This application is the National Stage Application of PCT/CN2020/107716, filed on Aug. 7, 2020, which claims priority to Chinese Patent Application No.: 201910838978.8, filed on Sep. 5, 2019, which is incorporated by reference for all purposes as if fully set forth herein.
The present invention relates to the field of operation state and life prediction technology for rolling bearings, and specifically, to a method for predicting bearing life based on a hidden Markov model (HMM) and transfer learning.
A rolling bearing is one of the parts that are most widely used in industrial sectors such as aviation and aerospace, electricity, petrochemistry, metallurgy, and machinery and are most prone to damage. A working state of rotating machinery is closely correlated to a rolling bearing. According to statistics, in rotating mechanical equipment using a rolling bearing, about 30% of mechanical failures are correlated to bearing damage. It is of great significance to predict bearing life to ensure a normal production process and avoid economic loss.
There are usually four types of life prediction methods: a method based on a physical model, a method based on a statistical model, a method based on artificial intelligence, and a hybrid method. The method based on artificial intelligence has a powerful modeling capability for the remaining life to be directly deduced from acquired status monitoring data, and therefore has been the focus of research. Conventional shallow models such as an artificial neural network, a support vector machine, a relevance vector machine, and a random forest and deep learning models such as a convolutional neural network, an auto encoder, a restricted Boltzmann machine, and a recurrent neural network are all applied to life prediction.
However, current life prediction methods usually have two disadvantages: 1) A failure occurrence time (FOT) is ignored or empirically determined. However, it is very important to accurately determine a FOT because information such as noise that is not correlated to a failure is suppressed and at the same time important failure degradation information is kept. 2) Samples in source domains and target domains need to conform to the same data distribution. However, because of different operating conditions, distribution differences exist in source domains and target domains, leading to a reduced model generalization capability.
Embodiments of the present invention provide a method for predicting bearing life based on an HMM and transfer learning, so that a FOT is automatically detected by using an HMM, and subsequently multilayer perceptron (MLP)-based transfer learning is used to resolve distribution differences in a source domain and a target domain caused by different operating conditions, to improve the accuracy and efficiency of life prediction for a rolling bearing.
To resolve the foregoing technical problem, the present invention provides a method for predicting bearing life based on an HMM and transfer learning, including the following steps:
In a preferred embodiment of the present invention, further, the MLP model has an input layer, two hidden layers (HL1 and HL2), and an output layer; and an output of the hidden layer (HL2) is used as a domain adaptation target to construct a domain adaptation module, to reduce differences between different domains to obtain the domain invariant feature.
In a preferred embodiment of the present invention, further, the domain adaptation module includes a feature extractor and a domain classifier, and the domain classifier has a hidden layer (HL3) and a domain determination output layer; and features are aligned in a manner of a generative adversarial network between the feature extractor and the domain classifier, to obtain the domain invariant feature.
In a preferred embodiment of the present invention, further, the domain adaptation module includes a domain distribution difference measurement, and the domain distribution difference measurement uses a maximum average difference for measurement.
In a preferred embodiment of the present invention, further, the optimal model parameter includes the input layer, the two hidden layers (HL1 and HL2), and a network parameter of each of the output layer and network parameters between the layers.
In a preferred embodiment of the present invention, further, the obtaining the FOT in step (3) includes:
In a preferred embodiment of the present invention, further, the proposed optimized target in step (4)includes a regression loss of a source domain sample, and the regression loss of the source domain sample is:
where m is batch sample data; yi is an actual sample label; and ŷi is a predicted sample label;
ŷ=φ(W3h2+b3);
h2=f(W2h1+b2);
h1=f(W1x+b1);
φ is a Sigmoid activation function; W3 is a weight coefficient of the hidden layer HL2 and the output layer; b3 is a bias coefficient of the hidden layer HL2 and the output layer; f is a ReLU activation function; W2 is a weight coefficient of the hidden layer HL1 and the hidden layer HL2; b2 is a bias coefficient of the hidden layer HL1 and the hidden layer HL2; W1 is a weight coefficient of the input layer and the hidden layer HL1; b1 is a bias coefficient of the input layer and the hidden layer HL1; and x is an input sample.
In a preferred embodiment of the present invention, further, the proposed optimized target in step (4) includes a domain classification loss of source domains and target domains, and the domain classification loss of source domains and target domains is:
Di represents an actual domain label; d(xi) represents a predicted sample label;
where
Wd is a weight coefficient of the hidden layer HL3 and the domain determination output layer; bd is a bias coefficient of the hidden layer HL3 and the domain determination output layer; and f3 is an output of the hidden layer HL3.
In a preferred embodiment of the present invention, further, the proposed optimized target in step (4) includes a maximum average loss of source domains and target domains, and the maximum average loss of source domains and target domains is:
where K(.,.) represents a Gaussian radial kernel function; h2s and h2t respectively represent outputs of source domains and target domains in the hidden layer HL2; and a batch sample quantity of source domains and target domains is
In a preferred embodiment of the present invention, further, in step (2), 13 time domain features, 16 time-frequency domain features, and 3 trigonometric function features are extracted.
The beneficial effects of the present invention are as follows:
The present invention is further described below with reference to the accompanying drawings and specific embodiments, to enable a person skilled in the art to better understand and implement the present invention. However, the embodiments are not used to limit the present invention.
This embodiment discloses a method for predicting bearing life based on an HMM and transfer learning, including the following steps.
Two groups of sensors are respectively located in an X axis direction and a Y axis direction to acquire the original signal of the full life of the operation of the bearing. The full life herein includes a full time period from the moment when the bearing is mounted and put into use to the moment when the bearing fails. Each group of sensors correspondingly extract more than 32 groups of features. In this way, features are extracted from different perspectives to reflect the degradation information of the bearing, to make it convenient to subsequently determine a FOT based on an HMM and predict bearing life based on transfer learning.
Specifically, the obtaining the FOT includes:
It is assumed that an occurrence probability satisfies Gaussian distribution, and hidden states only include a normal state and a failure state.
In the technical solution in this embodiment, an HMM is used to adaptively determine a FOT, thereby reducing manpower input because of the dependence on empirical knowledge, so that information such as noise that is not correlated to a failure can be efficiently suppressed and at the same time important failure degradation information can be kept.
The MLP model has an input layer, two hidden layers HL1 and HL2, and an output layer. An output of the hidden layer HL2 is used as a domain adaptation target to construct a domain adaptation module, to reduce differences between different domains to obtain the domain invariant feature.
The domain adaptation module includes a feature extractor, a domain classifier, and a domain distribution difference measurement. The domain classifier has a hidden layer HL3 and a domain determination output layer. Features are aligned in a manner of a generative adversarial network between the feature extractor and the domain classifier, to obtain the domain invariant feature. Herein, the feature generated by the feature extractor is inputted into the domain classifier. The domain classifier distinguishes whether the feature generated by the feature extractor is from a source domain or a target domain. The feature extractor generates a feature to interfere with and confuse the domain classifier, making it impossible for the domain classifier to distinguish whether a feature is from a source domain or a target domain, so that the feature is domain invariant. The domain distribution difference measurement uses a maximum average difference for measurement.
The optimal model parameter includes a network parameter of each of the input layer, the two hidden layers (HL1 and HL2), and the output layer and network parameters between the layers.
The proposed optimized target includes a regression loss of a source domain sample, a domain classification loss of source domains and target domains, and a maximum average loss of source domains and target domains.
(I): The regression loss of the source domain sample is:
where m is batch sample data; yi is an actual sample label; and ŷi is a predicted sample label;
ŷ=φ(W3h2+b3);
h2=f(W2h1+b2);
h1=f(W1x+b1);
φ is a Sigmoid activation function; W3 is a weight coefficient of the hidden layer HL2 and the output layer; b3 is a bias coefficient of the hidden layer HL2 and the output layer; f is a ReLU activation function; W2 is a weight coefficient of the hidden layer HL1 and the hidden layer HL2; b2 is a bias coefficient of the hidden layer HL1 and the hidden layer HL2; W1 is a weight coefficient of the input layer and the hidden layer HL1; b1 is a bias coefficient of the input layer and the hidden layer HL1; and x is an input sample.
(II): The domain classification loss of source domains and target domains is:
Di represents an actual domain label; d(xi) represents a predicted sample label;
where
Wd is a weight coefficient of the hidden layer HL3 and the domain determination output layer; bd is a bias coefficient of the hidden layer HL3 and the domain determination output layer; and f3 is an output of the hidden layer HL3.
(III): The maximum average loss of source domains and target domains is:
where K(.,.) represents a Gaussian radial kernel function; h22 and h2t respectively represent outputs of source domains and target domains in the hidden layer HL2; and a batch sample quantity of source domains and target domains is
A final optimized target function may be written as:
Lfinal=Lr−λLd+μLMMD,
where λ and μ are nonnegative penalty factors, θf, θr, and θd are respectively defined as parameters of a feature extractor, a life predictor, and a domain classifier, and the optimized target function may further be represented as:
Lfinal(θf,θr,θd)=Lr(θf,θr)−λLd(θf,θd)+μLMMD(θf).
Saddle points {circumflex over (θ)}f, {circumflex over (θ)}r, and {circumflex over (θ)}d may be found by using the following expressions:
(θf,θr)=argmin Lfinal(θf,θr,θd); and
θd=argmax Lfinal(θf,θr,θd).
In the present invention, a random gradient descent method is used to obtain updated parameters θf, θr, and θd. Details are as follows:
where η is a learning rate.
Actual experimental data is combined below to describe this embodiment in detail:
FEMTO-ST is used as an example. As shown in
In this embodiment, two transfer learning tasks A→B and A→C are processed.
Because the present invention focuses on unsupervised transfer learning, the training set includes all labeled source domain samples and some label-less target domain samples. The test set includes the remaining label-less target domain samples. Details are shown in Table 4.
According to feature extraction in step 1, a total of 64 features are extracted and used as inputs of an HMM and inputs of a subsequent MLP model. The bearing 1-1 is used as an example. 32 features extracted in the horizontal direction are shown in
Before the feature set is inputted into the HMM, features are normalized. According to step 3, the hidden state is successfully predicted, as shown in
Once the FOT is determined, a label corresponding to a sample can be added. In the present invention, a life percentage is used as a label. For example, the full life of one bearing is 3000 s. The FOT is determined to be 1000 s by using the HMM. In this case, if the current time is 2000 s, the life percentage is 50%. According to step 4, a transfer learning framework is shown in
As can be seen from the analysis of application examples, the method for predicting bearing life based on an HMM and transfer learning provided in the present invention can overcome the assumptions in conventional data-driven-based algorithms that a FOT is manually and empirically selected and a source domain (a training set) and a target domain (a test set) need to have consistent data distribution. In the present invention, an HMM is used to automatically detect a FOT, and MLP-based transfer learning is then used to resolve distribution differences in a source domain and a target domain caused by different operating conditions. In the foregoing processing manner, information such as noise that is not correlated to a failure is suppressed and at the same time important failure degradation information is kept. In addition, a transferable feature can be obtained through transfer learning. Therefore, in the present invention, an HMM and a transfer learning method can be used to implement life prediction for a rolling bearing in different operating conditions.
The foregoing embodiments are merely preferred embodiments used to fully describe the present invention, and the protection scope of the present invention is not limited thereto. Equivalent replacements or variations made by a person skilled in the art to the present invention all fall within the protection scope of the present invention. The protection scope of the present invention is as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
201910838978.8 | Sep 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/107716 | 8/7/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/042935 | 3/11/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20150262060 | Husain et al. | Sep 2015 | A1 |
20180121793 | Bhandary | May 2018 | A1 |
Number | Date | Country |
---|---|---|
104504296 | Apr 2015 | CN |
106885697 | Jun 2017 | CN |
107101828 | Aug 2017 | CN |
107817106 | Mar 2018 | CN |
109472241 | Mar 2019 | CN |
110555273 | Dec 2019 | CN |
Entry |
---|
Wang, Fengtao, et al. Remaining life prediction of rolling bearing based on PCA and improved logistic regression model. Journal of Vibroengineering, 2016, vol. 18, No. 8, p. 5192-5203. (Year: 2016). |
Li, Xiaochuan, et al. Remaining useful life prediction of rolling element bearings using supervised machine learning. Energies, 2019, vol. 12, No. 14, p. 2705. (Year: 2019). |
Prakash, G.; Narasimhan, S.; Pandey, M. D. Condition based maintenance of low speed rolling element bearings using hidden markov model. International Journal of Prognostics and Health Management, 2017, vol. 8, No. 1. (Year: 2017). |
Meng, Zong, et al. Remaining useful life prediction of rolling bearing using fractal theory. Measurement, 2020, vol. 156, p. 107572. (Year: 2015). |
Sun, Chuang ; Ma, Meng ; Zhao, Zhibin ; Tian, Shaohua ; Yan, Ruqiang ; Chen, Xuefeng; Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing IEEE transactions on industrial informatics, Apr. 2019, vol. 15 (4), p. 2416-2425 (Year: 2019). |
Zhen Chen, Yaping Li, Tangbin Xia, Ershun Pan, Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy, Reliability Engineering & System Safety, vol. 184, 2019 (Year: 2019). |
Deutsch J, He M, He D. Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach. Applied Sciences. 2017; 7(7):649. https://doi.org/10.3390/app7070649 (Year: 2017). |
Deutsch J, He M, He D. Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach. Applied Sciences. 2017; 7(7):649. (Year: 2017). |
Deutsch J, He M, He D. Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach. Applied Sciences. (Year: 2019). |
Jun Zhu et al, “A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions” Mechanical Systems and Signal Processing 139 (2020) 106602, pp. 1-17 (May 31, 2020). |
Number | Date | Country | |
---|---|---|---|
20210374506 A1 | Dec 2021 | US |