Not Applicable
1. Field of the Invention
The present invention relates to a method for predicting a golfer's ball striking performance for a multitude of golf clubs and golf balls. More specifically, the present invention relates to a method for predicting a golfer's ball striking performance for a multitude of golf clubs and golf balls without the golfer actually using the multitude of golf clubs and golf balls.
2. Description of the Related Art
For over twenty-five years, high speed camera technology has been used for gathering information on a golfer's swing. The information has varied from simple club head speed to the spin of the golf ball after impact with a certain golf club. Over the years, this information has fostered numerous improvements in golf clubs and golf balls, and assisted golfers in choosing golf clubs and golf balls that improve their game. Additionally, systems incorporating such high speed camera technology have been used in teaching golfers how to improve their swing when using a given golf club.
An example of such a system is U.S. Pat. No. 4,063,259 to Lynch et al., for a Method Of Matching Golfer With Golf Ball, Golf Club, Or Style Of Play, which was filed in 1975. Lynch discloses a system that provides golf ball launch measurements through use of a shuttered camera that is activated when a club head breaks a beam of light that activates the flashing of a light source to provide stop action of the club head and golf ball on a camera film. The golf ball launch measurements retrieved by the Lynch system include initial velocity, initial spin velocity and launch angle.
Another example is U.S. Pat. No. 4,136,387 to Sullivan, et al., for a Golf Club Impact And Golf Ball Launching Monitoring System, which was filed in 1977. Sullivan discloses a system that not only provides golf ball launch measurements, it also provides measurements on the golf club.
Yet another example is a family of patent to Gobush et al., U.S. Pat. No. 5,471,383 filed on Sep. 30, 1994; U.S. Pat. No. 5,501,463 filed on Feb. 24, 1994; U.S. Pat. No. 5,575,719 filed on Aug. 1, 1995; and U.S. Pat. No. 5,803,823 filed on Nov. 18, 1996. This family of patents discloses a system that has two cameras angled toward each other, a golf ball with reflective markers, a golf club with reflective markers thereon and a computer. The system allows for measurement of the golf club or golf ball separately, based on the plotting of points.
Yet another example is U.S. Pat. No. 6,042,483 for a Method Of Measuring Motion Of A Golf Ball. The patent discloses a system that uses three cameras, an optical sensor means, and strobes to obtain golf club and golf ball information.
However, these disclosures fail to provide a system or method that will predict a golfer's performance with a specific golf club or golf ball in different atmospheric conditions, without having the golfer physically strike the specific golf ball with the specific golf club. More specifically, if a golfer wanted to know what his ball striking performance would be like when he hit a CALLAWAY GOLF® RULE 35® SOFTFEEL™ golf ball with a ten degrees CALLAWAY GOLF® BIG BERTHA® ERC® II forged titanium driver, the prior disclosures would require that the golfer actually strike the CALLAWAY GOLF® RULE 35® SOFTFEEL™ golf ball with a ten degrees CALLAWAY GOLF® BIG BERTHA® ERC® II forged titanium driver. Using the prior disclosures, if the golfer wanted to compare his or her ball striking performance for ten, twenty or thirty drivers with one specific golf ball, then the golfer would have use each of the drivers at least once. This information would only apply to the specific golf ball that was used by the golfer to test the multitude of drivers. Now if the golfer wanted to find the best driver and golf ball match, the prior disclosures would require using each driver with each golf ball. Further, if the golfer wanted the best driver/golf ball match in a multitude of atmospheric conditions (e.g. hot and humid, cool and dry, sunny and windy, . . . etc.) the prior disclosures would require that the golfer test each driver with each golf ball under each specific atmospheric condition.
Thus, the prior disclosures fail to disclose a system and method that allow for predicting a golfer's ball striking performance for a multitude of golf clubs and golf balls without the golfer actually using the multitude of golf clubs and golf balls.
It is thus an object of the present invention to provide a system and method that allow for predicting a golfer's ball striking performance for a multitude of golf clubs and golf balls without the golfer actually using the multitude of golf clubs and golf balls.
As shown in
At block 208, the information from blocks 202, 204 and 206 are inputted into a rigid body code. The rigid body code is explained in greater detail below. At block 210′, the rigid body code is used to generate a plurality of ball launch parameters. At block 212, information concerning the atmospheric conditions is selected from a database of stored atmospheric conditions. At block 214, information concerning the lift and drag properties of the golf ball are collected and stored. The lift and drag properties of golf balls are measured using conventional methods such as disclosed in U.S. Pat. No. 6,186,002, entitled Method For Determining Coefficients Of Lift And Drag Of A Golf Ball, which is hereby incorporated by reference in its entirety. The lift and drag coefficients of a number of golf balls at specific Reynolds numbers are disclosed in U.S. Pat. No. 6,224,499, entitled A Golf Ball With Multiple Sets Of Dimples, which pertinent parts are hereby incorporated by reference.
At block 216, the ball launch parameters, the atmospheric conditions and the lift and drag properties are inputted into a trajectory code. At block 218, the trajectory code is utilized to predict the performance of the golfer when swinging the specific golf club, with the specific golf ball under the specific atmospheric conditions. Trajectory codes are known in the industry, and one such code is disclosed in the afore-mentioned U.S. Pat. No. 6,186,002. The USGA has such a trajectory code available for purchase.
The golf club head properties of block 202 that are collected and stored in the system include the mass of the golf club head, the face geometry, the face center location, the bulge radius of the face, the roll radius of the face, the loft angle of the golf club head, the lie angle of the golf club head, the coefficient of restitution (“COR”) of the golf club head, the location of the center of gravity, CG, of the golf club head relative to the impact location of the face, and the inertia tensor of the golf club head about the CG.
The mass, bulge and roll radii, loft and lie angles, face geometry and face center are determined using conventional methods well known in the golf industry. The inertia tensor is calculated using: the moment of inertia about the x-axis, Ixx; the moment of inertia about the y-axis, Iyy; the moment of inertia about the z-axis, Izz; the product of inertia Ixy; the product of inertia Izy; and the product of inertia Izx. The CG and the MOI of the club head are determined according to the teachings of U.S. Pat. No. 6,607,452, entitled High Moment of Inertia Composite Golf Club, assigned to Callaway Golf Company, the assignee of the present application, and hereby incorporated by reference in its entirety. The products of inertia Ixy, Ixz and Izy are determined according to the teachings of U.S. Pat. No. 6,425,832, assigned to Callaway Golf Company, the assignee of the present application, and hereby incorporated by reference in its entirety.
The COR of the golf club head is determined using a method used by the United States Golf Association (“USGA”) and disclosed at www.usga.org, or using the method and system disclosed in U.S. Pat. No. 6,585,605, entitled Measurement Of The Coefficient Of Restitution Of A Golf Club, assigned to Callaway Golf Company, the assignee of the present application, and hereby incorporated by reference in its entirety. However, the COR of the golf club head is predicated on the golf ball, and will vary for different types of golf balls.
The golf ball properties of block 206 that are stored and collected include the mass of the golf ball (the Rules of Golf, as set forth by the USGA and the R&A, limit the mass to 45 grams or less), the radius of the golf ball (the Rules of Golf require a diameter of at least 1.68 inches), the COR of the golf ball and the MOI of the golf ball. The MOI of the golf ball may be determined using method well known in the industry. One such method is disclosed in U.S. Pat. No. 5,899,822, which pertinent parts are hereby incorporated by reference. The COR is determined using a method such as disclosed in U.S. Pat. No. 6,443,858, entitled Golf Ball With A High Coefficient Of Restitution, assigned to Callaway Golf Company, the assignee of the present application, and which pertinent parts are hereby incorporated by reference.
The pre-impact swing properties are preferably determined using an acquisition system with CMOS cameras. The pre-impact swing properties include golf club head orientation, golf club head velocity, and golf club spin. The golf club head orientation includes dynamic lie, loft and face angle of the golf club head. The golf club head velocity includes path of the golf club head and attack of the golf club head.
As shown in
The system 20 generally includes a computer 22, a camera structure 24 with a first camera unit 26, a second camera unit 28 and an optional trigger device 30, a golf ball 32 and a golf club 33. The system 20 is designed to operate on-course, at a driving range, inside a retail store/showroom, or at similar facilities.
In a preferred embodiment, the camera structure 24 is connected to a frame 34 that has a first platform 36 approximately 46.5 inches from the ground, and a second platform 38 approximately 28.5 inches from the ground. The first camera unit 26 is disposed on the first platform 36 and the second camera unit 28 is disposed on the second platform 38. As shown in
As shown in
The first camera unit 26 preferably includes a first camera 40 and optional flash units 42a and 42b. The second camera unit 28 preferably includes a second camera 44 and optional flash units 46a and 46b. A preferred camera is a complementary metal oxide semiconductor (“CMOS”) camera with active pixel technology and a full frame rate ranging from 250 to 500 frames per second.
The optional trigger device 30 includes a receiver 48 and a transmitter 50. The transmitter 50 is preferably mounted on the frame 34 a predetermined distance from the camera units 26 and 28. The golf ball is preferably placed on a tee 58. The golf ball 32 is a predetermined length from the frame 34, L1, and this length is preferably 38.5 inches. However, those skilled in the pertinent art will recognize that the length may vary depending on the location and the placement of the first and second camera units 26 and 28. The transmitter 50 is preferably disposed from 10 inches to 14 inches from the cameras 40 and 44.
The data is collected by the cameras and preferably sent to the computer 22 via a cable 52 which is connected to the receiver 48 and the first and second camera units 26 and 28. The computer 22 has a monitor 54 for displaying images generated by the first and second camera units 26 and 28.
The field of view of the cameras 40 and 44 corresponds to the CMOS sensor array 100. In a preferred embodiment, the CMOS sensor array 100 is at least one megapixel in size having one thousand rows of pixels and one thousand columns of pixels for a total of one million pixels.
As shown in
As shown in
The establishment of an ROI 210 at the edge 150 allows for “through the lens” triggering of the system 20. The through the lens triggering is a substitute for the triggering device 30. The system 20 is monitoring the ROI 210 at a very high frame rate, 1000 to 4000 frames per second, to detect any activity, or the appearance of the golf club 33. The system 20 can be instructed to monitor the ROI 210 for a certain brightness provided by the reflected dots 106a-c. Once the system 20 detects the object in the ROI 210, the cameras are instructed to gather information on the object.
As the golf club 33 tracks through the field of view 100, the CMOS sensor array 200 creates new ROIs that encompass the reflective dots 106a-c. As shown in
As the object or golf club 33 moves through the field of view 100, the current ROI preferably overlaps the previous ROI in order to better track the movement of the object or golf club 33. As shown in
At box 303, a ROI is created around the object. At box 304, the objected is monitored at a higher frame rate. At box 305, the object is removed from the field of view. If the golf club 33 is monitored during address at box 304, increased information is provided until the golf club is taken away for a swing. Alternatively, if a golf ball 32 is monitored as the object at different time periods such as prior to impact, impact and post impact, then the ROI is created around the golf ball 32 until it leaves the field of view 100. Such monitoring is as discussed above in reference to the golf club.
The CMOS sensor array 200 can operate at frames rates 4000 frames per second for a very small ROI. However, processing time between images or frames requires preferably less than 500 microseconds, and preferably less than 250 microseconds. The processing time is needed to analyze the image to determine if an object is detected and if the object is moving.
The system 20 may be calibrated using many techniques known to those skilled in the pertinent art. One such technique is disclosed in U.S. Pat. No. 5,803,823 which is hereby incorporated by reference. The system 20 is calibrated when first activated, and then may operate to analyze golf swings for golfers until deactivated.
As mentioned above, the system 20 captures and analyzes golf club information and golf ball information during and after a golfer's swing. The system 20 uses the images and other information to generate the information on the golfer's swing. The golf club 33 has at least two, but preferably three highly reflective points 106a-c preferably positioned on the shaft, heel and toe of the golf club 33. The highly reflective points 106a-c may be inherent with the golf club design, or each may be composed of a highly reflective material that is adhesively attached to the desired positions of the golf club 33. The points 106a-c are preferably highly reflective since the cameras 40 and 44 are preferably programmed to search for two or three points that have a certain brightness such as 200 out of a gray scale of 0-255. The cameras 40 and 44 search for point pairs that have approximately one inch separation, and in this manner, the detection of the golf club 33 is acquired by the cameras for data acquisition.
As shown in
d=[(Ptx−Pnx)2+(Pty−Ptny)2 . . . ]1/2
where d is the distance, Ptx is the position in the x direction and Pty is the position in the y direction.
The system 20 may use a three point mode or a two point mode to generate further information. The two point mode uses Vtoe, Vheel and Vclubtop to calculate the head speed.
Vtoe=[(Ptx3−Ptx1)2+(Pty3−Pty1)2+(Ptz3−Ptz1)2]1/2[1/δT]
Vheel=[(Ptx3−Ptx1)2+(Pty3−Pty1)2+(Ptz3−Ptz1)2]1/2[1/δT]
Vclubtop=[Vtoe+Vheel][½]
Vy=[(y3heel−y1heel)2+(y3toe−y1toe)2]1/2[1/(2*δT)]
Vz=[(z3heel−z1heel)2+(z3toe−z1toe)2]1/2[1/(2*δT)]
This information is then used to acquire the path angle and attack angle of the golf club 33. The Path angle=sin−1(Vy/[V]) where [V] is the magnitude of V.
The attack angle=sin−1(Vz/[V]), and the dynamic loft and dynamic lie are obtained by using Series one and Series two to project the loft and lie onto the vertical and horizontal planes.
The two point mode uses the shaft highly reflective point 106a or the toe highly reflective point 106c along with the heel highly reflective point 106b to calculate the head speed of the golf club, the path angle and the attack angle. Using the shaft highly reflective point 106a, the equations are:
Vheel=[(Ptx3−Ptx1)2+(Pty3−Pty1)2+(Ptz3−Ptz1)2]1/2[1/δT]
Vshaft=[(Ptx3−Ptx1)2+(Pty3−Pty1)2+(Ptz3−Ptz1)2]1/2[1/δT]
Vcenter=1.02*(Vshaft+Vheel)
Vy=[(y3heel−y1heel)2+(y3shaft−y1shaft)2]1/2[1/(2*δT)]
Vz=[(z3heel−z1heel)2+(z3shaft−z1shaft)2]1/2[1/(2*δT)]
The Path angle=sin−1(Vy/[V]) where [V] is the magnitude of V.
The attack angle=sin−1(Vz/[V]).
Using the toe highly reflective point 106c, the equations are:
Vtoe=[(x3−x1)2+(y3−y1)2+(z3−z1)2]1/2[1/δT]
Vheel=[(x2−x1)2+(y2−y1)2+(z2−z1)2]1/2[1/δT]
Vclubtop=[Vtoe+Vheel][½]
The path angle=sin−1(Vyclubtop/[Vclubtop]) where [Vclubtop] is the magnitude of Vclubtop.
The attack angle=sin−1(Vzclubtop/[Vclubtop]) where [Vclubtop] is the magnitude of Vclubtop.
The golf ball 32 information is mostly obtained from images of the golf ball post impact. First, the best radius and position of the two dimensional areas of interest are determined from the images. Next, all of the combinations of the golf ball 32 centers in the images are matched and passed through a calibration model to obtain the X, Y, and Z coordinates of the golf ball 32. The system 20 removes the pairs with an error value greater then 5 millimeters to get acceptable X, Y, Z coordinates. Next, the strobe times from the flash units 42a-b and 46a-b are matched to the position of the golf ball 32 based on the estimated distance traveled from the images. Next, the velocity of the golf ball 32 is obtained from Vx, Vy and Vz using a linear approximation. Next the golf ball speed is obtained by calculating the magnitude of Vx, Vy and Vz.
The launch angle=sin−1(Vz/golf ball speed),
and the spin angle=sin−1(Vy/golf ball speed).
Next, the system 20 looks for the stripes 108a-b, as shown in
Next, the θ angle of the golf ball 32 is measured by taking the first vector and the second vector and using the equation:
θ=cos−1[(vector A1)(vector A2)]/([V1][V2])
where [V1] is the magnitude of V1 and [V2] is the magnitude of V2.
As the golf ball 32 rotates from the position shown in
The following is an example of how the system captures and analyzes golf club information and golf ball information during and after a golfer's swing. The golf club information includes golf club head orientation, golf club head velocity, and golf club spin. The golf club head orientation includes dynamic lie, loft and face angle of the golf club head. The golf club head velocity includes path of the golf club head, attack of the golf club head and downrange information. The golf ball information includes golf ball velocity, golf ball launch angle, golf ball side angle, golf ball speed manipulation and golf ball orientation. The golf ball orientation includes the true spin of the golf ball, and the tilt axis of the golf ball which entails the back spin and the side spin of the golf ball.
The system 20 pairs the points 106a-c, verifying size, separation, orientation and attack angle. Then, the system 20 captures a set of six points (three pairs) from a first find as shown in
Next the speed of the head of the golf club 33 is determined by the system 20 using the equations discussed above.
Next the path angle and the attack angle of the golf club 33 is determined by the system 20. Using the methods previously described, the attack angle is determined from the following equation:
Attack angle=−a tan(δz/δx)
Where δz is the z value of the midpoint between 106a1 and 106b1 minus the z value of the midpoint between 106a3 and 106b3. Where δx is the x value of the midpoint between 106a1 and 106b1 minus the x value of the midpoint between 106a3 and 106b3.
The path angle is determined from the following equation:
path angle=−a tan(δy/δx)
where δy is the y value of the midpoint between 106a1 and 106b1 minus the y value of the midpoint between 106a3 and 106b3. Where δx is the x value of the midpoint between 106a1 and 106b1 minus the x value of the midpoint between 106a3 and 106b3.
Next, the golf ball 32 data is determined b the system 20. First, the thresholding of the image is established as shown in
Next, as shown in
Golf ball speed=[δX2+δy2+δZ2]1/2/δT. For the information provided in
The launch angle of the golf ball 32 is determined by the following equation: Launch angle=sin−1(Vz/golf ball speed) where Vz=δZ/δT.
For the information provided in
The side angle of the golf ball 32 is determined by the following equation: Side angle=sin−1(Vy/golf ball speed) where Vy=δY/δT. For the information provided in
Then, the side angle=sin−1(1.4/126.3)=0.6 degrees.
The ball spin is calculated by determining the location of the three striped on each of the acquired golf balls. Matching each axis in the field of view and determine which of the axis is orthogonal to the vertical plane. The spin is then calculated by:
θ=a cos((vector A1 dot vector A2)/mag(v1)*mag(v2)) as discussed above.
Once the pre-impact swing properties are determined (calculated), the rigid body code is used to predict the ball launch parameters. The rigid body code solves the impact problem using conservation of linear and angular momentum, which gives the complete motion of the two rigid bodies. The impulses are calculated using the definition of impulse, and the equations are set forth below. The coordinate system used for the impulse equations is set forth below. The impulse-momentum method does not take in account the time history of the impact event. The collision is described at only the instant before contact and the instant after contact. The force transmitted from the club head to the ball is equal and opposite to the force transmitted from the ball to the club head. These forces are conveniently summed up over the period of time in which the two objects are in contact, and they are called the linear and angular impulses.
The present invention assumes that both the golf ball 66 and the golf club head 50 are unconstrained rigid bodies, even though the golf club head 50 is obviously connected to the shaft 52, and the ball 66 is not floating in air upon impact with the golf club head 50. For the golf club head 50, the assumption of an unconstrained rigid body is that the impact with the golf ball 66 occurs within a very short time frame (microseconds), that only a small portion of the tip of the shaft 52 contributes to the impact. For the golf ball 66, the impulse due to friction between itself and the surface it is placed upon (e.g. tee, mat or ground) is very small in magnitude relative to the impulse due to the impact with the golf club head 50, and thus this friction is ignored in the calculations.
In addition to the normal coefficient of restitution, which governs the normal component of velocity during the impact, there are coefficients of restitution that govern the tangential components of velocity. The additional coefficients of restitution are determined experimentally.
The absolute performance numbers are defined in the global coordinate system, or the global frame. This coordinate system has the origin at the center of the golf ball, one axis points toward the intended final destination of the shot, one axis points straight up into the air, and the third axis is normal to both of the first two axis. The global coordinate system preferably follows the right hand rule.
The coordinate system used for the analysis is referred to as the impact coordinate system, or the impact frame. This frame is defined relative to the global frame for complete analysis of a golf shot. The impact frame is determined by the surface normal at the impact location on the golf club head 50. The positive z-direction is defined as the normal outward from the golf club head 50. The plane tangent to the point of impact contains both the x-axis and they-axis. For ease of calculation, the x-axis is arbitrarily chosen to be parallel to the global ground plane, and thus the yz-plane is normal to the ground plane. The impact frame incorporates the loft, bulge and roll of a club head, and also includes the net result of the golf swing. Dynamic loft, open or close to the face, and toe down all measured for definition of the impact frame. Motion in the impact frame is converted to equivalent motion in the global frame since the relationship between the global coordinate system and the impact coordinate system is known. The post impact motion of the golf ball 66 is used as inputs in the Trajectory Code, and the distance and deviation of the shot is calculated by the present invention.
The symbols are defined as below:
the inertia tensor of the club head.
the inertia tensor of the golf ball.
The Definition of Coefficients of Restitution:
The Tangential Impulse on the Ball Causes Both Rotation and Translation:
Equations B1-B12 can be combined to form a system of linear equations of the form:
[A]{x}={B} B13
where [A], and {B} are determined from the known velocities before the impact, the mass properties of the golf ball 66 and golf club head 50, the impact location relative to the center of gravity of the golf ball 66 and the golf club head 50, and the surface normal at the point of impact. {x} contains all the post impact velocities (linear and angular), and is solved by pre-multiplying {B} by the inverse of [A], or any other method in solving system of equations in linear algebra.
When the golf ball 66 is sitting on the tee 68, it is in equilibrium. The golf ball 66 will not move until a force that's greater than Fm, the maximum static friction force between the golf ball 66 and the tee 68, is applied on the golf ball 66.
Fm=μsN=μsm2g C1
Each of the individual terms in the above matrix, eij, where i=x, y, z, and j=x, y, z, relates the velocity in the i-direction to the j-direction. Each of the diagonal terms, where i=j, indicate the relationship in velocity of one of the axis, x, y, or z, before and after the impact. Let x, y, z be the axis defined in the impact frame. The term ezz includes all the energy that is lost in the impact in the normal direction of impact. exx and eyy are account for the complicated interaction between the golf ball 66 and the golf club head 50 in the tangential plane by addressing the end result. In general, the off diagonal terms eij, where i≠j, are equal to zero for isotropic materials.
In predicting the performance of a golf ball struck by a golfer with a specific golf club under predetermined atmospheric conditions, an operator has the option of inputting an impact of the face at a certain location regardless of the true location of impact. This allows for prediction of the performance of the golf club 33 for toe shots, heel shots and center shots. The type of golf ball may be selected, the type of golf club may be selected, the atmospheric conditions including wind speed, direction, relative humidity, air pressure, temperature and the terrain may be selected by the operator to predict a golfer's performance using these input parameters along with the pre-impact swing properties for the golfer.
The method of the present invention for predicting the performance of two different golfers, using two different golf clubs, with two different golf balls under two different atmospheric conditions is illustrated in
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The Present Application is a continuation-in-part application of U.S. patent application Ser. No. 10/843,783, filed on May 11, 2004, which claims priority to U.S. Provisional Application No. 60/498,761, filed on Aug. 28, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4063259 | Lynch et al. | Dec 1977 | A |
4136387 | Sullivan et al. | Jan 1979 | A |
4375887 | Lynch et al. | Mar 1983 | A |
5501463 | Gobush et al. | Mar 1996 | A |
5697791 | Nashner et al. | Dec 1997 | A |
5779241 | D'Costa et al. | Jul 1998 | A |
5803823 | Gobush et al. | Sep 1998 | A |
6186002 | Lieberman et al. | Feb 2001 | B1 |
6506124 | Manwaring et al. | Jan 2003 | B1 |
6602144 | Manwaring et al. | Aug 2003 | B2 |
6821209 | Manwaring et al. | Nov 2004 | B2 |
6929558 | Manwaring et al. | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070244667 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10843783 | May 2004 | US |
Child | 11762292 | US |