microphone signals have a slight phase difference therebetween. A beamforming module can therefore determine a spatial direction of the sound according to the phase differences between the microphone signals and attenuates noise and interference coming from other directions. Thus, a target signal comprising a more desired sound component and less noise and interference is obtained.
Because the beamforming module determines the spatial direction of the sound according to the phase differences between the microphone signals, accuracy of the phase difference between the microphone signals determines precision of beamforming. The phase differences between the microphone signals generated by the array microphone, however, comprises delays resulting from circuit differences of the microphones rather than spatial differences in sound receiving locations of the microphones. The delays caused by circuit differences among different the microphones degrades precision of beamforming. Thus, a phase calibration module is required to compensate output signals of an array microphone for delays caused by circuit differences of microphones of the array microphone.
A conventional phase calibration module directly determines delays caused by circuit differences of microphones according to output signals of the microphones. The circuit differences of microphones of an array microphone, however, causes a much longer delay in low-frequency components of the microphone output signals than in high-frequency components of the microphone output signals. The low frequency components of the microphone output signals therefore have a greater signal distortion and phase mismatch than the high frequency components of the microphone output signals. Because the conventional phase calibration module does not differentiate between the low frequency components from the high frequency components in delay calculation and compensation, delays due to circuit differences cannot be compensated with a high precision, degrading performance of subsequent beamforming. Thus, a method for phase mismatch calibration for an array microphone is required.
The invention provides a phase calibration module, calibrating phase mismatch between microphone signals output by a plurality of microphones of an array microphone. In one embodiment, the phase calibration module comprises a subband filter, a delay calculation module, and a delay compensation filter. The subband filter extracts a high frequency component and a low frequency component from each of the microphone signals to obtain a plurality of high-frequency component signals and a plurality of low-frequency component signals. The delay calculation module calculates delays between the low-frequency component signals. The delay compensation filter then compensates the low-frequency component signals for phase mismatches therebetween according to the calculated delays to obtain a plurality of calibrated low-frequency component signals.
The invention provides a method for phase mismatch calibration for an array microphone. In one embodiment, a plurality of microphones of the array microphone convert a sound into a plurality of microphone signals. First, a high frequency component and a low frequency component are extracted from each of the microphone signals to obtain a plurality of high-frequency component signals and a plurality of low-frequency component signals. Delays between the low-frequency component signals are then calculated. Phase mismatches between the microphone signals are then calibrated according to the calculated delays to obtain a plurality of calibrated signals.
The invention provides a voice processing apparatus. In one embodiment, the voice processing apparatus comprises an array microphone, a phase calibration module, and a beamforming/signal separation module. The array microphone generates a plurality of microphone signals with a plurality of microphones thereof. The phase calibration module extracts a high frequency component and a low frequency component from each of the microphone signals to obtain a plurality of high-frequency component signals and a plurality of low-frequency component signals, calculates delays between the low-frequency component signals, and calibrates phase mismatches between the microphone signals according to the calculated delays to obtain a plurality of calibrated signals. Finally, the beamforming/signal separation module derives a target signal without noise and interference from the calibrated signals according to beamforming or signal separation techniques.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
Referring to
Because the sound source is at the same distances to the microphones 102 and 103, the receiving location difference between the microphones 102 and 103 induces no phase mismatch or delay between the signals s1(n) and s2(n). When a delay between the signals s1(n) and s2(n) exists, the delay is completely due to circuit differences between the microphones 102 and 103. The phase calibration module 106 then calculates the delay between the signals s1(n) and s2(n). Before the delay is calculated, the phase calibration module 106 extracts high frequency components and low frequency components from each of the signals s1(n) and s2(n). The phase calibration module 106 then detects whether the high frequency components comprise voice components. If so, the phase calibration module 106 measures a delay between the low frequency components, and then compensates the signals s1(n) and s2(n) for phase mismatch therebetween according to the measured delay. Because there are only two microphone output signals s1(n) and s2(n), only one of the signals s1(n) and s2(n) is compensated. For example, the phase of the signal s1(n) is adjusted according to the calculated delay to obtain a calibrated signal s1c(n). In other embodiments, the array microphone comprises multiple microphones generating multiple microphone output signals, and the phase calibration module 106 calibrates the microphone output signals in a similar way.
The signals s1c(n) and s2(n) are then delivered to the beamforming/signal separation module 108. The beamforming/signal separation module 108 then derives a target signal d(n) with more voice components and attenuated noise and interference from the signals s1c(n) and s2(n) according to a beamforming technique or a signal separation technique. Because the phase calibration module 106 measures a delay between low frequency components of the signals s1(n) and s2(n) for calibration, the measured delay is more precise than that obtained according to the conventional method. Thus, the delay induced by circuit differences between the microphones 102 and 103 are well compensated, and phase mismatch between the calibrated signals s1c(n) and s2(n) completely reflects sound-receiving spatial differences of microphones 102 and 103, improving precision of the beamforming/signal separation module 108.
Referring to
The voice activity detector 204 then detects whether the high frequency component signals s1h(n) and s2h(n) comprises voice components. If so, a voice detection signal v(n) is generated to enable the delay calculation module 206. In one embodiment, the voice activity detector 204 detects whether powers of the high-frequency component signals s1h(n) and s2h(n) exceed a power threshold. If so, the high-frequency component signals s1h(n) and s2h(n) are determined to comprise voice components, and the voice detection signal v(n) is enabled to trigger the delay calculation module 206.
After the delay calculation module 206 is enabled, the delay calculation module 206 then calculates a delay t(n) between the low-frequency component signals s1(n) and s2l(n). In one embodiment, the delay calculation module 206 correlates the low-frequency component signals s1(n) and s21(n) to calculate the delay t(n) therebetween. Because there are only two microphone output signals s1(n) and s2(n), only one of the microphone output signals is required to be calibrated to have the same phase as the other. The delay t(n) is then sent to the delay filter 208, and the delay filter 208 calibrates the low frequency component signal s1l(n) according to the delay t(n) to obtain a calibrated low-frequency component signal s1lc(n). The calibrated low-frequency component signal s1lc(n) and the corresponding high-frequency component signal s1h(n) form a calibrated signal s1c(n), as shown in
Referring to
The invention provides a phase calibration module. Low frequency components of signals generated by microphones of an array microphone are extracted as a source for calculating delays therebetween. Because circuit differences between microphones induce greater delays in low frequency components of microphone signals than in high frequency components of the microphone signals, the delays calculated according to the low frequency components are more precise, and phase mismatch calibration according to the calculated delays has better accuracy then that of a conventional calibration methods.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Name | Date | Kind |
---|---|---|---|
6044162 | Mead et al. | Mar 2000 | A |
6272229 | Baekgaard | Aug 2001 | B1 |
7171357 | Boland | Jan 2007 | B2 |
8064617 | Buck et al. | Nov 2011 | B2 |
20020041696 | Jensen | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20100179806 A1 | Jul 2010 | US |