Not applicable.
Not applicable.
The present invention relates to the field of wellbore re-stimulation (i.e., refracturing or refracing). More particularly, the present invention relates to a method for plugging wellbore perforations formed during a previous well stimulation process, which allows for new wellbore perforations to be formed and subsequent wellbore stimulation.
Wellbore re-stimulation is an oil and gas industry practice of revitalizing older wells which have been fracked in the past, but are producing low yields or have stopped producing altogether. The industry often turns to wellbore re-stimulation to correct assumptions made in early frac job designs and reattempting frac jobs that were initially poorly executed. However, in order for wellbore re-stimulation to be considered a repeatable and viable process, the resulting outcome often must be economically successful.
Industry methods for re-stimulating an oil and gas well are varied and have been confronted with many challenges unique to their applications. One of the biggest challenges associated with successful wellbore re-stimulation is effectively sealing off all the long, perforated sections of the wellbore such that stimulation treatments may be delivered. Current attempts to completely seal off a previously stimulated wellbore have proven to be unreliable, unpredictable, ineffective, inefficient, and economically unjustifiable. For instance, a method directed toward the installation of secondary tubing in a wellbore is typically costly and may reduce the inner diameter of the wellbore, limiting recompletion options. Additionally, a method directed toward the pumping of temporary diverting agents may only seal certain perforated sections in a wellbore for brief periods of time, not permanently, and therefore may not allow for complete and permanent sealing of the wellbore.
Consequently, there is a need in the art for an economically justifiable method that completely and permanently plugs or seals existing perforations in a re-stimulation candidate well, thereby resulting in a perforation-free wellbore that may be perforated and re-stimulated at an operator's discretion.
These and other needs in the art are addressed in one embodiment by a method for sealing a previously stimulated wellbore, wherein the wellbore comprises a plurality of perforated sections comprising a plurality of perforations, comprising configuring a ball injector or multiple ball injectors at the surface of the wellbore, pumping non-degradable perforation ball sealers into the perforated sections via the ball injector or ball injectors, wherein the non-degradable perforation ball sealers permanently seal all perforated sections in the wellbore, and monitoring pressure within the wellbore during operation to determine a successful seal of all the perforated sections.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
In embodiments, a deployment tool may be utilized at the wellhead of wellbore 10 to effectively and efficiently deploy bridging material to perforated sections 18 disposed in wellbore 10.
Any deployment tool suitable for injecting bridging material 11 may be used. In embodiments, the deployment tool may be a ball injector, ball gun, or ball sealer tool. Further, in some embodiments, the deployment tool may consist of multiple ball injectors configured in-line and disposed at the surface of the wellbore. The ball injector or ball injectors may carry any suitable number of perforation ball sealers. In some embodiments, each ball injector may carry up to about 250 perforation ball sealers. In embodiments, the deployment tool may be installed in any suitable manner. In some embodiments, the deployment tool may be installed in a high-pressure line at the wellhead, between a pressure pump and wellbore 10, thus, without limitation, allowing for the perforation ball sealers to be pumped into wellbore 10 along with the pressurized fluid. It is to be understood that any suitable pressurized fluid may be used (e.g. water, fracturing fluid, or acidizing fluid). The perforation ball sealers may be pumped into wellbore 10 at any desired rate. In some embodiments, the rate may be between about 4 barrels/min and about 100 barrels/min, or alternatively between about 30 barrels/min and about 100 barrels/minute, or further alternatively between about 60 barrels/min and about 70 barrels/minute. During deployment, the perforation ball sealers typically follow the path of least resistance and as a result may gradually plug perforations 20 in wellbore 10. In embodiments, the perforation ball sealers may be pumped into wellbore 10 until substantially all perforations 20 of perforated sections 18 are successfully plugged.
In embodiments, perforations 20 may be present downhole at any suitable depth and may lead to fractures disposed in reservoir 12 that may be present from previous well stimulation. Although not fully illustrated, wellbore 10 may comprise any number of perforated sections 18, measuring at any suitable length, and comprising any suitable number of perforations 20. In some embodiments, wellbore 10 may comprise perforated section 18 measuring up to 5 miles long and a total number of perforations 20 numbering between about 1,000 and about 4,000, or alternatively between about 1,000 and about 2,000.
In embodiments, the pressure within wellbore 10 may be monitored throughout the deployment of bridging material 11. During deployment, a particular pressure signature within wellbore 10 may indicate that substantially all perforations 20 have been successfully sealed. In embodiments, this particular pressure signature may vary between wells depending on the well's burst pressure. In an embodiment, the pressure signature indicating successful sealing of wellbore 10 may be between about 25% and about 80% of the well's burst pressure, or alternatively between about 30% and about 80%, or further alternatively between about 40% and about 80%, or further alternatively between about 60% and about 80%. In some embodiments, the pressure signature indicating successful sealing of wellbore 10 may be between about 30% and about 40% of the well's burst pressure. Without limitation, once this particular pressure signature is achieved, an operator's ability to deploy more bridging material 11 may be significantly restricted. In an embodiment, once the desired particular pressure signature is achieved, the deployment of bridging material 11 is halted.
In some embodiments, a particulate bridging material may be injected following the injection of bridging material 11. The particulate bridging material may be any suitable particulate material capable of filling any gaps present between bridging material 11, thus enforcing the seal created by bridging material 11. In embodiments, the particulate bridging material may be any substantially non-degradable material such as, without limitation, sand, gravel, cementitious material, the like, or any combinations thereof. Any suitable cementitious material may be used such as, without limitation, hydraulically-set cementitious material. In embodiments, the particulate bridging material may be a buoyant material and, in some embodiments, the particulate bridging material may be a fine material.
In some embodiments, a packer may be run and set at the bottom of wellbore 10 in order to facilitate the sealing process. The packer may be disposed at any point during the sealing process such as before or after bridging material 11 has been injected, or before or after the particulate bridging material has been injected.
In addition to these procedures, some embodiments of wellbore 10 having been successfully sealed may be cleaned out before completion operations may commence. In some embodiments, the sealing process may result in bridging material 11 and/or the particulate bridging material obstructing the inside of wellbore 10. As such, a drill string, scraper, or the like, may be run into wellbore 10 to clear out any obstructions. Once substantially clear, wellbore 10 may once again allow for various completion operations to be performed on the well.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20090255674 | Boney | Oct 2009 | A1 |
20170114624 | Ely | Apr 2017 | A1 |
20170335651 | Watson | Nov 2017 | A1 |
20180245439 | Entchev | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20220154546 A1 | May 2022 | US |