The present invention relates generally to use of CAD-CAM methodologies for installing dental implants. More particularly, the present invention relates to a method for pre-operative visualization of the location and positions of instrumentation that will be used with a surgical guide in placing a dental implant.
The dental restoration of a partially or wholly edentulous patient with artificial dentition is typically done in two stages. In the first stage, an incision is made through the gingiva to expose the underlying bone. After a series of drill bits creates an osteotomy in the bone, a dental implant is placed in the jawbone for integration. The dental implant generally includes a threaded bore to receive a retaining screw holding mating components therein. During the first stage, the gum tissue overlying the implant is sutured and heals as the osseointegration process continues.
Once the osseointegration process is complete, the second stage is initiated. Here, the gum tissue is re-opened to expose the end of the dental implant. A healing component or healing abutment is fastened to the exposed end of the dental implant to allow the gum tissue to heal there around. Preferably, the gum tissue heals such that the aperture that remains generally approximates the size and contour of the aperture that existed around the natural tooth that is being replaced. To accomplish this, the healing abutment attached to the exposed end of the dental implant has the same general contour as the gingival portion of the natural tooth being replaced.
During the typical second stage of dental restoration, the healing abutment is removed and an impression coping is fitted onto the exposed end of the implant. This allows an impression of the specific region of the patient's mouth to be taken so that an artificial tooth is accurately constructed. After these processes, a dental laboratory creates a prosthesis to be permanently secured to the dental implant from the impression that was made.
In addition to the more traditional system for placing dental implants described above, some systems use guided placement of the dental implants. In these situations, a surgical plan is developed for the patient that will include the location and orientation of the implants to be installed by a surgical guide. Once the surgical plan is known, the surgical guide can be developed and, eventually, placed in the patient's mouth at the known location. The surgical guide includes openings for providing the exact placement of the drill bits used to create the osteotomy. Once the osteotomy is completed, the surgical guide may permit the dental implant to be placed through the same opening and enter the osteotomy that was guided by the surgical guide.
Surgical guides can be created by the use of a CT-scan of the patient's mouth. The CT-scan provides enough detail to develop the surgical guide by use of various methods. For example, a CT-scan can provide the details of the patient's gum tissue and/or remaining teeth so that the surgical guide can be developed based on computer-aided design (CAD) and computer-aided manufacturing (CAM). One example of the use of a CT-scan is disclosed in U.S. Patent Publication No. 2006/0093988, which is herein incorporated by reference in its entirety. This publication also describes the use of various tubes that can be placed within the surgical guide to receive the drill bits and implants.
However, some problems may occur with the development and manufacturing of the surgical guide. For example, the surgical plan may require the use of a certain sized implant, dental drill, or other components that may not fit well in the patient's mouth due to the opposing (i.e., upper or lower) teeth and/or gum tissue in the patient's mouth. Thus, the clinician may be disappointed because of the considerable amount of time and effort in planning the case, only to need a revised plan and possibly a new surgical guide. The patient, of course, is also disappointed because he or she did not receive what was expected in that visit (possibly a temporary prosthesis) and will be forced to return an additional day to complete the project.
As such, a need exists to develop an improved CAD-CAM related methodology for developing a surgical plan and a surgical guide that is used in accordance with the surgical plan.
In one aspect, the present invention is a method of manufacturing a surgical guide to be placed in a patient's mouth, comprising scanning a patient's mouth to obtain surgical-region scan data in a surgical region at which at least one dental implant is to be located, scanning a patient's mouth in the opened position to acquire dental conditions opposite from the surgical region so as to obtain opposing-condition scan data, and developing a virtual model of the patient's mouth using the surgical-region scan data and the opposing-condition scan data. The method further includes developing, with the use of the virtual model, a surgical plan that includes the location of the at least one dental implant to be placed in the mouth of the patient, developing a virtual surgical guide based on the location of the at least one dental implant and the surgical-region scan data, and checking the dimensions of instrumentation to be used with the surgical guide to ensure the instrumentation will fit within the patient's mouth by use of the opposing-condition scan data. After the checking step, the method includes obtaining final surgical-guide manufacturing information based on the virtual model, and manufacturing the surgical guide based on the final surgical-model manufacturing information.
In another aspect, a method of manufacturing a surgical guide to be placed in a patient's mouth, comprises developing a virtual model of the patient's mouth using scan data from the patient's mouth, and developing, with the use of the virtual model, a surgical plan that includes the location of multiple dental implants to be placed in the mouth of the patient. The surgical plan includes a surgical protocol of instrumentation to be used to install the multiple dental implants. The method further includes developing a virtual surgical guide based on the surgical plan and, by use of opened-mouth scan data from an opened-mouth condition from the patient's mouth, determining an available dimension from the virtual surgical guide to dental structures that are opposing each of the multiple dental implants. In response to the available dimensions being less than a dimension for the instrumentation to be used with each of the multiple dental implants, the method includes altering the surgical plan, obtaining final surgical-guide manufacturing information based on the virtual model after the altering, and manufacturing the surgical guide based on the final surgical-model manufacturing information.
According to a further aspect of the invention, a method of developing a surgical guide to be placed in a patient's mouth comprises developing, with the use of a virtual model from the patient's mouth, a surgical plan that includes the location of multiple dental implants to be placed in the mouth of the patient. The surgical plan includes a surgical protocol of instrumentation to be used to install the multiple dental implants. The method further includes developing a virtual surgical guide based on the surgical plan, and by use of opened-mouth scan data from an opened-mouth condition from the patient's mouth, determining an available dimension from the virtual surgical guide to dental structures that are opposing each of the multiple dental implants. Further, the method includes comparing the available dimensions to dimensions for the instrumentation, and altering at least one of (i) the instrumentation, (ii) the virtual surgical guide, (iii) the implant size, and/or (iv) the implant location in response to the dimensions for the instrumentation being greater than the available dimensions.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The first scan 10 of the patient's mouth is useful in developing a surgical plan for the patient. When considering a dental surgical plan for a specific patient, the location and orientation of the implants relative to the surface of the gingival tissue, remaining teeth, and the underlying bone is important. Additionally, the maximum depth of the distal end of the implant within the bone is also important to the surgical plan, so as to avoid the sinus cavity and mandibular canal. As will be discussed in more detail below, the surgical plan will dictate the development of the surgical guide that fits snugly onto the surface of the tissue by having a negative impression that incorporates the details of the tissue surface in the patient's mouth. By the term “tissue” in the present specification, it is understood that tissue can be hard tissue (such as bone tissue or teeth) and soft tissue (such as the gingival tissue).
Based on the virtual model 30, the height dimension between the top of the virtual surgical guide 50 and the opposing dental structures (in this case, teeth) can be easily determined. As shown, the height dimensions H1, H2, H3 and H4 are provided for four openings 52 in the virtual surgical guide 50 and generally correspond to the maximum height for instrumentation that will be permitted in the mouth of this particular patient due to the second scan 20 from
As an example, a virtual model 30 may include a hand depiction 60 of the clinician and, more importantly, a virtual drill bit 65 attached to a virtual hand piece 67 that may be needed for drilling the osteotomy for the implant to be inserted through the openings 52 corresponding to height dimension H3. If the height dimension H3 is less than the length of the instrumentation necessary to complete the implant installation on the virtual model, then alterations must be made to be surgical plan so that the instrumentation will fit within the patient's mouth at each surgical location. Examples of such alterations may include (i) changes to the size of the implant or the implant mount, (ii) changes to the location (e.g., angular orientation and/or position) of the implant in the bone, (iii) changes to the surgical guide, and/or (iv) changes to the instrumentation that is to be used for a certain implant.
The surgical planning software may utilize different points of reference other than the exterior surface of the virtual surgical guide 50 when comparing the dimensions. For example, the surgical planning software may simply place the master tubes (see
When determining whether the instrumentation will fit for each implant, the software program may simply choose the required instrument having the longest length (e.g., longest drill bit) or combination of instruments having the longest total length (e.g., implant, implant mount, surgical hand piece). If the instrument having the longest length will fit into the patient's mouth for that particular implant site, then all remaining instruments for that particular implant site should fit as well. As used herein, it should be understood that “instrument” and “instrumentation” can mean a single component (e.g. drill bit) or multiple components that are coupled together (e.g., driver plus drill bit, or implant, implant mount and surgical hand piece).
Because the surgical plan involves the placement of the implant 70 at a certain depth below the surgical guide, the implant mount 80 is provided in various lengths. In actual surgery, the depth of penetration of the combination of the implant and the implant mount is limited by the surgical guide and, specifically, the master tubes surrounding the openings in the surgical guide that engage the flange on the implant mount, as is discussed below. Accordingly, as just one example of an alteration of the surgical plan, if the combined height of the implant 70 and its associated implant mount 80 exceeds the maximum height dimension (e.g., H3), the implant mount 80 may be selected to have a shorter length such that the top of the implant 70 does not penetrate as deep into the bone as would occur with the originally selected implant mount.
As can be seen, the actual surgical guide 110 and the image of virtual surgical guide 50 on the display 30 may have a slightly different appearance because the virtual surgical guide 50 was only for determining the available dimensions. In other words, the virtual surgical guide 50 is more of a schematic illustration for purposes of determining the available dimensions. Whereas the flat surfaces 122 on the actual surgical guide 110 are variables chosen to accommodate the different lengths of the implant amounts that are available for attachment to a specific dental implant, the actual locations of the flat surfaces 122 on the virtual model can be accounted for in the dimensional comparison. Alternatively, the present invention contemplates the display of a virtual surgical guide 50 on the display 30 that is identical to the structure of the actual surgical guide 110.
Further, while the surgical guide 110 has been described relative to the use of a surgical plan with eight dental implant, the present invention is also useful for developing and installing single implants. Thus, the surgical guide 110 may be smaller such that it only covers a limited portion of the dental arch. The surgical guide 110 could be used for installing implants that support a multi-tooth prosthetic device or a full denture.
In
The upper portion of the surgical kit 150 in
The surgical kit 150 also includes guide-tube tools 190 that fit within the master tubes 120 to help receive the tools and implant. Each of the guide-tube tools 190 includes a handle region to be manually grasped. At both ends of the guide-tube tools 190, there are guide tubes that have a bushing-like structure. The purpose of the guide tubes 190 is for mating within the master tube 120 of the surgical guide 110 and, once properly seated in the master tube 120, to receive one or more of the drill bits 165 used to create the osteotomy. Because creation of the osteotomy pursuant to the surgical plan calls for a sequence of several drill bits 165 having different diameters, the guide-tube tools 190 have different diameters to engage the drill bits 165 in a relatively tight fashion to prevent the drill bit from drilling at the wrong angle. Thus, for each diameter of a drill bit 165, there is a corresponding guide-tube tool 190. Further, because the master tubes 120 in the surgical guide 110 may come in different sizes to receive different sized implants, the guide-tube tools 190 may have different outer diameters for mating with the different sized mater tubes 120. As an example, the lower two guide-tube tools 190 may only be used with a master tube 120 with a 5.1 mm inner diameter.
The surgical kit 150 further includes tissue punches 202 for removal of a known size of gingival tissue from beneath the openings in the surgical guide 110. The surgical kit 150 also includes starter drills 204, such as drill bits for creating a pilot hole and, possibly, countersinks for creating a certain shape to the opening of the osteotomy. The surgical kit 150 may include other types of tools such as implant holders 208 for holding the implants as they are mated with the correct implant mounts 180 and wrenches/drivers 206 for engaging the driving element of the implant mount 180. The surgical kit 150 is preferably made of any material that allows it to be sterilized via an autoclave.
Based on the data from the second CT scan of step 304, the instrumentation suggested for use in accordance with the surgical plan can be compared against the available dimensions within the patient's mouth. Thus, at step 308, the dimensions of the instrumentation suggested for use with each implant in the surgical plan (according to system parameters) are compared against the available dimensions to ensure that there will be no spatial problems encountered in the patient's mouth. Accordingly, at step 310, if spatial problems are encountered, the surgical plan must be altered to ensure that no spatial problems will be encountered during the actual surgery in the patient's mouth. As such, at step 312, for any implant that has encountered a problem, the alterations related to the implant or the suggested instrumentation can occur. Examples of such alterations may include (i) changes to the size of the implant or the implant mount, (ii) changes to the location (e.g., angular orientation and/or position) of the implant in the bone, (iii) changes to the surgical guide, and/or (iv) changes to the instrumentation that is to be used for a certain implant.
Once the alteration of the surgical plan at step 312 has occurred, the information from the second CT scan is again used to ensure that the newly suggested instrumentation (based on the alteration of the surgical plan) will not cause spatial problems in the patient's mouth (i.e., step 308 is repeated). If no spatial problems are encountered at step 310, then manufacturing data for the virtual surgical guide can be developed for use in manufacturing the actual surgical guide. Once the actual surgical guide is manufactured, it can then be delivered to the clinician for placement in the patient's mouth and for conducting surgery in accordance with the surgical plan derived from the virtual model.
Considering the various alterations that are possible at step 312, it should be noted that some of those possible alterations inherently involve a change to the virtual surgical guide 50. For example, changes to the position and/or orientation of the virtual implant 70 will also include changes to the openings corresponding to the master tubes 120 in the virtual surgical guide 50. On the other hand, some alterations may not require a change to the virtual surgical guide 50. For example, if a shorter implant or a shorter implant mount is selected as an alteration, no alterations to the virtual surgical guide 70 may be needed. In a further possible arrangement, only an alteration to the virtual surgical guide may be necessary. For example, a spatial problem may be so minor that simply altering the thickness of the surgical guide may be enough to alleviate the problem. Or, changing the angle of an opening in the virtual surgical guide may be enough to alleviate the problem.
In an alternative embodiment, the present invention contemplates the use of only a single scan with the mouth in the opened position. In other words, the single scan gathers enough information about the implant installation site, while also providing enough information about the opened-mouth condition that allows for the determination of spatial limitations. Thus, when considering
If a single scan is used, then a need exists for providing a bite registration between the upper jaw conditions and the lower jaw conditions. One way to accomplish this task is by the use of a scanning appliance that has been modified to include material for the bite registration. The scanning appliance for the patient may include a layer of barium sulfate of the modeled teeth structures such that the teeth structures are identified by the CT scan. Next, impression material is added to the region of the scanning appliance at which the bite registration for the opposing teeth is expected. The patient would then close his or her mouth to create the bite registration in the impression material on the scanning appliance. Once hardened, the impression material is then provided with a layer of barium sulfate (or other material that is identifiable by the scan) at a different concentration level so that the patient's bite registration can be independently identified in the single CT scan and distinguished from the teeth structure on the scanning appliance. More information about CT-scanning and the use of scanning appliances can be found in the product brochure entitled “Simplant® SurgiGuide Cookbook” from Materialise US Clinical Services, Inc., Glen Burnie, Md., which is herein incorporated by reference in its entirety. After the patient undergoes the single scan with the mouth in the opened position using the scanning device having the bite registration, a virtual model of the patient's mouth in the closed position can be created by merging the upper and lower conditions with a shape-matching algorithm. The surgical plan can be developed, and the instrumentation to be used in the surgical plan can be checked for spatial constraints, as described above. As such, the present invention contemplates the use of a scanning appliance that has been modified to include a representation of a bite registration.
It should also be noted that present invention contemplates the use of virtual modeling to develop a surgical plan that does not require the use of a surgical guide. In other words, the CT-scans (or CT-scan) are used by the clinician to develop a virtual model indicating appropriate locations for the implants based on the conditions in the patient's mouth. While no surgical guide is developed to dictate the exact angular position and location of each implant in the patient's mouth, the virtual model is still used for pre-operative visualization to determine whether instrumentation will fit into the patient's mouth to place the implants. If the spatial constraints indicate that instrumentation will not fit, then changes to the instrumentation or the surgical plan may be needed.
Similarly, the present invention contemplates the use of virtual modeling to develop a non-dental implant surgical plan that measures whether instrumentation will fit within the patient's mouth to accomplish the non-dental implant surgical plan. Again, the virtual model is used for pre-operative visualization to determine whether instrumentation will fit into the patient's mouth when performing the non-dental implant surgical plan.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
This application is related to and claims priority to U.S. Provisional Patent Application Ser. No. 61/124,331 filed Apr. 16, 2008, titled “Method For Pre-Operative Visualization Of Instrumentation Used With A Surgical Guide For Dental Implant Placement” which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3906634 | Aspel | Sep 1975 | A |
3919772 | Lenczycki | Nov 1975 | A |
3958471 | Muller | May 1976 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4056585 | Waltke | Nov 1977 | A |
4086701 | Kawahara et al. | May 1978 | A |
4177562 | Miller et al. | Dec 1979 | A |
4294544 | Altschuler et al. | Oct 1981 | A |
4306862 | Knox | Dec 1981 | A |
4325373 | Slivenko et al. | Apr 1982 | A |
4341312 | Scholer | Jul 1982 | A |
4364381 | Sher | Dec 1982 | A |
4439152 | Small | Mar 1984 | A |
4543953 | Slocum et al. | Oct 1985 | A |
4547157 | Driskell | Oct 1985 | A |
4571180 | Kulick | Feb 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4624673 | Meyer | Nov 1986 | A |
4663720 | Duret et al. | May 1987 | A |
4713004 | Linkow et al. | Dec 1987 | A |
4756689 | Lundgren et al. | Jul 1988 | A |
4758161 | Niznick | Jul 1988 | A |
4767331 | Hoe | Aug 1988 | A |
4772204 | Soderberg | Sep 1988 | A |
4821200 | Oberg | Apr 1989 | A |
4842518 | Linkow et al. | Jun 1989 | A |
4850870 | Lazzara et al. | Jul 1989 | A |
4850873 | Lazzara et al. | Jul 1989 | A |
4854872 | Detsch | Aug 1989 | A |
4856994 | Lazzara et al. | Aug 1989 | A |
4872839 | Branjnovic | Oct 1989 | A |
4906191 | Soderberg | Mar 1990 | A |
4906420 | Brajnovic et al. | Mar 1990 | A |
4931016 | Sillard | Jun 1990 | A |
4935635 | O'harra | Jun 1990 | A |
4961674 | Wang et al. | Oct 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4986753 | Sellers | Jan 1991 | A |
4988297 | Lazzara et al. | Jan 1991 | A |
4988298 | Lazzara | Jan 1991 | A |
4998881 | Lauks | Mar 1991 | A |
5000685 | Brajnovic | Mar 1991 | A |
5006069 | Lazzara et al. | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5015186 | Detsch | May 1991 | A |
5030096 | Hurson et al. | Jul 1991 | A |
5035619 | Daftary | Jul 1991 | A |
5040982 | Stefan-Dogar | Aug 1991 | A |
5040983 | Binon | Aug 1991 | A |
5064375 | Jorneus | Nov 1991 | A |
5071351 | Green, Jr. et al. | Dec 1991 | A |
5073111 | Daftary | Dec 1991 | A |
5087200 | Branjovic et al. | Feb 1992 | A |
5100323 | Friedman et al. | Mar 1992 | A |
5104318 | Piche | Apr 1992 | A |
5106300 | Voitik | Apr 1992 | A |
5122059 | Durr et al. | Jun 1992 | A |
5125839 | Ingber et al. | Jun 1992 | A |
5125841 | Carlsson et al. | Jun 1992 | A |
5133660 | Fenick | Jul 1992 | A |
5135395 | Marlin | Aug 1992 | A |
5145371 | Jorneus | Sep 1992 | A |
5145372 | Daftary et al. | Sep 1992 | A |
5176516 | Koizumi | Jan 1993 | A |
5188800 | Green et al. | Feb 1993 | A |
5195892 | Gersberg | Mar 1993 | A |
5205745 | Kamiya et al. | Apr 1993 | A |
5209659 | Friedman et al. | May 1993 | A |
5209666 | Balfour et al. | May 1993 | A |
5213502 | Daftary | May 1993 | A |
5221204 | Kruger et al. | Jun 1993 | A |
5237998 | Duret et al. | Aug 1993 | A |
5246370 | Coatoam | Sep 1993 | A |
5257184 | Mushabac | Oct 1993 | A |
5281140 | Niznick | Jan 1994 | A |
5286195 | Clostermann | Feb 1994 | A |
5286196 | Brajnovic et al. | Feb 1994 | A |
5292252 | Nickerson et al. | Mar 1994 | A |
5297963 | Daftary | Mar 1994 | A |
5302125 | Kownacki et al. | Apr 1994 | A |
5312254 | Rosenlicht | May 1994 | A |
5312409 | McLauglin et al. | May 1994 | A |
5316476 | Krauser | May 1994 | A |
5320529 | Pompa | Jun 1994 | A |
5328371 | Hund et al. | Jul 1994 | A |
5334024 | Niznick | Aug 1994 | A |
5336090 | Wilson et al. | Aug 1994 | A |
5338196 | Beaty et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344457 | Pilliar et al. | Sep 1994 | A |
5350297 | Cohen | Sep 1994 | A |
5359511 | Schroeder et al. | Oct 1994 | A |
5362234 | Salazar et al. | Nov 1994 | A |
5362235 | Daftary | Nov 1994 | A |
5368483 | Sutter | Nov 1994 | A |
5370692 | Fink et al. | Dec 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
5386292 | Massen et al. | Jan 1995 | A |
5413481 | Goppel et al. | May 1995 | A |
5417569 | Perisse | May 1995 | A |
5417570 | Zuest et al. | May 1995 | A |
5419702 | Beaty et al. | May 1995 | A |
5431567 | Daftary | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5440393 | Wenz | Aug 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5458488 | Chalifoux | Oct 1995 | A |
5476382 | Daftary | Dec 1995 | A |
5476383 | Beaty et al. | Dec 1995 | A |
5492471 | Singer | Feb 1996 | A |
5516288 | Sichler et al. | May 1996 | A |
5527182 | Willoughby | Jun 1996 | A |
5533898 | Mena | Jul 1996 | A |
5538426 | Harding et al. | Jul 1996 | A |
5547377 | Daftary | Aug 1996 | A |
5556278 | Meitner | Sep 1996 | A |
5564921 | Marlin | Oct 1996 | A |
5564924 | Kwan | Oct 1996 | A |
5569578 | Mushabac | Oct 1996 | A |
5575656 | Hajjar | Nov 1996 | A |
5580244 | White | Dec 1996 | A |
5580246 | Fried et al. | Dec 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5613832 | Su | Mar 1997 | A |
5613852 | Bavitz | Mar 1997 | A |
5630717 | Zuest et al. | May 1997 | A |
5636986 | Pezeshkian | Jun 1997 | A |
5651675 | Singer | Jul 1997 | A |
5652709 | Andersson et al. | Jul 1997 | A |
5658147 | Phimmasone | Aug 1997 | A |
5662476 | Ingber et al. | Sep 1997 | A |
5674069 | Osorio | Oct 1997 | A |
5674071 | Beaty et al. | Oct 1997 | A |
5674073 | Ingber et al. | Oct 1997 | A |
5681167 | Lazarof | Oct 1997 | A |
5685715 | Beaty et al. | Nov 1997 | A |
5688283 | Knapp | Nov 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5718579 | Kennedy | Feb 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5733124 | Kwan | Mar 1998 | A |
5741215 | D'urso | Apr 1998 | A |
5743916 | Greenberg et al. | Apr 1998 | A |
5759036 | Hinds | Jun 1998 | A |
5762125 | Mastrorio | Jun 1998 | A |
5762500 | Lazarof | Jun 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769636 | Di Sario | Jun 1998 | A |
5791902 | Lauks | Aug 1998 | A |
5800168 | Cascione et al. | Sep 1998 | A |
5813858 | Singer | Sep 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5842859 | Palacci | Dec 1998 | A |
5846079 | Knode | Dec 1998 | A |
5851115 | Carlsson et al. | Dec 1998 | A |
5857853 | Van Nifterick et al. | Jan 1999 | A |
5871358 | Ingber et al. | Feb 1999 | A |
5873722 | Lazzara et al. | Feb 1999 | A |
5876204 | Day et al. | Mar 1999 | A |
5885078 | Cagna et al. | Mar 1999 | A |
5888034 | Greenberg | Mar 1999 | A |
5904483 | Wade | May 1999 | A |
5915962 | Rosenlicht | Jun 1999 | A |
5927982 | Kruger | Jul 1999 | A |
5938443 | Lazzara et al. | Aug 1999 | A |
5954769 | Rosenlicht | Sep 1999 | A |
5964591 | Beaty et al. | Oct 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5984681 | Huang | Nov 1999 | A |
5989025 | Conley | Nov 1999 | A |
5989029 | Osorio et al. | Nov 1999 | A |
5989258 | Hattori | Nov 1999 | A |
5997681 | Kinzie | Dec 1999 | A |
6000939 | Ray et al. | Dec 1999 | A |
6008905 | Breton et al. | Dec 1999 | A |
6068479 | Kwan | May 2000 | A |
6099311 | Wagner et al. | Aug 2000 | A |
6099313 | Dorken et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6120293 | Lazzara et al. | Sep 2000 | A |
6129548 | Lazzara et al. | Oct 2000 | A |
6135773 | Lazzara | Oct 2000 | A |
6142782 | Lazarof | Nov 2000 | A |
6174168 | Dehoff et al. | Jan 2001 | B1 |
6175413 | Lucas | Jan 2001 | B1 |
6190169 | Bluemli et al. | Feb 2001 | B1 |
6197410 | Vallittu et al. | Mar 2001 | B1 |
6200125 | Akutagawa | Mar 2001 | B1 |
6206693 | Hultgren | Mar 2001 | B1 |
6210162 | Chishti et al. | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227859 | Sutter | May 2001 | B1 |
6283753 | Willoughby | Sep 2001 | B1 |
6287119 | Van Nifterick et al. | Sep 2001 | B1 |
6296483 | Champleboux | Oct 2001 | B1 |
6319000 | Branemark | Nov 2001 | B1 |
6322728 | Brodkin et al. | Nov 2001 | B1 |
6382975 | Poirier | May 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6488503 | Lichkus et al. | Dec 2002 | B1 |
6497574 | Miller | Dec 2002 | B1 |
6540784 | Barlow et al. | Apr 2003 | B2 |
6568936 | Macdougald et al. | May 2003 | B2 |
6575751 | Lehmann et al. | Jun 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6610079 | Li et al. | Aug 2003 | B1 |
6619958 | Beaty et al. | Sep 2003 | B2 |
6629840 | Chishti et al. | Oct 2003 | B2 |
6634883 | Ranalli | Oct 2003 | B2 |
6648640 | Rubbert et al. | Nov 2003 | B2 |
6671539 | Gateno et al. | Dec 2003 | B2 |
6672870 | Knapp | Jan 2004 | B2 |
6688887 | Morgan | Feb 2004 | B2 |
6691764 | Embert et al. | Feb 2004 | B2 |
6743491 | Cirincione et al. | Jun 2004 | B2 |
6755652 | Nanni | Jun 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6776614 | Wiechmann et al. | Aug 2004 | B2 |
6783359 | Kapit | Aug 2004 | B2 |
6790040 | Amber et al. | Sep 2004 | B2 |
6793491 | Klein et al. | Sep 2004 | B2 |
6808659 | Schulman et al. | Oct 2004 | B2 |
6814575 | Poirier | Nov 2004 | B2 |
6821462 | Schulman et al. | Nov 2004 | B2 |
6829498 | Kipke et al. | Dec 2004 | B2 |
D503804 | Phleps et al. | Apr 2005 | S |
6882894 | Durbin et al. | Apr 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6902401 | Jornéus et al. | Jun 2005 | B2 |
6913463 | Blacklock | Jul 2005 | B2 |
6926442 | Stöckl | Aug 2005 | B2 |
6926525 | Rønvig et al. | Aug 2005 | B1 |
6939489 | Moszner et al. | Sep 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6953383 | Rothenberger | Oct 2005 | B2 |
6957118 | Kopelman et al. | Oct 2005 | B2 |
6966772 | Malin et al. | Nov 2005 | B2 |
6970760 | Wolf et al. | Nov 2005 | B2 |
6971877 | Harter | Dec 2005 | B2 |
6994549 | Brodkin et al. | Feb 2006 | B2 |
7010150 | Pfeiffer et al. | Mar 2006 | B1 |
7010153 | Zimmermann | Mar 2006 | B2 |
7012988 | Adler et al. | Mar 2006 | B2 |
7018207 | Prestipino | Mar 2006 | B2 |
7021934 | Aravena | Apr 2006 | B2 |
7029275 | Rubbert et al. | Apr 2006 | B2 |
7044735 | Malin | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7056472 | Behringer | Jun 2006 | B1 |
7059856 | Marotta | Jun 2006 | B2 |
7066736 | Kumar et al. | Jun 2006 | B2 |
7084868 | Farag et al. | Aug 2006 | B2 |
7086860 | Schuman et al. | Aug 2006 | B2 |
7097451 | Tang | Aug 2006 | B2 |
7104795 | Dadi | Sep 2006 | B2 |
7110844 | Kopelman et al. | Sep 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7118375 | Durbin et al. | Oct 2006 | B2 |
D532991 | Gozzi Daniele et al. | Dec 2006 | S |
7153132 | Tedesco | Dec 2006 | B2 |
7153135 | Thomas | Dec 2006 | B1 |
7163443 | Basler et al. | Jan 2007 | B2 |
7175434 | Brajnovic | Feb 2007 | B2 |
7175435 | Andersson et al. | Feb 2007 | B2 |
7178731 | Basler | Feb 2007 | B2 |
7214062 | Morgan | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7228191 | Hofmeister et al. | Jun 2007 | B2 |
7236842 | Kopelman et al. | Jun 2007 | B2 |
7281927 | Marotta | Oct 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7303420 | Huch et al. | Dec 2007 | B2 |
7319529 | Babayoff | Jan 2008 | B2 |
7322746 | Beckhaus et al. | Jan 2008 | B2 |
7322824 | Schmitt | Jan 2008 | B2 |
7324680 | Zimmermann | Jan 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7333874 | Taub et al. | Feb 2008 | B2 |
7335876 | Eiff et al. | Feb 2008 | B2 |
D565184 | Royzen | Mar 2008 | S |
7367801 | Saliger | May 2008 | B2 |
7379584 | Rubbert et al. | May 2008 | B2 |
D571471 | Stöckl | Jun 2008 | S |
7381191 | Fallah | Jun 2008 | B2 |
7383094 | Kopelman et al. | Jun 2008 | B2 |
D575747 | Abramovich et al. | Aug 2008 | S |
7421608 | Schron | Sep 2008 | B2 |
7429175 | Gittelson | Sep 2008 | B2 |
7435088 | Brajnovic | Oct 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7481647 | Sambu et al. | Jan 2009 | B2 |
7488174 | Kopelman et al. | Feb 2009 | B2 |
7497619 | Stoeckl | Mar 2009 | B2 |
7497983 | Khan et al. | Mar 2009 | B2 |
7520747 | Stonisch | Apr 2009 | B2 |
7522764 | Schwotzer | Apr 2009 | B2 |
7534266 | Kluger | May 2009 | B2 |
7536234 | Kopelman et al. | May 2009 | B2 |
7545372 | Kopelman et al. | Jun 2009 | B2 |
7551760 | Scharlack et al. | Jun 2009 | B2 |
7555403 | Kopelman et al. | Jun 2009 | B2 |
7556496 | Cinader, Jr. et al. | Jul 2009 | B2 |
7559692 | Beckhaus et al. | Jul 2009 | B2 |
7563397 | Schulman et al. | Jul 2009 | B2 |
D597769 | Richter | Aug 2009 | S |
7572058 | Pruss et al. | Aug 2009 | B2 |
7572125 | Brajnovic | Aug 2009 | B2 |
7574025 | Feldman | Aug 2009 | B2 |
7578673 | Wen et al. | Aug 2009 | B2 |
7580502 | Dalpiaz et al. | Aug 2009 | B2 |
7581951 | Lehmann et al. | Sep 2009 | B2 |
7582855 | Pfeiffer | Sep 2009 | B2 |
7628537 | Schulze-ganzlin | Dec 2009 | B2 |
7632097 | De Clerck | Dec 2009 | B2 |
7653455 | Cinader, Jr. | Jan 2010 | B2 |
7654823 | Dadi | Feb 2010 | B2 |
7655586 | Brodkin et al. | Feb 2010 | B1 |
7658610 | Knopp | Feb 2010 | B2 |
7661956 | Powell et al. | Feb 2010 | B2 |
7665989 | Brajnovic et al. | Feb 2010 | B2 |
7679723 | Schwotzer | Mar 2010 | B2 |
7687754 | Eiff et al. | Mar 2010 | B2 |
7689308 | Holzner et al. | Mar 2010 | B2 |
D614210 | Basler et al. | Apr 2010 | S |
7698014 | Dunne et al. | Apr 2010 | B2 |
7774084 | Cinader, Jr. | Aug 2010 | B2 |
7780907 | Schmidt et al. | Aug 2010 | B2 |
7785007 | Stoeckl | Aug 2010 | B2 |
7787132 | Körner et al. | Aug 2010 | B2 |
7796811 | Orth et al. | Sep 2010 | B2 |
7798708 | Erhardt et al. | Sep 2010 | B2 |
7801632 | Orth et al. | Sep 2010 | B2 |
7815371 | Schulze-ganzlin | Oct 2010 | B2 |
7824181 | Sers | Nov 2010 | B2 |
D629908 | Jerger et al. | Dec 2010 | S |
7855354 | Eiff et al. | Dec 2010 | B2 |
7865261 | Pfeiffer | Jan 2011 | B2 |
7876877 | Stockl | Jan 2011 | B2 |
7901209 | Saliger et al. | Mar 2011 | B2 |
7982731 | Orth et al. | Jul 2011 | B2 |
7985119 | Basler et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
8011927 | Berckmans, III | Sep 2011 | B2 |
8026943 | Weber et al. | Sep 2011 | B2 |
8038440 | Swaelens | Oct 2011 | B2 |
8047895 | Basler | Nov 2011 | B2 |
8057912 | Basler et al. | Nov 2011 | B2 |
8062034 | Hanisch et al. | Nov 2011 | B2 |
8083522 | Karkar et al. | Dec 2011 | B2 |
8105081 | Bavar | Jan 2012 | B2 |
8221121 | Berckmans, III et al. | Jul 2012 | B2 |
8414296 | Berckmans, III et al. | Apr 2013 | B2 |
8888488 | Berckmans, III et al. | Nov 2014 | B2 |
9795345 | Berckmans, III et al. | Oct 2017 | B2 |
20010008751 | Chishti et al. | Jul 2001 | A1 |
20010034010 | Macdougald et al. | Oct 2001 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020028418 | Farag et al. | Mar 2002 | A1 |
20020160337 | Klein et al. | Oct 2002 | A1 |
20020167100 | Moszner et al. | Nov 2002 | A1 |
20030130605 | Besek | Jul 2003 | A1 |
20030222366 | Stangel et al. | Dec 2003 | A1 |
20040029074 | Brajnovic | Feb 2004 | A1 |
20040048227 | Brajnovic | Mar 2004 | A1 |
20040219477 | Harter | Nov 2004 | A1 |
20040219479 | Malin | Nov 2004 | A1 |
20040219490 | Gartner et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20040259051 | Brajnovic | Dec 2004 | A1 |
20050023710 | Brodkin et al. | Feb 2005 | A1 |
20050056350 | Dolabdjian et al. | Mar 2005 | A1 |
20050070782 | Brodkin | Mar 2005 | A1 |
20050084144 | Feldman | Apr 2005 | A1 |
20050100861 | Choi et al. | May 2005 | A1 |
20050106531 | Tang | May 2005 | A1 |
20050170311 | Tardieu et al. | Aug 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20050277089 | Brajnovic | Dec 2005 | A1 |
20050277090 | Anderson et al. | Dec 2005 | A1 |
20050277091 | Andersson et al. | Dec 2005 | A1 |
20050282106 | Sussman et al. | Dec 2005 | A1 |
20050283065 | Babayoff | Dec 2005 | A1 |
20060006561 | Brajnovic | Jan 2006 | A1 |
20060008763 | Brajnovic | Jan 2006 | A1 |
20060008770 | Brajnovic et al. | Jan 2006 | A1 |
20060093988 | Swaelens et al. | May 2006 | A1 |
20060094951 | Dean et al. | May 2006 | A1 |
20060127848 | Sogo et al. | Jun 2006 | A1 |
20060210949 | Stoop | Sep 2006 | A1 |
20060263741 | Imgrund et al. | Nov 2006 | A1 |
20060281041 | Rubbert et al. | Dec 2006 | A1 |
20070015111 | Kopelman et al. | Jan 2007 | A1 |
20070031790 | Raby et al. | Feb 2007 | A1 |
20070065777 | Becker | Mar 2007 | A1 |
20070077532 | Harter | Apr 2007 | A1 |
20070092854 | Powell et al. | Apr 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070190481 | Schmitt | Aug 2007 | A1 |
20070211081 | Quadling et al. | Sep 2007 | A1 |
20070218426 | Quadling et al. | Sep 2007 | A1 |
20070269769 | Marchesi | Nov 2007 | A1 |
20070281277 | Brajnovic | Dec 2007 | A1 |
20080038692 | Andersson et al. | Feb 2008 | A1 |
20080044794 | Brajnovic | Feb 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080070181 | Abolfathi et al. | Mar 2008 | A1 |
20080085489 | Schmitt | Apr 2008 | A1 |
20080090210 | Brajnovic | Apr 2008 | A1 |
20080114371 | Kluger | May 2008 | A1 |
20080118895 | Brajnovic | May 2008 | A1 |
20080124676 | Marotta | May 2008 | A1 |
20080153060 | De Moyer | Jun 2008 | A1 |
20080153061 | Marcello | Jun 2008 | A1 |
20080153065 | Brajnovic et al. | Jun 2008 | A1 |
20080153069 | Holzner et al. | Jun 2008 | A1 |
20080176189 | Stonisch | Jul 2008 | A1 |
20080206714 | Schmitt | Aug 2008 | A1 |
20080241798 | Holzner et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080300716 | Kopelman et al. | Dec 2008 | A1 |
20090017418 | Gittelson | Jan 2009 | A1 |
20090026643 | Wiest et al. | Jan 2009 | A1 |
20090042167 | Van Der Zel | Feb 2009 | A1 |
20090081616 | Pfeiffer | Mar 2009 | A1 |
20090087817 | Jansen et al. | Apr 2009 | A1 |
20090092948 | Gantes | Apr 2009 | A1 |
20090098510 | Zhang | Apr 2009 | A1 |
20090098511 | Zhang | Apr 2009 | A1 |
20090123045 | Quadling et al. | May 2009 | A1 |
20090123887 | Brajnovic | May 2009 | A1 |
20090162813 | Glor | Jun 2009 | A1 |
20090187393 | Van Lierde | Jul 2009 | A1 |
20090220134 | Cahill et al. | Sep 2009 | A1 |
20090220916 | Fisker et al. | Sep 2009 | A1 |
20090220917 | Jensen | Sep 2009 | A1 |
20090239197 | Brajnovic | Sep 2009 | A1 |
20090239200 | Brajnovic et al. | Sep 2009 | A1 |
20090253097 | Brajnovic | Oct 2009 | A1 |
20090287332 | Adusumilli et al. | Nov 2009 | A1 |
20090298009 | Brajnovic | Dec 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090317763 | Brajnovic | Dec 2009 | A1 |
20090325122 | Brajnovic et al. | Dec 2009 | A1 |
20100009314 | Tardieu et al. | Jan 2010 | A1 |
20100028827 | Andersson et al. | Feb 2010 | A1 |
20100038807 | Brodkin et al. | Feb 2010 | A1 |
20100075275 | Brajnovic | Mar 2010 | A1 |
20100092904 | Esposti et al. | Apr 2010 | A1 |
20100173260 | Sogo et al. | Jul 2010 | A1 |
20100280798 | Pattijn et al. | Nov 2010 | A1 |
20100297574 | Llop | Nov 2010 | A1 |
20110008751 | Pettersson | Jan 2011 | A1 |
20110191081 | Malfliet et al. | Aug 2011 | A1 |
20110275032 | Tardieu et al. | Nov 2011 | A1 |
20110276159 | Chun | Nov 2011 | A1 |
20120010740 | Swaelens et al. | Jan 2012 | A1 |
20120164593 | Bavar | Jun 2012 | A1 |
20120164893 | Mitsuzuka et al. | Jun 2012 | A1 |
20150037756 | Berckmans, III et al. | Feb 2015 | A1 |
20180005377 | Alvarez | Jan 2018 | A1 |
20180008355 | Mozes | Jan 2018 | A1 |
20180140392 | Wismeijer | May 2018 | A1 |
20180344894 | Kay | Dec 2018 | A1 |
20200046474 | Kim | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
102232878 | May 2013 | CN |
10029256 | Nov 2000 | DE |
WO-1994026200 | Nov 1994 | WO |
WO-1999032045 | Jul 1999 | WO |
WO-2000008415 | Feb 2000 | WO |
WO-2001058379 | Aug 2001 | WO |
WO-2002053055 | Jul 2002 | WO |
WO-2003024352 | Mar 2003 | WO |
WO-2004030565 | Apr 2004 | WO |
WO-2004075771 | Sep 2004 | WO |
WO-2004087000 | Oct 2004 | WO |
WO-2004098435 | Nov 2004 | WO |
WO-2006014130 | Feb 2006 | WO |
WO-2006062459 | Jun 2006 | WO |
WO-2006082198 | Aug 2006 | WO |
WO-2007015140 | Feb 2007 | WO |
WO-2007033157 | Mar 2007 | WO |
WO-2007104842 | Sep 2007 | WO |
WO-2007129955 | Nov 2007 | WO |
WO-2008015718 | Feb 2008 | WO |
WO-2008057955 | May 2008 | WO |
WO-2008083857 | Jul 2008 | WO |
Entry |
---|
Authors Unknown, Scanning Protocol for SimPlantand SurgiGuides, Materialise, Jan. 9, 2006, 2 pages, obtained from http://web.archive.org/web/20060109223717/http://www.materialise.be/simplant/Scanprotocol_English.pdf on Feb. 29, 2020 (Year: 2006). |
Cheng, Ansgar C., Neo Tee-Khin, Chan Siew-Luen, Helena Lee, and Alvin G. Wee. “The management of a severely resorbed edentulous maxilla using a bone graft and a CAD/CAM-guided immediately loaded definitive implant prosthesis: a clinical report.” The Journal of Prosthetic Dentistry 99, No. 2 : 85-90 (Year: 2008). |
Tardieu PB, Vrielinck L, Escolano E, Henne M, Tardieu AL. Computer-assisted implant placement: scan template, SimPlant, SurgiGuide, and SAFE system. International Journal of Periodontics & Restorative Dentistry. Apr. 1, 2007;27(2) (Year: 2007). |
“U.S. Appl. No. 12/425,202, 312 Amendment filed Jul. 14, 2011”, 3 pgs. |
“U.S. Appl. No. 12/425,202, Non Final Office Action dated Oct. 22, 2010”, 12 pgs. |
“U.S. Appl. No. 12/425,202, Notice of Allowance dated Apr. 14, 2011”, 8 pgs. |
“U.S. Appl. No. 12/425,202, Response filed Jan. 24, 2011 to Non Final Office Action dated Oct. 22, 2010”, 17 pgs. |
“U.S. Appl. No. 13/179,609, Notice of Allowance dated Mar. 19, 2012”, 8 pgs. |
“U.S. Appl. No. 13/179,609, Preliminary Amendment filed Mar. 9, 2012”, 12 pgs. |
“U.S. Appl. No. 13/179,609, Preliminary Amendment filed Jul. 11, 2011”, 6 pgs. |
“U.S. Appl. No. 13/526,717, Notice of Allowance dated Jan. 16, 2013”, 11 pgs. |
“U.S. Appl. No. 13/526,717, Preliminary Amendment filed Jun. 19, 2012”, 10 pgs. |
“U.S. Appl. No. 13/786,957, Advisory Action dated Jun. 26, 2014”, 3 pgs. |
“U.S. Appl. No. 13/786,957, Examiner Interview Summary dated Apr. 1, 2014”, 3 pgs. |
“U.S. Appl. No. 13/786,957, Final Office Action dated Apr. 7, 2014”, 8 pgs. |
“U.S. Appl. No. 13/786,957, Non Final Office Action dated Oct. 7, 2013”, 11 pgs. |
“U.S. Appl. No. 13/786,957, Notice of Allowance dated Jul. 18, 2014”, 5 pgs. |
“U.S. Appl. No. 13/786,957, Preliminary Amendment filed Mar. 6, 2013”, 10 pgs. |
“U.S. Appl. No. 13/786,957, Response filed Jan. 7, 2014 to Non Final Office Action dated Oct. 7, 2013”, 9 pgs. |
“U.S. Appl. No. 13/786,957, Response filed Jun. 5, 2014 to Final Office Action dated Apr. 7, 2014”, 10 pgs. |
“U.S. Appl. No. 13/786,957, Response filed Jul. 7, 2014 to Advisory Action dated Jun. 26, 2014”, 6 pgs. |
“U.S. Appl. No. 14/516,089, Final Office Action dated Feb. 22, 2017”, 10 pgs. |
“U.S. Appl. No. 14/516,089, Non Final Office Action dated Jul. 1, 2016”, 18 pgs. |
“U.S. Appl. No. 14/516,089, Notice of Allowance dated Jun. 16, 2017”, 8 pgs. |
“U.S. Appl. No. 14/516,089, Preliminary Amendment filed Oct. 16, 2014”, 7 pgs. |
“U.S. Appl. No. 14/516,089, Response filed May 22, 2017 to Final Office Action dated Feb. 22, 2017”, 7 pgs. |
“U.S. Appl. No. 14/516,089, Response filed Dec. 7, 2016 to Non Final Office Action dated Jul. 1, 2016”, 18 pgs. |
“U.S. Appl. No. 14/516,089, Second Preliminary Amendment filed Mar. 17, 2015”, 7 pgs. |
“European Application Serial No. 09755557.7, Decision to grant dated Nov. 19, 2015”, 2 pgs. |
“European Application Serial No. 09755557.7, Extended European Search Report dated Jul. 7, 2014”, 6 pgs. |
“European Application Serial No. 09755557.7, Intention to grant dated Jun. 18, 2015”, 29 pgs. |
“European Application Serial No. 09755557.7, Office Action dated Mar. 21, 2014”, 3 pgs. |
“European Application Serial No. 09755557.7, Response filed Jan. 30, 2015 to Extended European Search Report dated Jul. 7, 2014”, 20 pgs. |
“European Application Serial No. 15191017.1, Extended European Search Report dated Feb. 24, 2016”, 7 pgs. |
“International Application Serial No. PCT/US2009/040785, International Preliminary Report on Patentability dated Dec. 21, 2010”, 12 pgs. |
“International Application Serial No. PCT/US2009/040785, International Search Report dated Jun. 5, 2009”, 2 pgs. |
“International Application Serial No. PCT/US2009/040785, Written Opinion dated Jun. 5, 2009”, 5 pgs. |
“Navigator™ System for CT Guided Surgery Manual”, BIOMET3i Navigator™, (Oct. 2007), 1-26. |
“Surgical Guide Cookbook, Drill Guides for Every Scenario”, Imaterialise Medical, (Oct. 2010), 1-87. |
“European Application Serial No. 17201752.7, Extended European Search Report dated Oct. 31, 2018”, 9 pgs. |
“European Application Serial No. 17201752.7, Communication Pursuant to Article 94(3) EPC dated Apr. 23, 2020”, 6 pgs. |
“European Application Serial No. 17201752.7, Communication Pursuant to Article 94(3) EPC dated Dec. 17, 2020”, 4 pgs. |
“European Application Serial No. 17201752.7, Response filed Apr. 27, 2021 to Communication Pursuant to Article 94(3) EPC dated Dec. 17, 2020”, 33 pages. |
Number | Date | Country | |
---|---|---|---|
20180085072 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
61124331 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14516089 | Oct 2014 | US |
Child | 15720968 | US | |
Parent | 13786957 | Mar 2013 | US |
Child | 14516089 | US | |
Parent | 13526717 | Jun 2012 | US |
Child | 13786957 | US | |
Parent | 13179609 | Jul 2011 | US |
Child | 13526717 | US | |
Parent | 12425202 | Apr 2009 | US |
Child | 13179609 | US |