The present application relates to speech intelligibility prediction for hearing aids. The disclosure relates e.g. to a method and a system for predicting the intelligibility of noisy and/or enhanced (processed) speech, and to a binaural hearing system implementing such method.
The design of hearing aids is typically guided by listening experiments with normal hearing or hearing impaired subjects. These listening tests are used to investigate the usefulness of novel audiological schemes or signal processing techniques. Furthermore, they are used to validate and evaluate the benefit of a hearing aid to the user, throughout the entire development process. These tests are expensive and time consuming. Currently, however, there is no real alternative to carrying out such experiments.
In the present application, it is proposed to partly or fully replace the use of listening experiments with the use of a binaural intrusive speech intelligibility measure that is able to predict the impact of both noisy environments and hearing aid processing.
In the present context of speech intelligibility measures, the term ‘binaural’ is taken to refer to the advantage obtained by humans from combining information from the left and right ears. In the present context, the term ‘intrusive’ is taken to imply that for the calculation of the speech intelligibility measure, access to a clean speech signal (without noise, distortion or hearing aid processing) for reference is provided. An embodiment of the proposed structure or method is illustrated in
From these four input signals, the measure provides a number which describes how intelligible the noisy/processed signals are on average as judged by a group of listeners with similar listening abilities (or as judged by a particular user). The output may either be in the form of a simple “scoring” (e.g. a number between 0 and 1 where 0 is unintelligible and 1 is highly intelligible) or in the form of a direct prediction of the result of a listening test (e.g. the fraction of words understood correctly, the speech reception threshold and/or similar). The method is described in detail in [Andersen et al.; 2016], which is incorporated herein by reference.
Specifically, it is proposed to solve the above described task with a structure or method as shown in
A Binaural Speech Intelligibility System:
In an aspect of the present application, an intrusive binaural speech intelligibility prediction system is provided. The binaural speech intelligibility prediction system comprises a binaural speech intelligibility predictor unit adapted for receiving a target signal comprising speech in a) left and right essentially noise-free versions xl, xr and in b) left and right noisy and/or processed versions yl, yr, said signals being received or being representative of acoustic signals as received at left and right ears of a listener, the binaural speech intelligibility predictor unit being configured to provide as an output a final binaural speech intelligibility predictor value SI measure indicative of the listener's perception of said noisy and/or processed versions yl, yr of the target signal. The binaural speech intelligibility predictor unit further comprises
Wherein said first and second Equalization-Cancellation stages are adapted to optimize the final binaural speech intelligibility predictor value SI measure to indicate a maximum intelligibility of said noisy and/or processed versions yl, yr of the target signal by said listener.
Thereby an improved speech intelligibility predictor can be provided.
In an embodiment, the intrusive binaural speech intelligibility prediction system, e.g. the first and second Equalization-Cancellation stages and the monaural speech intelligibility predictor unit, is/are configured to repeat the calculations performed by the respective units to optimize the final binaural speech intelligibility predictor value to indicate a maximum intelligibility of said noisy and/or processed versions of the target signal by said listener. In an embodiment, the first and second Equalization-Cancellation stages and the monaural speech intelligibility predictor unit are configured to repeat the calculations performed by the respective units for different time shifts and amplitude adjustments of the left and right noise-free versions xl(k,m) and xr(k,m), respectively, and of the left and right noisy and/or processed versions yl(k,m) and yr(k,m), respectively, to optimize the final binaural speech intelligibility predictor value to indicate a maximum intelligibility of said noisy and/or processed versions of the target signal by said listener.
In an embodiment, the first and second Equalization-Cancellation stages are configured to make respective exhaustive calculations for all combinations of time shifts and amplitude adjustments, e.g. for a discrete set of values, e.g. within respective realistic ranges. In an embodiment, the first and second Equalization-Cancellation stages are configured to use other schemes (e.g. algorithms) for estimating optimal value of the final binaural speech intelligibility predictor value (SI measure), e.g. steepest descent, or gradient based algorithms.
In an embodiment, the monaural speech intelligibility predictor unit comprises
In an embodiment, the binaural speech intelligibility prediction system comprises a binaural hearing loss model. In an embodiment, the binaural hearing loss model comprises respective monaural hearing loss models of the left and right ears of a user.
A Binaural Hearing System:
In a further aspect, a binaural hearing system comprising left and right hearing aids adapted to be located at left and right ears of a user, and an intrusive binaural speech intelligibility prediction system as described above, in the ‘detailed description of embodiments’, and in the claims is moreover provided.
In an embodiment, the left and right hearing aids each comprises
The binaural hearing system further comprises
The binaural speech intelligibility prediction system (possibly including the binaural hearing loss model) may be implemented in any one (or both) of the left and right hearing aids. Alternatively (or additionally), the binaural speech intelligibility prediction system may be implemented in a (separate) auxiliary device, e.g. a remote control device (e.g. a smartphone or the like).
In an embodiment, the hearing aid(s) comprise(s) an antenna and transceiver circuitry for wirelessly receiving a direct electric input signal from another device, e.g. a communication device or another hearing aid. In an embodiment, the left and right hearing aids comprises antenna and transceiver circuitry for establishing an interaural link between them allowing the exchange of data between them, including audio and/or control data or information signals. In general, a wireless link established by antenna and transceiver circuitry of the hearing aid can be of any type. In an embodiment, the wireless link is used under power constraints, e.g. in that the hearing aid comprises a portable (typically battery driven) device.
In an embodiment, the hearing aids (e.g. the configurable signal processing unit) are adapted to provide a frequency dependent gain and/or a level dependent compression and/or a transposition (with or without frequency compression) of one or frequency ranges to one or more other frequency ranges, e.g. to compensate for a hearing impairment of a user.
In an embodiment, each of the hearing aids comprises an output unit. In an embodiment, the output unit comprises a number of electrodes of a cochlear implant. In an embodiment, the output unit comprises an output transducer. In an embodiment, the output transducer comprises a receiver (loudspeaker) for providing the stimulus as an acoustic signal to the user. In an embodiment, the output transducer comprises a vibrator for providing the stimulus as mechanical vibration of a skull bone to the user (e.g. in a bone-attached or bone-anchored hearing aid).
In an embodiment, the input unit comprises an input transducer for converting an input sound to an electric input signal. In an embodiment, the input unit comprises a wireless receiver for receiving a wireless signal comprising sound and for providing an electric input signal representing said sound. In an embodiment, the hearing aid(s) comprise(s) a directional microphone system adapted to enhance a target acoustic source among a multitude of acoustic sources in the local environment of the user wearing the hearing aid.
In an embodiment, the hearing aid(s) comprise(s) a forward or signal path between an input transducer (microphone system and/or direct electric input (e.g. a wireless receiver)) and an output transducer. In an embodiment, the signal processing unit is located in the forward path. In an embodiment, the signal processing unit is adapted to provide a frequency dependent gain according to a user's particular needs. In an embodiment, the hearing aid(s) comprise(s) an analysis path comprising functional components for analyzing the input signal (e.g. determining a level, a modulation, a type of signal, an acoustic feedback estimate, etc.). In an embodiment, some or all signal processing of the analysis path and/or the signal path is conducted in the frequency domain. In an embodiment, some or all signal processing of the analysis path and/or the signal path is conducted in the time domain.
In an embodiment, the hearing aid(s) comprise(s) an analogue-to-digital (AD) converter to digitize an analogue input with a predefined sampling rate, e.g. 20 kHz. In an embodiment, the hearing aid(s) comprise(s) a digital-to-analogue (DA) converter to convert a digital signal to an analogue output signal, e.g. for being presented to a user via an output transducer.
In an embodiment, the hearing aid(s) comprise(s) a number of detectors configured to provide status signals relating to a current physical environment of the hearing aid(s) (e.g. the current acoustic environment), and/or to a current state of the user wearing the hearing aid(s), and/or to a current state or mode of operation of the hearing aid(s). Alternatively or additionally, one or more detectors may form part of an external device in communication (e.g. wirelessly) with the hearing aid(s). An external device may e.g. comprise another hearing aid, a remote control, and audio delivery device, a telephone (e.g. a Smartphone), an external sensor, etc. In an embodiment, one or more of the number of detectors operate(s) on the full band signal (time domain). In an embodiment, one or more of the number of detectors operate(s) on band split signals ((time-) frequency domain).
In an embodiment, the hearing aid(s) further comprise(s) other relevant functionality for the application in question, e.g. compression, noise reduction, feedback.
In an embodiment, the hearing aid comprises a hearing instrument, e.g. a hearing instrument adapted for being located at the ear or fully or partially in the ear canal of a user or fully or partially implemented in the head of a user, a headset, an earphone, an ear protection device or a combination thereof.
In an embodiment, the hearing system further an auxiliary device. In an embodiment, the system is adapted to establish a communication link between the hearing aid(s) and the auxiliary device to provide that information (e.g. control and status signals, possibly audio signals) can be exchanged or forwarded from one to the other.
In an embodiment, the auxiliary device is or comprises an audio gateway device adapted for receiving a multitude of audio signals (e.g. from an entertainment device, e.g. a TV or a music player, a telephone apparatus, e.g. a mobile telephone or a computer, e.g. a PC) and adapted for selecting and/or combining an appropriate one of the received audio signals (or combination of signals) for transmission to the hearing aid. In an embodiment, the auxiliary device is or comprises a remote control for controlling functionality and operation of the hearing aid(s). In an embodiment, the function of a remote control is implemented in a SmartPhone, the SmartPhone possibly running an APP allowing to control the functionality of the audio processing device via the SmartPhone (the hearing aid(s) comprising an appropriate wireless interface to the SmartPhone, e.g. based on Bluetooth or some other standardized or proprietary scheme).
Use:
In an aspect, use of a binaural speech intelligibility system as described above, in the ‘detailed description of embodiments’ and in the claims, is moreover provided. In an embodiment, use is provided for performing a listening test. In an embodiment, use is provided in a system comprising one or more hearing instruments, headsets, ear phones, active ear protection systems, etc. In an embodiment, use is provided for enhancing speech in a binaural hearing aid system.
A Method of Providing a Binaural Speech Intelligibility Predictor Value:
In an aspect, a method of providing a binaural speech intelligibility predictor value is provided. The method comprises
S1. receiving a target signal comprising speech in a) left and right essentially noise-free versions xl, xr and in b) left and right noisy and/or processed versions yl, yr, said signals being received or being representative of acoustic signals as received at left and right ears of a listener is furthermore provided by the present application.
S2. providing time-frequency representations xl(k,m) and yl(k,m) of said left noise-free version xl and said noisy and/or processed version yl of the target signal, respectively, k being a frequency bin index, k=1, 2, . . . , K, and m being a time index;
S3. providing time-frequency representations xr(k,m) and yr(k,m) of said left noise-free version xr and said noisy and/or processed version yr of the target signal, respectively, k being a frequency bin index, k=1, 2, . . . , K, and m being a time index;
S4. receiving and relatively time shifting and amplitude adjusting the left and right noise-free versions xl(k,m) and xr(k,m), respectively, and subsequently subtracting the time shifted and amplitude adjusted left and right noise-free versions xl(k,m) and xr(k,m) of the left and right target signals from each other, and providing a resulting noise-free signal x(k,m);
S5. receiving and relatively time shifting and amplitude adjusting the left and right noisy and/or processed versions yl(k,m) and yr(k,m), respectively, and subsequently subtracting the time shifted and amplitude adjusted left and right noisy and/or processed versions yl(k,m) and yr(k,m) of the left and right target signals from each other, and providing a resulting noisy and/or processed signal y(k,m); and
S6. providing a final binaural speech intelligibility predictor value SI measure is indicative of the listener's perception of said noisy and/or processed versions yl, yr of the target signal based on said resulting noise-free signal x(k,m) and said resulting noisy and/or processed signal y(k,m);
S7. Repeating steps S4-S6 to optimize the final binaural speech intelligibility predictor value, SI measure, to indicate a maximum intelligibility of said noisy and/or processed versions yl yr of the target signal by said listener.
It is intended that some or all of the structural features of the system described above, in the ‘detailed description of embodiments’ or in the claims can be combined with embodiments of the method, when appropriately substituted by a corresponding process and vice versa. Embodiments of the method have the same advantages as the corresponding systems.
In an embodiment, steps S4 and S5 each comprises
In an embodiment, the uncorrelated noise sources, Δτ and Δγ, are normally distributed with zero mean and standard deviation
and where the values γ and τ are determined such as to maximize the intelligibility predictor value.
In an embodiment, step S6 comprises
In an embodiment, time-frequency signals X(q,m), X(q,m), q being a frequency sub-band index, q=1, 2, . . . , Q, representing temporal envelopes of the respective qth sub-band signals are power envelopes determined as
respectively, where k1(q) and k2(q) denote lower and upper DFT-bins for the qth band, respectively. In an embodiment, the time-frequency-decomposition of time variant (noise-free or noisy) input signals is based on Discrete Fourier Transformation (DFT), converting corresponding time-domain signals to a time-frequency representation comprising (real or) complex values of magnitude and/or phase of the respective signals in a number of DFT-bins. In an embodiment, In the present application, a number Q of (non-uniform) frequency sub-bands with sub-band indices q=1, 2, . . . , J is defined, each sub-band comprising one or more DFT-bins (cf. vertical Sub-band q-axis in
In an embodiment, the power envelopes are arranged into vectors of N samples
xq,m=[Xq,m−N+1,Xq,m−N+2, . . . ,Xq,m]T and
yq,m=[Yq,m−N+1,Yq,m−N+2, . . . ,Yq,m]T
where vectors xq,m and yq,m∈N×1. In an embodiment, N=30 samples.
In an embodiment, the correlation coefficient between clean and noisy/processed envelopes are determined as:
where the expectation is taken across both input signals and the noise sources Δτ and Δγ.
In an embodiment, an N-sample estimate {circumflex over (ρ)}q,m of the correlation coefficient ρq across the input signals is then given by:
where μ(·) denotes the mean of the entries in the given vector, EΔ is the expectation across the noise applied in steps S4, S4 and 1 is the vector of all ones.
In an embodiment, the final binaural speech intelligibility predictor value is obtained by estimating the correlation coefficients, {circumflex over (ρ)}q,m, for all frames, m, and frequency bands, q, in the signal and averaging across these:
where Q and M is the number of frequency sub-bands and the number of frames, respectively.
An Intrusive Binaural Speech Intelligibility Unit Configured to Implement the Method of Providing a Binaural Speech Intelligibility Predictor Value:
In an aspect, an intrusive binaural speech intelligibility unit configured to implement the method of providing a binaural speech intelligibility predictor value (as described above in the detailed description of embodiments and in the claims) is furthermore provided by the present disclosure.
A Computer Readable Medium:
In an aspect, a tangible computer-readable medium storing a computer program comprising program code means for causing a data processing system to perform at least some (such as a majority or all) of the steps of the method described above, in the ‘detailed description of embodiments’ and in the claims, when said computer program is executed on the data processing system is furthermore provided by the present application.
By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. DISK and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. In addition to being stored on a tangible medium, the computer program can also be transmitted via a transmission medium such as a wired or wireless link or a network, e.g. the Internet, and loaded into a data processing system for being executed at a location different from that of the tangible medium.
A Data Processing System:
In an aspect, a data processing system comprising a processor and program code means for causing the processor to perform at least some (such as a majority or all) of the steps of the method described above, in the ‘detailed description of embodiments’ and in the claims is furthermore provided by the present application.
A Computer Program:
A computer program (product) comprising instructions which, when the program is executed by a computer, cause the computer to carry out (steps of) the method described above, in the ‘detailed description of embodiments’ and in the claims is furthermore provided by the present application.
In the present context, a ‘hearing aid’ refers to a device, such as e.g. a hearing instrument or an active ear-protection device or other audio processing device, which is adapted to improve, augment and/or protect the hearing capability of a user by receiving acoustic signals from the user's surroundings, generating corresponding audio signals, possibly modifying the audio signals and providing the possibly modified audio signals as audible signals to at least one of the user's ears. A ‘hearing aid’ further refers to a device such as an earphone or a headset adapted to receive audio signals electronically, possibly modifying the audio signals and providing the possibly modified audio signals as audible signals to at least one of the user's ears. Such audible signals may e.g. be provided in the form of acoustic signals radiated into the user's outer ears, acoustic signals transferred as mechanical vibrations to the user's inner ears through the bone structure of the user's head and/or through parts of the middle ear as well as electric signals transferred directly or indirectly to the cochlear nerve of the user.
The hearing aid may be configured to be worn in any known way, e.g. as a unit arranged behind the ear with a tube leading radiated acoustic signals into the ear canal or with a loudspeaker arranged close to or in the ear canal, as a unit entirely or partly arranged in the pinna and/or in the ear canal, as a unit attached to a fixture implanted into the skull bone, as an entirely or partly implanted unit, etc. The hearing aid may comprise a single unit or several units communicating electronically with each other.
More generally, a hearing aid comprises an input transducer for receiving an acoustic signal from a user's surroundings and providing a corresponding input audio signal and/or a receiver for electronically (i.e. wired or wirelessly) receiving an input audio signal, a (typically configurable) signal processing circuit for processing the input audio signal and an output means for providing an audible signal to the user in dependence on the processed audio signal. In some hearing aids, an amplifier may constitute the signal processing circuit. The signal processing circuit typically comprises one or more (integrated or separate) memory elements for executing programs and/or for storing parameters used (or potentially used) in the processing and/or for storing information relevant for the function of the hearing aid and/or for storing information (e.g. processed information, e.g. provided by the signal processing circuit), e.g. for use in connection with an interface to a user and/or an interface to a programming device. In some hearing aids, the output means may comprise an output transducer, such as e.g. a loudspeaker for providing an air-borne acoustic signal or a vibrator for providing a structure-borne or liquid-borne acoustic signal. In some hearing aids, the output means may comprise one or more output electrodes for providing electric signals.
In some hearing aids, the vibrator may be adapted to provide a structure-borne acoustic signal transcutaneously or percutaneously to the skull bone. In some hearing aids, the vibrator may be implanted in the middle ear and/or in the inner ear. In some hearing aids, the vibrator may be adapted to provide a structure-borne acoustic signal to a middle-ear bone and/or to the cochlea. In some hearing aids, the vibrator may be adapted to provide a liquid-borne acoustic signal to the cochlear liquid, e.g. through the oval window. In some hearing aids, the output electrodes may be implanted in the cochlea or on the inside of the skull bone and may be adapted to provide the electric signals to the hair cells of the cochlea, to one or more hearing nerves, to the auditory cortex and/or to other parts of the cerebral cortex.
A ‘hearing system’ refers to a system comprising one or two hearing aids, and a ‘binaural hearing system’ refers to a system comprising two hearing aids and being adapted to cooperatively provide audible signals to both of the user's ears. Hearing systems or binaural hearing systems may further comprise one or more ‘auxiliary devices’, which communicate with the hearing aid(s) and affect and/or benefit from the function of the hearing aid(s). Auxiliary devices may be e.g. remote controls, audio gateway devices, mobile phones (e.g. SmartPhones), public-address systems, car audio systems or music players. Hearing aids, hearing systems or binaural hearing systems may e.g. be used for compensating for a hearing-impaired person's loss of hearing capability, augmenting or protecting a normal-hearing person's hearing capability and/or conveying electronic audio signals to a person.
Embodiments of the disclosure may e.g. be useful in applications such as hearing instruments, headsets, ear phones, active ear protection systems, or combinations thereof or in development systems for such devices.
A time frequency representation of time variant signal x(n) may in the present disclosure be denoted x(k,m), or alternatively xk,m or alternatively xk(m), without any intended difference in meaning, where k denotes frequency and n and m denote time, respectively.
The aspects of the disclosure may be best understood from the following detailed description taken in conjunction with the accompanying figures. The figures are schematic and simplified for clarity, and they just show details to improve the understanding of the claims, while other details are left out. Throughout, the same reference numerals are used for identical or corresponding parts. The individual features of each aspect may each be combined with any or all features of the other aspects. These and other aspects, features and/or technical effect will be apparent from and elucidated with reference to the illustrations described hereinafter in which:
The figures are schematic and simplified for clarity, and they just show details which are essential to the understanding of the disclosure, while other details are left out. Throughout, the same reference signs are used for identical or corresponding parts.
Further scope of applicability of the present disclosure will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the disclosure, are given by way of illustration only. Other embodiments may become apparent to those skilled in the art from the following detailed description.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practised without these specific details. Several aspects of the apparatus and methods are described by various blocks, functional units, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements”). Depending upon particular application, design constraints or other reasons, these elements may be implemented using electronic hardware, computer program, or any combination thereof.
The electronic hardware may include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. Computer program shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
The present application relates to the field of hearing devices, e.g. hearing aids, in particular to speech intelligibility prediction. The topic of Speech Intelligibility Prediction (SIP) has been widely investigated since the introduction of the Articulation Index (AI) [French & Steinberg; 1947], which was later refined and standardized as the Speech Intelligibility Index (SII) [ANSI S3.5-1997]. While the research interest initially came from the telephone industry, the possible application to hearing aids and cochlear implants has recently gained attention, see e.g. [Taal et al.; 2012] and [Falk et al.; 2015].
The SII predicts monaural intelligibility in conditions with additive, stationary noise. Another early and highly popular method is the Speech Transmission Index (STI), which predicts the intelligibility of speech, which has been transmitted through a noisy and distorting transmission system (e.g. a reverberant room). Many additional SIP methods have been proposed, mainly with the purpose of extending the range of conditions under which predictions can be made.
For SIP methods to be applicable in relation to binaural communication devices such as hearing aids, the operating range of the classical methods must be expanded in two ways. Firstly, they must be able to take into account the non-linear processing that typically happens in such devices. This task is complicated by the fact that many SIP methods assume knowledge of the clean speech and interferer in separation; an assumption which is not meaningful when the combination of speech and noise has been processed non-linearly. One example of a method which does not make this assumption, is the STOI measure [Taal et al.; 2011] which predicts intelligibility from a noisy/processed signal and a clean speech signal. The STOI measure has been shown to predict well the influence on intelligibility of multiple enhancement algorithms. Secondly, SIP methods must take into account the fact that signals are commonly presented binaurally to the user. Binaural auditory perception provides the user with different degrees of advantage, depending on the acoustical conditions and the applied processing [Bronkhorst; 2000]. Several SIP methods have focused on predicting this advantage. Existing binaural methods, however, can generally not provide predictions for non-linearly processed signals.
A setup of a binaural intrusive speech intelligibility predictor unit BSIP in combination with an evaluation unit EVAL is illustrated in
The clean (target) speech signals (xl, xr) as presented to the left and right ears of the listener from a given acoustic (target) source in the environment of the listener (at a given location relative to the user) may be generated from an acoustic model of the setup including measured or modelled head related transfer functions (HRTF) to provide appropriate frequency and angle dependent interaural time (ITD) and level differences (ILD). The contributions (ni,l, ni,r) as presented to the left and right ears of the listener of individual noise sources Ni, i=1, 2, . . . , Ns, Ns being the number of noise sources considered (e.g. equal to one or more), located at different positions around the listener may likewise be determined from an acoustic model of the setup. Thereby, noisy (e.g. un-processed) signals (yl, yr) comprising the target speech as presented to the left and right ears of the listener may be provided as the sum of the respective clean (target) speech signals (xl, xr) and the noise signals (ni,l, ni,r) of individual noise sources Ni, i=1, 2, . . . , Ns, as presented to the left and right ears of the listener (cf. e.g.
Alternatively, the clean (target) speech signals (xl, xr) and noisy (e.g. un-processed) signals (yl, yr) as presented to the left and right ears of a listener may be measured in a specific geometric setup, e.g. using a dummy head model (e.g. performed in a sound studio with a head-and-torso-simulator (HATS, Head and Torso Simulator 4128C from Brüel & Kjær Sound & Vibration Measurement A/S)) (cf. e.g.
Hence, in an embodiment, the clean and noisy signals as presented to the left and right ears of the listener and used as inputs to the binaural speech intelligibility predictor unit are provided as artificially generated and/or measured signals.
The exemplary measure as shown in
In the embodiment of an intrusive binaural speech intelligibility prediction system shown in
In [Andersen et al.; 2015], a binaural extension of the STOI measure—the Binaural STOI (BSTOI) measure—was proposed. The BSTOI measure has been shown to predict well the intelligibility (including binaural advantage) obtained in conditions with a frontal target and a single point noise source in the horizontal plane. The BSTOI measure was also shown to predict the intelligibility of diotic speech which had been processed by ITFS (Ideal Time Frequency Segregation).
In the present application an improved version of the BSTOI measure is presented, which is computationally less demanding and, unlike BSTOI, produces deterministic results. The proposed measure has the advantage of being able to predict intelligibility in conditions where both binaural advantage and non-linear processing simultaneously influence intelligibility. To the knowledge of the present inventors, no other SIP method is capable of producing predictions in conditions where intelligibility is affected by both. We refer to the improved binaural speech intelligibility measure as the Deterministic BSTOI (DBSTOI) measure.
The DBSTOI measure scores intelligibility based on four signals: The noisy/processed signal as presented to the left and right ears of the listener and a clean speech signal, also at both ears. The clean (essentially noise-free) signal should be the same as the noisy/processed one, but with neither noise nor processing. The DBSTOI measure produces a score in the range 0 to 1. The aim is to have a monotonic correspondence between the DBSTOI measure and measured intelligibility, such that a higher DBSTOI measure corresponds to a higher intelligibility (e.g. percentage of words heard correctly).
The DBSTOI measure is based on combining a modified Equalization Cancellation (EC) stage with the STOI measure as proposed in [Andersen et al.; 2015]. Here, we introduce further structural changes in the STOI measure to allow for better integration with the EC-stage. This allows for computing the measure deterministically and in closed form, contrary to the BSTOI measure [Andersen et al.; 2015], which is computed using Monte Carlo simulation.
The structure of the DBSTOI measure is shown in
Specific Example:
As a specific example of the proposed type of binaural intelligibility predictor, the DBSTOI measure as described in the following. A block diagram of the binaural speech intelligibility prediction unit providing this specific measure is shown in
An outline of the procedure of computing the DBSTOI measure is given by:
Advantageously, the time shift and amplitude adjustment factors in step 2 are determined independently for each short envelope segment and are determined such as to maximize the correlation between the envelopes. This corresponds to the assumption that the human brain uses the information from both ears such as to make speech as intelligible as is possible. The final number typically lies in the interval between 0 to 1, where 0 indicates that the noisy/processed signal is much unlike the clean signal and should be expected to be unintelligible, while numbers close to 1 indicate that the noisy/processed signal is close to the clean signal and should be expected to be highly intelligible.
Step 1: TF Decomposition
The first step (cf. e.g. Step 1 in
Step 2: EC Processing
The second step (cf. e.g. Step 2 in
A combined clean signal is obtained by relatively time shifting and amplitude adjusting the left and right clean signals and thereafter subtracting one from the other. The same is done for the noisy/processed signals to obtain a single noisy/processed signal. The relative time shift of τ (seconds) and amplitude adjustment of γ (dB) is given by the factor:
λ=10(γ+Δγ)/40ejω(τ+Δτ)/2 (1)
where Δτ and Δγ are uncorrelated noise sources which model imperfections of the human auditory system of a normally hearing person. The resulting combined clean signal is given by:
xk,m=λxk,m(l)−λ−1xk,m(r) (2)
A combined noisy/processed TF-unit, yk,m, is obtained in a similar manner (using the same value of λ).
The uncorrelated noise sources, Δτ and Δγ, are normally distributed with zero mean and standard deviation:
Following the principle introduced in [Andersen et al.; 2015], the values γ and τ are determined such as to maximize the scoring of intelligibility. This is further described below.
Step 3: Intelligibility Prediction
At this point the four input signals have been condensed to two signals: a clean signal, xk,m, and a noisy/processed signal, yk,m. We compute an intelligibility score for these signals by use of a variation of the STOI measure. For mathematical tractability, we use power envelopes rather than magnitude envelopes as originally proposed in STOI [Taal et al.; 2011]. This is also done in [Taal et al.; 2012] and appears not to have a significant effect on predictions. Furthermore, we discard the clipping mechanism contained in the original STOI, as also done in [Taal et al.; 2012]. We have seen no indication that this negatively influences results.
The clean and processed signal power envelope is determined in Q=15 third octave bands (cf. blocks Envelope extraction in
where α=10(γ+Δγ)/20 and:
Xq,m(l)/(r)=Σk=k
where superscript c indicates the correlation between the left and right channels and where k1(q) and k2(q) denote the lower and upper DFT bins for the qth third octave band, respectively, and ωq is the center frequency of the qth frequency band. The approximate equality is obtained by inserting (1) and (2) and assuming that the energy in each third octave band is contained at the center frequency. A similar procedure for the processed signal yields third octave power envelopes, Yq,m.
If we assume that the input signals are wide sense stationary stochastic processes, the power envelopes, Xq,m and Yq,m are also stochastic processes, due to the stochastic nature of the input signals as well as the noise sources, Δτ and Δγ, in the EC stage. An underlying assumption of STOI is that intelligibility is related to the correlation between clean and noisy/processed envelopes (cf. e.g. [Taal et al.; 2011]):
where the expectation is taken across both input signals and the noise sources in the EC stage.
To estimate ρg, the power envelopes are arranged into vectors of N=30 samples (cf. e.g. [Taal et al.; 2011] and blocks Short-time segmentation in
xq,m=[Xq,m−N+1,Xq,m−N+2, . . . ,Xq,m]T. (8)
Similar vectors, yq,m∈N×1 are defined for the processed signal.
An N-sample estimate of ρq across the input signals is then given by:
where μ(·) denotes the mean of the entries in the given vector, EΔ is the expectation across the noise in the EC stage and 1 is the vector of all ones (cf. block Correlation coefficient in
EΔ[(xq,m−μx
where
and similarly for the noisy/processed signal. An expression for EΔ[∥xq,m−μx
The final DBSTOI measure is obtained by estimating the correlation coefficients, {circumflex over (ρ)}q,m, for all frames, m, and frequency bands, q, in the signal and averaging across these [Taal et al.; 2011];
where Q and M is the number of frequency bands and the number of frames, respectively (cf. block Average in
It can be shown that whenever the left and right ear inputs are identical, the DBSTOI measure produces scores which are identical those of the monaural STOI (that is, the modified monaural STOI measure based on (5) and without clipping).
Determination of γ and τ
Finally, we consider the parameters γ and τ. These parameters are determined individually for each time unit, m, and third octave band, q, such as to maximize the final DBSTOI measure (cf. feedback loop from output DBSTOI to blocks Modified (⅓ octave) EC-stage in
{circumflex over (ρ)}q,m=maxγτ{circumflex over (ρ)}q,m(γ,τ). (16)
In general, the optimization may be carried out by evaluating {circumflex over (ρ)}q,m for a discrete set of γ and τ values and choosing the highest value.
In the present application, a number Q of (non-uniform) frequency sub-bands with sub-band indices q=1, 2, . . . , J is defined, each sub-band comprising one or more DFT-bins (cf. vertical Sub-band q-axis in
A target signal from target source S comprising speech (e.g. from a person or a loudspeaker) in left and right essentially noise-free (clean) target signals xl(n), xr(n), n being a time index, as received at the left and right hearing aids (HDL, HDR), respectively, when located at the left and right ears of the user can e.g. be recorded in a recording session, where each of the hearing aids comprise appropriate microphone and memory units. Likewise, a signal from a noise sound source Vi can be recorded as received at the left and right hearing aids (HDL, HDR), respectively, providing noise signals vil(n), vir(n). This can be performed for each of the sound sources Vi, i=1, 2, . . . , NV. Left and right noisy and/or processed versions yl(n), yr(n) of the target signal can then be composed by mixing (addition) of the noise-free (clean) left and right target signals xl(n), xr(n), and the left and right noise signals vil(n), vir(n), i=1, 2, . . . , NV. In other words left and right noisy and/or processed versions yl(n), yr(n) of the target signal can be determined as yl(n)=xl(n)+vil(n), and yr(n)=xr(n)+vir(n), i=1, 2, . . . , NV, respectively. These signals xl(n), xr(n), and yl(n), yr(n) can be forwarded to the binaural speech intelligibility predictor unit and a resulting speech intelligibility predictor dbin (or respective left dbin,l and right dbin,r predictors, cf. e.g.
Alternatively, the recorded (electric) noise-free (clean) left and right target signals xl(n), xr(n), and a mixture yl(n), yr(n) of the clean target source and noise sound sources as (acoustically) received at the left and right hearing aids and picked up by microphones of the respective hearing aids can be provided to the binaural speech intelligibility predictor unit and a resulting binaural speech intelligibility predictor dbin (alternatively denoted SI measure or DBSTOI) determined. Thereby the effect on the resulting binaural speech intelligibility predictor dbin of changes in location, type and level of the noise sound sources Vi can be evaluated (for a fixed sound source S).
By including a processing algorithm of a hearing aid, the binaural speech intelligibility prediction system can be used to test the effect of different algorithms on the resulting binaural speech intelligibility predictor. Alternatively or additionally, such setup can be used to test the effect of different parameter settings of a given algorithm (e.g. a noise reduction algorithm or a directionality algorithm) on the resulting binaural speech intelligibility predictor.
The setup of
The test system (TEST) comprises a user interface (UI) for initiating a test and/or for displaying results of a test. The test system further comprises a processing part (PRO) configured to provide predefined test signals, including a) left and right essentially noise-free versions xl, xr of a target speech signal and b) left and right noisy and/or processed versions yleft, yright of the target speech signal. The signals xl, xr, yleft, yright are adapted to emulate signals as received or being representative of acoustic signals as received at left and right ears of a listener. The signals may e.g. be generated as described in connection with
The test system (TEST) comprises a (binaural) signal processing unit (BSPU) that applies one or more processing algorithms to the left and right noisy and/or processed versions yleft, yright of the target speech signal and provides resulting processed signals uleft and uright.
The test system (TEST) further comprises a binaural hearing loss model (BHLM) for emulating the hearing loss (or deviation from normal hearing) of a user. The binaural hearing loss model (BHLM) receives processed signals uleft and uright from the binaural signal processing unit (BSPU) and provides left and right modified processed signals yl and yr, which are fed to the binaural speech intelligibility prediction unit (BSIP) as the left and right noisy and/or processed versions of the target signal. Simultaneously, the clean versions of the target speech signals xl, xr, are provided from the processing part (PRO) of the test system to the binaural speech intelligibility prediction unit (BSIP). The processed signals uleft and uright may e.g. be fed to respective loudspeakers (indicated in dotted line) for acoustically presenting the signals to a listener.
The processing part (PRO) of the test system is further be configured to receive the resulting speech intelligibility predictor value SI measure and to process and/or present the result of the evaluation of the listeners' intelligibility of speech in the current noisy and processed signals uleft and uright via the user interface UI. Based thereon, the effect of the current algorithm (or a setting of the algorithm) on speech intelligibility can be evaluated. In an embodiment, a parameter setting of the algorithm is changed in dependence of the value of the present resulting speech intelligibility predictor value SI measure (e.g. manually or automatically, e.g. according to a predefined scheme, e.g. via control signal cntr).
The test system (TEST) may e.g. be configured to apply a number of different (e.g. stored) test stimuli comprising speech located at different positions relative to the listener, and to mix it with one or more different noise sources, located at different positions relative to the listener, and having configurable frequency content and amplitude shaping. The test stimuli are preferably configurable and applied via the user interface (UI).
Intelligibility-Based Signal Selection.
Option 1) has the advantage that the hearing instrument microphone signals (yl,yr) are recorded binaurally. Hereby the spatial perception of the speech signal is essentially correct, and the spatial cues may assist the listener to better understand the target talker. Furthermore, the (potential) acoustic noise present in the microphone signals of the hearing aid user may be reduced using the external microphone signal as side information (see e.g. our co-pending European patent application EP15190783.9 filed at the European Patent Office on 20 Oct. 2015), which is incorporated herein by reference. Even so, the SNR in this enhanced signal may still be very poor compared to the SNR at the external microphone.
Option 2) has the advantage that the SNR of the signal (x) picked up at the external microphone (M) close to the mouth of the target talker (TLK) most likely is much better than the SNR at the microphones of hearing instruments (HDL, HDR). While this signal (x) can be presented to the hearing aid user (U), the disadvantage is that we only have a mono version to present, so that any binaural spatial cues have to be restored artificially (see e.g. EP15190783.9 as referred to above).
For that reason, for high signal to noise ratio situations, where intelligibility degradation is not a problem, it is better to present the processed signals originally recorded at the hearing instrument microphones. On the other hand, if the SNR is very poor, it may be an advantage to trade the spatial cues for a better signal to noise ratio.
In order to decide which signal is the best to present to the listener in a given situation, a speech intelligibility model may be used. Most existing speech intelligibility models are monaural, see e.g. the one described in [Taal et al., 2011], while a few existing ones work on binaural signals, e.g. [Beutelmann&Brand; 2006]. For the idea presented in the present application, better performance is expected with a binaural model, but the basic idea does not require a binaural model. Most speech intelligibility models assume that a clean reference is available. Based on this clean reference signal and the noisy (and potentially processed) signal, it is possible to predict the speech intelligibility of the noisy/processed signal. With the wireless microphone situation described above and depicted in
So far, a binary choice between presenting 1) the speech signal picked up by the hearing instrument microphones, and 2) the speech signal picked up by the wireless microphone has been discussed. It may be useful to generalize this idea. Specifically, one could present an appropriate combination of the two signals. In particular, for linear combinations, the presented signal ulocal is given by
ulocal=a*ylocal+(1−a)*xwireless,
where ylocal is the microphone signal of the hearing aid user (local=left or right), and xwireless is the signal (=signal x in
uleft=al*yleft+(1−al)*xlr, and
uright=ar*yright+(1−ar)*xlr.
The left and right mixing units MIXl, MIXr are configured to apply mixing constants al, ar as indicated in the above equations via mixing control signals mxl, mxr.
In an embodiment, the binaural hearing system is configured to provide that 0<al, ar<1. In an embodiment, the binaural hearing system is configured to provide that 0≤al, ar≤1.
In an embodiment, al=ar=a and determined from a the binaural speech intelligibility model, so that
uleft=a*yleft+(1−a)*xlr, and
uright=a*yright+(1−a)*xlr.
Thus the mixing control signals mxl, mxr (cf.
In an embodiment, the binaural hearing system is configured to provide that 0<a<1. In an embodiment, the binaural hearing system is configured to provide that 0≤a≤1.
In an embodiment, the mixing constant(s) is(are) adaptively determined based on an estimate of the resulting left and right signals uleft and uright based on an optimization of the speech intelligibility predictor provided by the BSIP unit. An embodiment, of a binaural hearing system implementing an adaptive optimization of the mixing ratio of clean and noisy versions of the target signal is described in the following (
In the embodiment of
Each of the hearing aids (HDL, HDR) comprise two microphones, a signal processing unit (SPU), a mixing unit (MIX), and a loudspeaker (SPl, SPr). Additionally, one or both of the hearing aids comprise a binaural speech intelligibility unit (BSIP). The two microphones of each of the left and right hearing aids each pick up a—potentially noisy (time varying) signal y(t) (cf. y1,left, y2,left and y1,right, y2,right in
Based on binaural speech intelligibility prediction system (BSIP), the signal processing units (SPU) of each hearing aid may be (individually) adapted (cf. control signals dbin,l, dbin,r). Since, in the embodiment of
In
S1. Providing or receiving a target signal comprising speech in a) left and right essentially noise-free versions xl, xr and in b) left and right noisy and/or processed versions yl, yr, said signals being received or being representative of acoustic signals as received at left and right ears of a listener;
S2. Providing time-frequency representations xl(k,m) and yl(k,m) of said left noise-free version xl and said left noisy and/or processed version yl of the target signal, respectively, k being a frequency bin index, k=1, 2, . . . , K, and m being a time index;
S3. Providing time-frequency representations xr(k,m) and yr(k,m) of said right noise-free version xr and said right noisy and/or processed version yr of the target signal, respectively, k being a frequency bin index, k=1, 2, . . . , K, and m being a time index;
S4. Receiving and relatively time shifting and amplitude adjusting the left and right noise-free versions xl(k,m) and xr(k,m), respectively, and subsequently subtracting the time shifted and amplitude adjusted left and right noise-free versions xl′(k,m) and xr′(k,m), respectively, of the target signals from each other, and providing a resulting noise-free signal x(k,m);
S5. Receiving and relatively time shifting and amplitude adjusting the left and right noisy and/or processed versions yl(k,m) and yr(k,m), respectively, and subsequently subtracting the time shifted and amplitude adjusted left and right noisy and/or processed versions y′l(k,m) and y′r(k,m), respectively, of the target signals from each other, and providing a resulting noisy and/or processed signal y(k,m);
S6. Providing a final binaural speech intelligibility predictor value SI measure indicative of the listener's perception of said noisy and/or processed versions yl, yr of the target signal based on said resulting noise-free signal x(k,m) and said resulting noisy and/or processed signal y(k,m);
S7. Repeating steps S4-S6 to optimize the final binaural speech intelligibility predictor value SI measure to indicate a maximum intelligibility of said noisy and/or processed versions yl, yr of the target signal by said listener.
It is intended that the structural features of the devices described above, either in the detailed description and/or in the claims, may be combined with steps of the method, when appropriately substituted by a corresponding process.
As used, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well (i.e. to have the meaning “at least one”), unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element but an intervening elements may also be present, unless expressly stated otherwise. Furthermore, “connected” or “coupled” as used herein may include wirelessly connected or coupled. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. The steps of any disclosed method is not limited to the exact order stated herein, unless expressly stated otherwise.
It should be appreciated that reference throughout this specification to “one embodiment” or “an embodiment” or “an aspect” or features included as “may” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the disclosure. The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects.
The claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more.
Accordingly, the scope should be judged in terms of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
16160309 | Mar 2016 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
20110224976 | Taal et al. | Sep 2011 | A1 |
20110305345 | Bouchard et al. | Dec 2011 | A1 |
20140247956 | Andersen et al. | Sep 2014 | A1 |
20160234610 | Jensen | Aug 2016 | A1 |
Entry |
---|
Andersen et al., “A binaural short time objective intelligibility measure for noisy and enhanced speech,” Interspeech, Dresden, Germany, Sep. 6-10, 2015, pp. 2563-2567. |
Andersen et al., “A method for predicting the intelligibility of noisy and non-linearly enhanced binaural speech,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, Mar. 20-25, 2016, pp. 4995-4999. |
Bronkhorst, “The Cocktail Party Phenomenon: A Review of Research on Speech Intelligibility in Multiple-Talker Conditions,” Acta Acustica United with Acustica, vol. 86, No. 1, Jan. 2000, pp, 117-128 (13 pages total). |
Durlach, “Equalization and Cancellation Theory of Binaural Masking-Level Differences,” J. Acoust. Soc. Am., vol. 35, No. 8, Aug. 1963, pp. 1206-1218. |
Falk et al., “Objective Quality and Intelligibility Prediction for Users of Assistive Listening Devices,” IEEE Signal Processing Magazine, vol. 32, No. 2, Mar. 2015, pp. 1-24. |
Taal et al., “An Algorithm for Intelligibility Prediction of Time—Frequency Weighted Noisy Speech,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, No. 7, Sep. 2011, pp. 2125-2136 (13 pages total). |
Taal et al., “Matching pursuit for channel selection in cochlear implants based on an intelligibility metric,” 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, Aug. 27-31, 2012, pp. 504-508. |
Beutelmann et al., “Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners”, J. Acoust. Soc. Am., vol. 120, No. 1, Jul. 2006, pp. 331-342. |
Number | Date | Country | |
---|---|---|---|
20170272870 A1 | Sep 2017 | US |