METHOD FOR PREDICTING THERAPEUTIC EFFECT OF IMMUNOTHERAPY ON CANCER PATIENT, AND GENE SET AND KIT TO BE USED IN THE METHOD

Abstract
Provided is a gene set which is useful for predicting the therapeutic effect of an immunotherapy on a cancer patient. Also provided is a method for examining whether an immunotherapy is efficacious or not, said method comprising quantifying the expression amount of each of the genes constituting the aforesaid gene set. This examination method is useful for determining a therapeutic strategy for the cancer patient.
Description
TECHNICAL FIELD

The present invention relates to a method for predicting therapeutic effect of immunotherapy on a cancer patient and a gene set and a kit for use in the method, etc.


BACKGROUND ART

Immunotherapy for various cancers has not yet been the optimum treatment for every patient, although it is effective in some cases. One reason for that is because the immunotherapy is mediated by immunological competence, which differs by individuals, in order to suppress the growth of cancer cells. So far, a method for predicting effect of cancer immunotherapy has not been found. Thus, the efficacy cannot be evaluated until the treatment is actually performed. Although a method for predicting effect of chemotherapy on a breast cancer patient has been known to be performed by measuring a gene expression level, the method is complicated method that requires combining gene expression with other factors, and also, the method is intended for predicting only effect of chemotherapy for breast cancer (Patent Document 1). A method for predicting therapeutic effect of cancer immunotherapy or prognosis of a patient after immunotherapy has been unknown so far.


Patent Document 1



  • JP-A-2008-536094



DISCLOSURE OF THE INVENTION
Problem to be Solved by the Invention

An object of the present invention is to provide a method for accurately predicting therapeutic effect immunotherapy on a cancer patient.


Means for Solving the Problem

The present inventors attempted to predict therapeutic effect of cancer immunotherapy based on the results which had been obtained by conducting peptide vaccine therapy for prostate cancer patients over long years. First, gene expression profiles in prostate cancer patients before or after peptide vaccine therapy were analyzed with DNA microarrays. Subsequently, the patients were classified into a good prognosis group and a poor prognosis group on the basis of a survival time after the treatment, and a gene or a gene group was selected for accurately predicting whether the patient belongs to the good prognosis group or the poor prognosis group based on the expression level before the treatment. Then, it was confirmed that the therapeutic effect of immunotherapy could be predicted from the expression level(s) of the selected gene(s). In this way, the present invention has been completed.


Accordingly, in one aspect, the present invention provides a method for predicting effect of immunotherapy on a cancer patient, comprising a step of


(1) measuring an expression level of each gene included in a gene set in a sample obtained from the cancer patient before or after the immunotherapy, wherein the gene set consists of at least one gene selected from the group of genes shown in Table 1, 19, 34, or 35.


The method for predicting effect of immunotherapy on a cancer patient may further comprise a step of


(2) determining prognosis of the patient by discriminant analysis using the expression level.


In an another aspect, the present invention provides a gene set for predicting effect of immunotherapy on a cancer patient, consisting of at least one gene selected from the group of genes shown in Table 1, 19, 34 or 35, and a biomarker for predicting effect of immunotherapy on a cancer patient, consisting of at least one gene selected from the group of genes shown in Table 1, 19, 34 or 35.


In a further aspect, the present invention provides a probe and a primer for each gene included in the gene set, and a kit for predicting effect of immunotherapy on a cancer patient, comprising a probe and primers for each gene included in the gene set and/or an antibody specifically recognizing an expression product of each gene included in the gene set.


In a still further aspect, the present invention provides a method for screening for a cancer patient for whom immunotherapy is effective, comprising the step of (1) measuring the expression level of each gene included in a gene set consisting of at least one gene selected from the group of genes shown in Table 1, 19, 34, or 35 in a sample obtained from the cancer patient before the immunotherapy.


The method for screening for a cancer patient may further comprise a step of


(2) determining prognosis of the patient by discriminant analysis using the expression level.


In a still further aspect, the present invention provides a method for predicting effect of immunotherapy on a cancer patient, comprising a step of


measuring an expression level of IL-6 protein in blood obtained from the cancer patient before or after the immunotherapy.


The level of IL-6 protein in blood can also serve as a biomarker for predicting effect of immunotherapy on a cancer patient.


Effects of the Invention

According to the present invention, effect of immunotherapy on a patient can be predicted by determination of gene expression profiles of the cancer patient before the start of immunotherapy. The present invention enables prediction of patients for whom immunotherapy is not effective (poor prognosis group), and the present invention provides useful information for choosing a treatment method for cancer patients.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the distribution of 16968 genes in t-test. The ordinate represents the level of significance between two groups, and the abscissa represents the logarithm of the gene expression ratio between two groups. n=40 (20 short-lived individuals and 20 long-lived individuals);



FIG. 2 shows the distribution of 16968 genes in Wilcoxon test. The ordinate represents the level of significance between two groups, and the abscissa represents the gene expression ratio between two groups. n=40 (20 short-lived individuals and 20 long-lived individuals);



FIG. 3 shows the distribution of 13 genes in t-test. The ordinate represents the level of significance between two groups, and the abscissa represents the logarithm of the gene expression ratio between two groups. n=40 (20 short-lived individuals and 20 long-lived individuals);



FIG. 4 shows the distribution of 13 genes in Wilcoxon test. The ordinate represents the level of significance between two groups, and the abscissa represents the gene expression ratio between two groups. n=40 (20 short-lived individuals and 20 long-lived individuals);



FIG. 5 shows genes advantageous for discrimination. The ordinate represents the frequencies of the genes for use in gene sets that offers a discrimination rate of 80% or more;



FIG. 6 shows the difference in gene expression in peripheral blood mononuclear cells (PBMC5) between a long-lived group and a short-lived group before vaccination (A) or after vaccination (B);



FIG. 7 shows results of determining the gene expression levels of DEFA1 (A), DEFA4 (B), CEACAM8 (C) and MPO (D) in the peripheral blood mononuclear cells (PBMCs) of a long-lived group (Long) and a short-lived group (Short) after vaccination by real-time PCR. The expression level of each gene was determined with GAPDH as an internal standard; and



FIG. 8 shows results of determining the level of IL-6 protein in the plasmas of patients in a long-lived group (Long) and a short-lived group (Short). Mann-Whitney test was used as a statistical test.





BEST MODE FOR CARRYING OUT THE INVENTION

In one aspect, the present invention provides a method for predicting effect of immunotherapy on a cancer patient, comprising measuring the expression levels of one or more genes in a sample obtained from the cancer patient. For the above-described prediction method, a gene set which is available for accurate prediction of whether a cancer patient after given immunotherapy belongs to a good prognosis group or a poor prognosis group based on the expression level is utilized. For the above-described prediction method, an expression level of at least one gene selected from the group of genes shown in Table 1, 19, 34, or 35 is utilized. The above-described prediction method can be used as a method for predicting a patient for whom immunotherapy is not expected to be effective; a patient for whom immunotherapy is expected to be effective; or a patient who is resistant to immunotherapy, and determining whether immunotherapy is applicable or not.


A gene set, which is used for the above-described prediction method provided as one aspect of the present invention, can be selected arbitrarily from 54 genes shown in Table 1, 100 genes shown in Table 19, 36 genes shown in Table 34, 19 genes shown in Table 35 and/or IL-6 gene without being limited by the number and the kind of the gene.


Preferably, the gene set for use in the above-described prediction method provided as one aspect of the present invention consists of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 genes selected from 13 genes shown in Table 2. The gene set preferably comprises 4 genes: LOC653600, TNFRSF19, P4HA1, and SYNE1. Specific examples of the gene set include a gene set consisting of LOC653600, TNFRSF19, P4HA1 and SYNE1; a gene set consisting of L00653600, TNFRSF19, G3BP2, ZNF83, C6orf222, ZBTB20, P4HA1, GPIBA, HLA-A29.1, SYNE1 and NAP1L1; and gene sets represented by No. 1 of Table 10, Nos. 1 to 18 of Table 11, Nos. 1 to 55 of Table 12, Nos. 1 to 71 of Table 13, Nos. 1 to 63 of Table 14, Nos. 1 to 45 of Table 15, Nos. 1 to 22 of Table 16 or Nos. 1 to 7 of Table 17.


In another preferable embodiment, the gene set for use in the above-described prediction method provided as one aspect of the present invention consists of 1 to 29 genes (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 genes), selected from 29 genes shown in Table 20. Specific examples of the gene set include gene sets shown in Tables 23 to 33. Those skilled in the art can appropriately select even a gene set comprising 12 or more genes according to the description of Examples.


In another preferable embodiment, the gene set for use in the above-described prediction method provided as one aspect of the present invention consists of at least one gene selected from genes shown in Table 34. The gene set preferably comprises 4 genes: DEFA1, DEFA4, CEACAM8 and MPO. Specific examples of the gene set include a gene set consisting of DEFA1, DEFA4, CEACAM8 and MPO, and a gene set consisting of at least one gene selected from the group consisting of DEFA1, DEAF3, DEFA4, ELA2, CSTG, CAMP, MPG, MMP9 and CEACAM8.


In another preferable embodiment, the gene set for use in the above-described prediction method provided as one aspect of the present invention consists of at least one gene selected from genes shown in Table 35 (PRKAR1A, LRRN3, PCDH17, TTN, LAIR2, RNASE3, CEACAM6, AZU1, HIST1H4C, PGLYRP1, CEACAM8, LCN2, MPO, CAMP, DEFA1, DEFA3, CTSG, DEFA4 and ELA2). The gene set preferably comprises 4 genes: LRRN3, PCDH17, HIST1H4C and PGLYRP1. Specific examples of the gene set include a gene set consisting of LRRN3, PCDH17, HIST1H4C and PGLYRP1, and a gene set consisting of at least one gene selected from the group consisting of LRRN3, PCDH17, HIST1H4C and PGLYRP1.


In another preferable embodiment, the gene set for use in the above-described prediction method provided as one aspect of the present invention consists of 11-6 gene or comprises 11-6 gene.


In another preferable embodiment, examples of the gene set for use in the above-described prediction method provided as one aspect of the present invention include a gene set consisting of at least one gene selected from the group consisting of LOC653600, TNFRSF19, P4HA1, SYNE1, DEFA1, DEFA4, CEACAM8, MPO, LRRN3, PCDH17, HIST1H4C and PGLYRP1, and a gene set comprising at least one gene selected from the group consisting of LOC653600, TNFRSF19, P4HA1, SYNE1, DEFA1, DEFA4, CEACAM8, MPO, LRRN3, PCDH17, HIST1H4C and PGLYRP1.


In the present specification, a cancer patient is not particularly limited as long as the cancer patient is a human. Examples thereof include patients with prostate cancer, pancreatic cancer, breast cancer, liver cancer or the like. The prostate cancer may be progressive recurrent prostate cancer.


In the present specification, an immunotherapy means a method for treating cancer by activating immune response to tumor antigen proteins in the cancer patient. Examples of immunotherapy include peptide vaccine therapy using tumor antigen peptides; adoptive immunotherapy using lymphocytes such as cytotoxic T cells or natural killer cells; DNA vaccine therapy which involves introducing viral vectors expressing tumor antigen proteins or tumor antigen peptides into organisms; and dendritic cell vaccine therapy which involves administering dendritic cells displaying tumor antigen peptides. One preferable example of the immunotherapy includes peptide vaccine therapy.


An expression level of each gene can be measured by a conventional method. Examples of the method for measuring the expression level include DNA microarray, DNA chip, PCR (including real-time PCR) and Northern blot methods. One preferable example of the method for measuring the expression level includes a DNA microarray method.


A DNA microarray method is performed using a microarray comprising a probe for a gene to be measured. One example of the available microarray includes HumanWG-6 v3.0 Expression BeadChip manufactured by Illumina, Inc. Alternatively, a probe for a gene to be measured may be synthesized and immobilized on an appropriate substrate such as slide glass to prepare a desired microarray. The method for preparing a microarray is well known in the art. The analysis of microarray data is also well known and can be performed with reference to, for example, “Microarrays for an Integrative Genomics” (translated by Yujin Hoshida, published by Springer-Verlag Tokyo, Inc.).


A sample of human patient for use in measurement of a gene expression level is not limited, and, for example, peripheral blood obtained from a patient can be used. Myeloid dendritic cells (MDCs), granulocytic MDSCs, peripheral blood mononuclear cells (PBMCs), granulocytes or erythrocytes in the peripheral blood may be used for the measurement of the gene expression level. Also, the patient-derived sample may be a sample obtained before immunotherapy, a sample obtained after immunotherapy, or samples obtained before and after immunotherapy. The above-described prediction method provided as one aspect of the present invention may be carried out using the sample obtained before immunotherapy in order to predict whether immunotherapy is not expected to be effective for the patient or immunotherapy is expected to be effective for the patient, and determine whether immunotherapy is applicable or not. Alternatively, the above-described prediction method provided as one aspect of the present invention may be carried out using the sample obtained after immunotherapy in order to predict whether or not after the sample is obtained, immunotherapy is expected to be effective for the patient, and determine whether further immunotherapy is applicable or not.


A measurement of a gene expression level using a DNA microarray method is, for example, described as follows. Firstly, total RNA is extracted from the peripheral blood a patient and purified. Subsequently, biotinylated cRNA is synthesized using Illumina TotalPrep RNA Amplification Kit (manufactured by Life Technologies Corp. Ambion)) or the like. This biotinylated cRNA is hybridized to a microarray and then reacted with Cy3-labeled streptavidin. The microarray after the reaction is scanned with a specific scanner. The Cy3 fluorescence f each spot can be quantified using specific software such as BeadStudio to obtain an expression level of each gene.


When a gene expression level is measured by PCR, for example, cDNA can be prepared from mRNA in a sample and used as a template in PCR to determine the gene expression level in the sample. For determination of a gene expression level by PCR, real-time PCR may be used. Primers for use in PCR can be designed appropriately by those skilled in the art to be capable of specifically hybridizing to a gene of interest. Also, for the real-time PCR, a probe that specifically hybridizes to a gene of interest and is bound with a fluorescent dye to allow determination of a PCR product is used. The probe can be designed appropriately by those skilled in the art. The real-time PCR may be performed using a fluorescent dye such as SYBR (registered trademark) Green.


Alternatively, an expression level of each gene may be measured by measuring an expression level of a protein which is an expression product of the gene. A protein localized in a cell membrane or a cytoplasm can be measured by flow cytometry using an antibody labeled with a fluorescent dye. Alternatively, an enzyme antibody method (ELISA), a Western blot method, or the like may be used.


The method for predicting effect of immunotherapy on a cancer patient provided as one aspect of the present invention comprises measuring an expression level of one or more genes in a sample obtained from the cancer patient and may further comprise conducting discriminant analysis using the measured expression level. As a result of the discriminant analysis, prognosis of the patient, such as whether the effect of immunotherapy would be observed, can be determined. The discriminant analysis can be carried out, for example, as described in Examples. Specifically, genes for use in the determination are selected, and discriminant functions based on known data (training data) are obtained. Then, the expression levels of the genes in a patient as a subject are applied thereto to calculate the probability of 1 (long life) or 0 (short life) for the patient. The prognosis of the patient is determined according results in which the probability exceeds 50% (long life (good prognosis) or short life (poor prognosis)). When the probability of long life (good prognosis) exceeds 50%, the patient is predicted to respond to the immunotherapy. By contrast, when the probability of short life (poor prognosis) exceeds 50%, the patient is predicted not respond to the immunotherapy.


The discriminant analysis can be conducted using statistical analysis software SAS (SAS Institute Japan Ltd.), statistical analysis software JMP (SAS Institute Japan Ltd.) or the like. The number of training data is not particularly limited. Those skilled in the art can appropriately determine the number of training data that achieves prediction.


Alternatively, a standard expression level (standard values of expression levels in long-lived or short-lived individuals) of genes for use in determination may be preliminarily determined for each of long-lived (good prognosis) and short-lived (poor prognosis) individuals in a sufficient number of cases (for example, 100 or 1000 cases). The standard value may be compared with the expression level of the gene in a patient as a subject to determine the prognosis of the patient. For example, when expression levels of DEFA1, DEFA4, CEACAM8 and MPO genes are higher than the standard values of the long-lived group, the patient is a patient for whom immunotherapy cannot be expected to be effective and is determined not to have good prognosis. The standard values of respective expression levels of DEFA1, DEFA4, CEACAM8 and MPO genes can be selected, for example, as shown in FIG. 7.


In Examples described below, genes were selected on the basis of a survival time of 480 days, and the accuracy of the determination was confirmed on the basis of a survival time of 480 days. However, 40 prostate cancer patients of Examples were only patients with a survival time of 900 days or longer or a survival time of 300 days or shorter. Therefore, the same gene set as that of the present invention can be selected even on the basis of any of survival times of 301 to 899 days. Accordingly, the number of days on which the definition of long life or short life is based may be any number of days within the survival time range of 301 to 899 days and is not limited to 480 days.


The above-described method for predicting effect of immunotherapy on a cancer patient provided as one aspect of the present invention can be used as a method for predicting whether immunotherapy is not expected to be effective for a patient, or whether immunotherapy is expected to be effective for a patient, and determine whether immunotherapy is applicable or not. Accordingly, the above-described method for predicting effect of immunotherapy on a cancer patient may be a method for screening for a cancer patient predicted to respond to immunotherapy.


In addition, a physician can determine a therapeutic strategy for a cancer patient on the basis of results obtained by the above-described method for predicting effect of immunotherapy on a cancer patient. Accordingly, in one aspect, the present invention provides a method for diagnosing or treating cancer, comprising performing the above-described method for predicting effect of immunotherapy on a cancer patient.


In one aspect, the present invention also provides a gene set that is used for predicting effect of immunotherapy on a cancer patient. The gene set is the same as the gene set for use in the above-described method for predicting effect of immunotherapy on a cancer patient provided as one aspect of the present invention and can be used for preparing a probe for a DNA microarray, a primer for PCR, or the like that is used in the prediction method of the present invention.


In one aspect, the present invention also provides a biomarker for predicting effect of immunotherapy on a cancer patient. In the present specification, the biomarker can serve as an index for predicting effect of immunotherapy. The biomarker may be a gene or may be a protein expressed therefrom. The gene set for use in the above-described method for predicting effect of immunotherapy on a cancer patient provided as one aspect of the present invention can be used as the biomarker. For example, the biomarker may be at least one gene selected from the group of genes shown in Table 1, 19, or 35; a gene set comprising LOC653600, TNFRSF19, P4HA1 and SYNE1; a gene set comprising DESA1, DEFA4, CEACAM8 and MPO; or a gene set comprising LRRN3, PCDH17, HIST1H4C and PGLYRP1. When DEFA1, DEFA4, CEACAM8 and MPO are used as biomarkers, the higher expression levels of these genes than the standard values of the long-lived group can serve as an index for predicting the patient not to respond to the immunotherapy.


Alternatively, a protein which is expression product of the gene set for use in the above-described method for predicting effect of immunotherapy on a cancer patient provided as one aspect of the present invention may be used as a biomarker for predicting effect of immunotherapy on a cancer patient. For example, IL-6 protein in blood may be used as a biomarker. The larger level of the IL-6 protein in the blood of a patient than the standard value of the long-lived group can serve as an index for predicting the patient not to respond to the immunotherapy. The standard value of the level of IL-6 protein in blood may be set to, for example, 4.8 pg/ml for the short-lived group and 3.3 pg/ml for the long-lived group with reference to FIG. 8.


In one aspect, the present invention also provides a probe, primers or an antibody that is available for measurement of the expression level of each gene in the gene set of the present invention or its gene expression product. The probe and the primers for each gene can be synthesized by a conventional method on the basis of sequence information about the gene. The probe and the primers have, for example, a sequence partially complementary to the sequence of each gene and can specifically hybridize to the gene.


As used herein, the term “specifically hybridize” refers to, for example, “hybridizing under stringent conditions”. The “stringent conditions” can be determined appropriately by those skilled in the art with reference to, for example, Molecular Cloning: A Laboratory Manual, 3rd edition (2001). Examples thereof include 0.2×SSC, 0.1% SDS, and 65° C.


The primers can be designed to be capable of being used in PCR for amplifying each gene or a portion thereof. The sequence information about each gene can be obtained according to GenBank Accession numbers described in the tables of the present specification. Also, a method for preparing the antibody is well known in the art (“Antibodies: A Laboratory Manual”, Lane, H. D. et al. eds., Cold Spring Harbor Laboratory Press, New York, 1989).


For example, the respective probes and primers of DEFA1, DEFA4, CEACAM8 and MPO may be the oligonucleotides of SEQ ID NOs: 1 to 8 described in Examples.


The antibody may be a polyclonal antibody or may be a monoclonal antibody. Alternatively, the antibody may be an antibody fragment such as Fab, F(ab′)2 and Fv.


In one aspect, the present invention also provides a kit for predicting effect of immunotherapy on a cancer patient, comprising the above-described probe, the above-described primers and/or the above-described antibody.


The kit of the present invention is a kit that is used for, for example, DNA microarray, DNA chip, PCR (including real-time PCR), Northern blot, fluorescent antibody, enzyme antibody and Western blot methods. Examples of the kit for the DNA microarray method include those comprising a microarray comprising the above-described probe immobilized on an appropriate substrate.


The kit may also comprise, for example, an anti-IL-6 polyclonal antibody or an anti-IL-6 monoclonal antibody for determining the level of IL-6 protein in blood.


The kit may also comprise other necessary reagents according to the measurement method.


In one aspect, the present invention also provides a method for selecting a gene set for predicting effect of immunotherapy on a cancer patient. The method for selecting a gene set comprises, for example, step 1: a step of determining an expression level of a gene expressed in a sample derived from the cancer patient group where immunotherapy is effective for the patient (long-lived group) and where immunotherapy is not effective for the patient (short-lived group); step 2: a step of selecting a gene capable of serving as a marker for predicting effect of immunotherapy, on the basis of the difference in gene expression level between the group where immunotherapy is effective for the patient (long-lived group) and where immunotherapy is not effective for the patient (short-lived group) and statistically significant difference thereof; and step 3: a step of determining the best combination for predicting effect of immunotherapy by variable selection from the selected genes.


The difference in gene expression level may be evaluated, for example, on the basis of a value of log2 “expression level in a short-lived group/expression level in a long-lived group” after determining the expression level in the short-lived group/the expression level in the long-lived group.


The statistically significant difference may be determined by t-test and/or Wilcoxon test or may be determined by the Limma method (see Smyth. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology (2004) vol. 3, pp. Article).


For example, in the above-described step 2, a gene that satisfies the conditions of log2 “expression level in the short-lived group/expression level in the long-lived group”<−1.0 or >1.0 and P-value (limma)<0.01 may be selected.


The variable selection can be carried out appropriately by those skilled in the art. For example, the stepwise discriminant analysis (SDA) described in Sungwoo Kwon et al: DNA Microarray Data Analysis for Cancer Classification Based on Stepwise Discriminant Analysis and Bayesian Decision Theory. Genome Informatics 12: 252-254 (2001) may be carried out. Examples of SDA include the implementation of the following (i) to (iii):


(i) when Wilk's lambda is evidently decreased by adding one gene to a gene set, adding the gene to the gene set;


(ii) when Wilk's lambda is slightly increased by removing one gene from a gene set, removing the gene from the gene set; and


(iii) repeating the steps (i) and (ii) until the Wilk's lambda no longer changes from a statistical standpoint.


Hereinafter, the present invention will be further described with reference to Examples. However, the present invention is not intended to be limited to them.


EXAMPLE
Example 1
1: DNA Microarray Study of Gene Expression Profile Before Peptide Vaccine Therapy

The patient-derived samples used were peripheral blood that was obtained from each prostate cancer patient who gave informed consent according to a protocol approved by the ethics committee of Kurume University when the patient was diagnosed as having recurrent prostate cancer in the past clinical trial. 40 prostate cancer patients were examined for their gene expression profiles before peptide vaccine therapy using DNA microarrays (HumanWG-6 v3.0 Expression BeadChip manufactured by Illumina, Inc.). The prostate cancer patients were 20 individuals in a good prognosis group (survival time of 900 days or longer after peptide vaccine therapy) and 20 individuals in a poor prognosis group (survival time of 300 days or shorter after peptide vaccine therapy).


(I) RNA Extraction and Purification from Peripheral Blood of Patient


1. To the peripheral blood sample of each patient, TRIzol LS (manufactured by Invitrogen Corp.) was added at a ratio of 1:3 and mixed therewith.


2. 200 μL of chloroform with respect to 750 μL of the TRIzol LS solution was added and mixed therewith, followed by centrifugation.


3. The supernatant was transferred to a new tube, to which ethanol was added in an amount of 0.55 times the volume of the supernatant.


4. The sample of 3 was placed on the column of SV Total RNA Isolation System (manufactured by Promega Corp.) and applied to a filter.


5. The filter was washed with 500 μL of Wash Buffer.


6. Total RNA was eluted with 80 μL of Nuclease Free Water.


7. The concentration of the RNA was measured using a spectrophotometer, and the quality of the RNA was checked by electrophoresis using Experion System (manufactured by Bio-Rad Laboratories, Inc.).


(II) Synthesis of cRNA for Microarray Using Illumina TotaiPrep RNA Amplification Kit (Manufactured by Life Technologies Corp. (Ambion))


(1) Synthesis of single-stranded cDNA by reverse transcription


1. Nuclease Free Water was added to 500 μg of each total RNA to adjust the volume to 11 μL.


2. 9 μL of Reverse Transcription Master Mix was added to the solution of 1, and the mixture was incubated at 42° C. for 2 hours.


(2) Synthesis of Double-Stranded cDNA


1. 80 μL of Second Strand Master Mix was added to each tube of (1)2.


2. Each tube was incubated at 16° C. for 2 hours.


(3) cDNA Purification


1. 250 μL of cDNA Binding Buffer was added to each tube.


2. The solution of 1 was placed on cDNA Filter Cartridge and applied to a filter by centrifugation.


3. The filter was washed with 500 μL of Wash Buffer.


4. cDNA was eluted with 19 μL of Nuclease Free Water preheated to 50 to 55° C.


(4) cRNA Synthesis Through In Vitro Transcription Reaction


1. 7.5 μL of IVT Master Mix was added to the cDNA sample obtained in (3)4.


2. The tube of 1 was incubated at 37° C. for 14 hours.


3. 75 μL of Nuclease Free Water was added to the tube of 2.


(5) cRNA Purification


1. 350 μL of cRNA Binding Buffer was added to each tube.


2. 250 μL of 100% ethanol was added to each tube and mixed.


3. The sample of 2 was placed on cRNA Filter Cartridge and applied to a filter by centrifugation.


4. The filter was washed with 650 μL of Wash Buffer.


5. cRNA was eluted with 100 μL of Nuclease Free Water preheated to 50 to 55° C.


6. The concentration of the cRNA was measured on the basis of OD, and the cRNA was then used as a hybridization sample.


(III) Microarray Hybridization

(1) Preparation of cRNA for Hybridization


1. Nuclease Free Water was added to 500 μg of each total RNA to adjust the volume to 10 μL.


2. 20 μL of GEX-HYB was added to the solution of 1, and the mixture was incubated at 65° C. for 5 minutes.


(2) Hybridization


1. The prepared cRNA sample was applied to HumanWG-6 v3.0 Expression BeadChip loaded in a specific chamber.


2. The lid of the specific chamber was closed, followed by incubation at 55° C. for 18 hours.


(IV) Microarray Washing and Staining

(1) Washing of Array


1. The cover of the microarray was removed in Wash E1BC solution.


2. The array was immediately loaded in a slide rack and washed for 10 minutes in 1×High-Temp Wash buffer preheated to 55° C.


3. The array was washed for 5 minutes in Wash E1BC solution.


4. The array was washed for 5 minutes in ethanol.


5. The array was washed for 5 minutes in Wash E1BC solution.


6. 4 ml of Block E1 buffer was prepared in a staining-specific tray, and each array was loaded therein one by one and blocked at room temperature for 10 minutes.


7. 2 μL, of streptavidin-Cy3 with respect to 2 ml of Block E1 buffer was added to the staining-specific tray, and each array was loaded therein one by one, followed by staining at room temperature for 10 minutes.


8. The array was washed for 5 minutes in Wash E1BC solution and then dried by centrifugation.


(V) Scanning and Quantification

1. The array was loaded in a specific scanner manufactured by Illumina, Inc. and scanned in a standard mode.


2. After the completion of scanning, each spot on the microarray was quantified using specific software BeadStudio.


The obtained microarray data was normalized using VST (variance stabilizing transformation) and RSN (robust spline normalization). A gene expression level with presence probability <0.05 with respect to a negative control (gene expression level measured using a probe for a gene that was absent on the microarray) was determined to be significant. Genes with presence probability <0.05 in 70% or more of the 40 patients were used in the following experiments:


2: Selection of Gene for Use in Prediction

The prostate cancer patients of Example 1 were classified on the basis of a survival time after peptide vaccine therapy into a good prognosis group (long-lived group) with a survival time of 480 days or longer and a poor prognosis group (short-lived group) with a survival time shorter than 480 days. Genes that could significantly differentiate between two groups were selected. Analysis was conducted using t-test and Wilcoxon test.


Specifically, 16968 genes were subjected to t-test and Wilcoxon test in the short-lived group (S) and the long-lived group (I) (FIGS. 1 and 2). As a result, 54 genes with a level of significance “p<=0.001” or “fold change of 2 or more” demonstrated by the t-test and the Wilcoxon test were extracted (Table 1). The expression levels (fluorescence reader-measured values) of these 54 genes are shown in the columns “Mean of short-lived group (S)” and “Mean of long-lived group (L)” of Table 1.

















TABLE 1









Mean of
Mean of


P-value,






short-lived
long-lived


Kruskal-Wallis


OBS
Probe_ID
Symbol
Accession
group (S)
group (L)
S − L
Pr > |t|
Test























2
150706
UGP2
NM_006759.3
7.9670
8.3141
−0.3471
0.0008
0.00088


4
510209
LOC643310
XM_926656.1
9.2936
9.6892
−0.3956
0.0005
0.00021


7
770400
LOC653600
XM_928349.1
9.8511
8.6911
1.1600
0.0416
0.08342


8
840064
LOC645489
XM_928514.1
7.2404
7.4395
−0.1990
0.0005
0.00097


11
840601
MEGF10
NM_032446.1
6.6521
6.6044
0.0477
0.0005
0.00097


12
870477
LOC728358
NM_001042500.1
11.6369
10.2926
1.3443
0.0219
0.03726


13
990315
TCP1
NM_030762.2
8.0893
8.3461
−0.2568
0.0008
0.00065


16
1400240
LDHB
NM_002300.4
10.8411
11.4466
−0.6055
<.0001
0.00008


17
1500047
RIN1
NM_004292.2
6.8923
6.7602
0.1322
0.0004
0.00088


18
1500735
CTSG
NM_001911.2
8.7810
7.5263
1.2547
0.0048
0.00869


19
1570392
IL21R
NM_181078.1
6.6201
6.5630
0.0571
0.0002
0.00088


23
1780709
DDX17
NM_030881.2
8.6347
9.0780
−0.4433
0.0005
0.00072


24
1780719
PTGES3
NM_006601.4
8.3710
8.8997
−0.5287
0.0002
0.00036


25
2030332
PTPN18
NM_014369.2
6.6984
6.6146
0.0838
<.0001
0.00003


28
2340091
LOC646135
XM_933437.1
6.8649
6.7536
0.1113
0.0006
0.00097


29
2360672
TNFRSF19
NM_148957.2
6.6360
6.5650
0.0710
0.0006
0.00080


30
2370754
G3BP2
NM_012297.3
6.6111
6.6557
0.0553
0.0002
0.00021


31
2480600
LOC728358
NM_001042500.1
11.7328
10.2900
1.4428
0.0148
0.02655


33
2680440

BF338665
6.6258
6.5641
0.0617
0.0005
0.00048


36
2900255
ZBTB45
NM_032792.2
6.8789
6.7543
0.1246
0.0003
0.00097


37
2970747
DEFA3
NM_005217.2
11.8854
10.4815
1.4039
0.0171
0.02476


38
3060288
NAIP
NM_004536.2
6.6667
6.5931
0.0736
<.0001
0.00017


39
3130296
AMY2A
NM_000699.2
7.2523
7.5351
−0.2828
0.0007
0.00065


40
3130370
ZNF83
NM_018300.2
7.4687
7.7744
−0.3057
0.0002
0.00023


41
3130477
C7orf28A
XM_001133729.1
7.7594
8.1429
−0.3834
0.0003
0.00080


43
3360228
RPS20
NM_001023.2
14.5907
14.7537
−0.1630
0.0007
0.00097


44
3390368
PDP2
NM_020786.1
6.6320
6.5632
0.0688
<.0001
0.00006


45
3420136
C8orf222
NM_001010903.3
8.5946
6.5441
0.0505
0.0004
0.00097


46
3440189
ZBTB20
NM_015642.3
7.5534
7.8405
−0.2871
0.0002
0.00044


48
3610521
PCDHGB6
NM_018926.2
6.8835
6.7057
0.1768
<.0001
0.00023


51
3990608
MAN2A1
NM_002372.2
8.5259
8.8533
−0.3274
0.0001
0.00021


52
4010632
LOC642946
XM_927142.1
6.6135
6.5408
0.0727
0.0002
0.00019


53
4120056
IQSEC2
NM_015075.1
6.6354
6.5576
0.0777
0.0002
0.00054


55
4150408
P2RY2
NM_002564.2
6.8606
6.6785
0.1821
<.0001
0.00002


58
4220731
P4HA1
NM_000917.2
7.8835
8.1913
−0.3078
0.0003
0.00039


59
4250154
LOC648749
XM_937834.2
6.5599
6.6215
−0.0617
0.0003
0.00044


60
4260767
GP1BA
NM_000173.4
7.0479
6.9170
0.1309
0.0004
0.00054


62
4540239
DEFA1
NM_004084.2
12.6997
11.3300
1.3697
0.0171
0.02655


65
4810072
TUSC2
NM_007275.1
7.3719
7.2093
0.1626
0.0002
0.00032


66
4830255
DPP4
NM_001935.3
6.8716
7.1790
−0.3074
<.0001
0.00019


68
5080692
HLA-A29.1
NM_001060840.1
11.3133
9.8801
1.4332
0.0823
0.11667


69
6290358
CPT1A
NM_001031847.1
6.9679
6.8024
0.1656
0.0003
0.00059


70
5550711
SYNE1
NM_182961.2
6.6852
6.6097
0.0755
0.0004
0.00072


71
5860075
CAMP
NM_004345.3
9.9646
8.9318
1.0328
0.0129
0.02000


72
6860465
USP9Y
NM_004654.3
6.6293
6.7238
−0.0945
0.0001
0.00054


73
6900129
CROP
NM_006107.2
7.9041
8.3479
−0.4438
0.0006
0.00065


74
5960072

BY797688
6.6802
6.7772
−0.0970
0.0003
0.00002


75
6110630
HIST1H2BK
NM_080593.1
10.7582
10.3790
0.3791
<.0001
0.00023


78
6420446
CMPK1
NM_016308.1
8.2399
8.6386
−0.3986
0.0007
0.00072


79
6550164
DEFA4
NM_001925.1
8.8054
7.5272
1.2782
0.0029
0.00380


83
6590484
NAP1L1
NM_139207.1
7.5255
7.8829
−0.3574
0.0006
0.00039


86
6940433
STAT5B
NM_012448.3
8.6812
6.8213
−0.2402
0.0007
0.00088


88
7150170
LOC728358
NM_001042500.1
11.6943
10.3009
1.3933
0.0209
0.04248


93
7650497
ELA2
NM_001972.2
8.9421
7.6222
1.3199
0.0022
0.00414









The selected 54 gene was further subjected to variable selection using t-test and Wilcoxon test (FIGS. 3 and 4) to select 13 genes (Table 2).













TABLE 2









P-value,






Kruskal-


Probe_ID
Symbol
Accession
Pr > |t|
WallisTest



















770400
LOC653600
XM_928349.1
0.0416
0.08342


2030332
PTPN18
NM_014369.2
<.0001
0.00003


2360672
TNFRSF19
NM_148957.2
0.0006
0.00080


2370754
G3BP2
NM_012297.3
0.0002
0.00021


3130370
ZNF83
NM_018300.2
0.0002
0.00023


3420136
C6orf222
NM_001010903.3
0.0004
0.00097


3440189
ZBTB20
NM_015642.3
0.0002
0.00044


4220731
P4HA1
NM_000917.2
0.0003
0.00039


4260767
GP1BA
NM_000173.4
0.0004
0.00054


5080692
HLA-A29.1
NM_001080840.1
0.0823
0.11667


5550711
SYNE1
NM_182961.2
0.0004
0.00072


5960072

BY797688
0.0003
0.00002


6590484
NAP1L1
NM_139207.1
0.0006
0.00039









3: Discrimination Rate Based on Selected Gene

3-1. Calculation of Discrimination Rate


The discrimination rate of the short-lived group or the long-lived group based on the selected genes was calculated. Specifically, the data set was divided into training data and test data, and subjected to cross-validation for performing model construction and tests. For the cross-validation method, leave-one-out cross-validation was used, where training for the data set except for the data of one individual is performed and a discriminant model is evaluated using this one individual that has not been used in the training data; and the above-described task is repeated for all individuals.


Results of analysis using 4 genes: probe ID Nos. 770400, 3130370, 4220731 and 5550711 shown in Table 3 are shown as an example. The analysis was conducted using statistical analysis software SAS (SAS Institute Japan Ltd.) and statistical analysis software JMP (SAS Institute Japan Ltd.).









TABLE 3







Linear discriminant function for grp









Variable
0
1












Constant
−7124
−7038


 _770400
10.47056
9.49131


_3130370
148.16314
154.23258


_4220731
62.46423
69.11172


_5550711
1877
1850









Table 4 shows results of conducting leave-one-out cross validation with respect to the training data of 40 patients. Specifically, this table shows which group each case is predicted to belong to using the discriminant functions of Table 3. In the table, (Actual) represents a group to which each case actually belonged, and (Prediction) represents a group predicted using the discriminant functions. As is evident from the table, S2_pre was correctly predicted [0 (short-lived group)→0 (short-lived group)], whereas S10_pre was incorrectly predicted [0 (short-lived group)→1 (long-lived group)]. In the table, the symbol * represents that the case was predicted to belong to a group which is different from the actual one. A total of 4 individuals corresponded thereto.









TABLE 4







Results of data-discrimination by means


of decision rule: WORK MOTHER


Results of cross-validation (linear discriminant function)


Posterior probability for grp












Group
Group




Case Number
(Actual): grp
(Prediction): grp
0
1















S2_pre
0
0

0.9616
0.0384


S3_pre
0
0

0.9982
0.0018


S4_pre
0
0

0.8032
0.1968


S6_pre
0
0

0.9994
0.0006


S7_pre
0
0

0.9778
0.0222


S8_pre
0
0

0.7907
0.2093


L3_pre
1
1

0.2999
0.7001


L4_pre
1
1

0.1652
0.8348


L1_pre
1
1

0.3087
0.6913


S10_pre
0
1

text missing or illegible when filed

0.1158
0.8842


S12_pre
0
0

0.9168
0.0832


S13_pre
0
0

0.9989
0.0011


S14_pre
0
0

0.9609
0.0391


S15_pre
0
0

0.9393
0.0607


S16_pre
0
0

0.9869
0.0131


S17_pre
0
0

0.9904
0.0096


S18_pre
0
0

0.9996
0.0004


S20_pre
0
0

0.9999
0.0001


S21_pre
0
1

text missing or illegible when filed

0.4247
0.5753


S22_pre
0
0

0.9901
0.0099


S23_pre
0
0

0.9261
0.0739


S25_pre
0
0

0.6318
0.3682


S26_pre
0
1

text missing or illegible when filed

0.021
0.979


L5_pre
1
1

0.0716
0.9284


L6_pre
1
1

0.0336
0.9664


L7_pre
1
1

0.0144
0.9856


L8_pre
1
1

0.0152
0.9848


L9_pre
1
0

text missing or illegible when filed

0.9708
0.0292


L10_pre
1
1

0.0159
0.9841


L11_pre
1
1

0.3711
0.6289


L12_pre
1
1

0.0251
0.9749


L13_pre
1
1

0.0019
0.9981


L14_pre
1
1

0.005
0.995


L15_pre
1
1

0.0007
0.9993


L16_pre
1
1

0.178
0.822


L17_pre
1
1

0.0109
0.9891


L18_pre
1
1

0.0308
0.9692


L20_pre
1
1

0.1248
0.8752


L21_pre
1
1

0.0008
0.9992


L19_pre
1
1

0.001
0.999






text missing or illegible when filed indicates data missing or illegible when filed







Table 5 summarizes the results of Table 4 in a 2×2 cross table.


As is evident therefrom,


17 cases of the short-lived group were correctly discriminated with [0→0] (17/20=0.85: 85%), whereas


19 cases of the long-lived group were correctly discriminated with [1→1] (19/20=0.95: 95%).


These are discrimination rates.









TABLE 5







Results of data-discrimination by means


of decision rule: WORK MOTHER


Abstracts of cross-validation (linear discriminant function)


Number of observation of grp-discrimination and discrimination rate












Group (Actual): grp
0
1
Total
















0
17
3
20




85
15
100



1
1
19
20




5
95
100



Total
18
22
40




45
55
100



Priors
0.5
0.5










Table 6 shows results of conducting discriminant analysis using the discriminant functions of Table 3 with respect to the test data of 11 patients. Like Table 4, Table 6 shows the results of predicting which group each case belongs to. Only one case (4818441059_E) with the symbol * was incorrectly discriminated with [1 (long-lived group)→0 (short-lived group)].









TABLE 6







Results of discrimination of test data: WORK.TEST3


Results of discrimination (linear discriminant function)


Posterior probability for grp












Group
Group




Case Number
(Actual): grp
(Prediction): grp
0
1















4818441050_A
1
1

0
1


4818441050_B
1
1

0.0209
0.9791


4818441050_C
0
0

0.8952
0.1048


4818441050_D
1
1

0.34
0.66


4818441050_E
0
0

0.5882
0.4118


4818441050_F
0
0

0.9995
0.0005


4818441052_A
0
0

0.797
0.203


4818441059_C
0
0

0.6135
0.3865


4818441059_D
0
0

0.9108
0.0892


4818441059_E
1
0

text missing or illegible when filed

0.9728
0.0272


4818441059_F
1
1

0.2316
0.7684






text missing or illegible when filed indicates data missing or illegible when filed







Table 7 summarizes the results of Table 6 in a 2×2 cross table.


As is evident therefrom,


6 cases of the short-lived group were correctly discriminated with [0 (short-lived group)→0 (short-lived group)] (6/6=1.00: 100%), whereas


4 cases of the long-lived group were correctly discriminated with [1 (long-lived group)→1 (long-lived group)] (4/5=0.80: 80%).









TABLE 7







Results of discrimination of test data: WORK.TEST3


Abstracts of discrimination (linear discriminant function)


Number of observation of grp-discrimination and discrimination rate












Group (Actual): grp
0
1
Total
















0
6
0
6




100
0
100



1
1
4
5




20
80
100



Total
7
4
11




63.64
36.36
100



Priors
0.5
0.5










These results demonstrated that the group to which each case belongs could be discriminated (predicted) with 80% or more accuracy for both the training data and the test data by discriminant analysis using the 4 genes, i.e., probe ID NOs. 770400, 3130370, 4220731 and 5550711.


3-2. Discrimination Rate Based on Selected Gene


Subsequently, the discrimination rate was calculated using combinations of the 13 genes selected in the above-described item 2.


(1) Discrimination Rate Based on 1 Gene


A study was made on whether or not long life or short life could be discriminated (discrimination rate: 80% or more) on the basis of one out of the 13 genes using training data (40 individuals) and test data (11 individuals).


As shown in Table 8, one gene 5960072 (BY797688) out of the 13 genes permitted prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life. Prediction based on this gene resulted in a short life discrimination rate (ccvP0) of 85% using the training data (40 individuals) and a short life discrimination rate (ctcP0) of 67% using the test data (11 individuals). On the other hand, the prediction resulted in a long life discrimination rate (ccvP1) of 85% using the raining data and a long life discrimination rate (ctcP1) of 80% using the test data.



















TABLE 8





OBS
rep
index
pbnum
pb1
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1

























1
13
12
1
5960072
85
66.67
85
80
0
1


2
13
4
1
2370754
65
83.33
90
20
0
0


3
13
2
1
2030332
75
50
75
60
0
0


4
13
3
1
2360672
60
33.33
75
60
0
0


5
13
9
1
4260767
70
100
75
20
0
0


6
13
13
1
6590484
85
0
70
80
0
0


7
13
7
1
3440189
70
66.67
70
60
0
0


8
13
8
1
4220731
80
66.67
70
40
0
0


9
13
5
1
3130370
75
83.33
65
60
0
0


10
13
6
1
3420136
65
83.33
65
40
0
0


11
13
11
1
5550711
80
66.67
65
20
0
0


12
13
1
1
770400
45
16.67
60
100
0
0


13
13
10
1
5080692
85
33.33
45
60
0
0





Pbnum: The number of probe (gene)


Pb1: Probe ID NO.


ccvP0: 0 (short life) → 0 (short life) discrimination rate obtained using training data (40 individuals)


ctcP0: 0 (short life) → 0 (short life) discrimination rate obtained using test data (11 individuals)


ccvP1: 0 (long life) → 0 (long life) discrimination rate obtained using training data


ctcP1: 0 (long life) → 0 (long life) discrimination rate obtained using test data


flg0: The short life discrimination rate was 80% or more for both training data and test data


flg1: The long life discrimination rate was 80% or more for both training data and test data






(2) Discrimination Rate Based on 2 Genes


The number of combinations of 2 genes from the 13 genes is 78, and some of them are shown in Table 9. For example, the sets of 2 gene probes that permitted prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life were the following 6 sets (Table 9: 1 to 6) (indicated by probe 1/probe 2 [short life discrimination rate (ccvP0) obtained using training data (40 individuals)/short life discrimination rate (ctcP0) obtained using test data (11 individuals); long life discrimination rate (ccvP1) obtained using training data/long life discrimination rate (ctcP1) obtained using test data]: 2360672/3130370 (85/66.67; 85/80), 770400/2360672 (70/33.33; 80/80), 770400/5960072 (90/66.67; 80/80), 2360672/5080692 (65/50; 80/80), 2360672/5960072 (95/66.67; 80/80) and 2360672/6590484 (75/33.33; 80/80). On the other hand, the sets of 2 gene probes that permitted prediction with a discrimination rate of 80% or more as to the discrimination of short life were the following 15 sets (Table 9: 7 to 21) (probe 1/probe 2 [short life discrimination rate (ccvP0) obtained using training data (40 individuals)/short life discrimination rate (ctcP0) obtained using test data (11 individuals); long life discrimination rate (ccvP1) obtained using training data/long life discrimination rate (ctcP1) obtained using test data]: 2370754/5960072 (80/83.33; 95/40), 3440189/5550711 (85/83.33; 90/60), 3420136/5960072 (90/83.33; 90/40), 2370754/4260767 (80/100; 90/0), 2030332/5550711 (90/83.33; 85/60), 3420136/3440189 (85/83.33; 85/60), 2370754/3130370 (80/83.33; 85/40), 2360672/4220731 (80/83.33; 80/60), 3440189/4220731 (8583.33; 80/60), 4220731/4260767 (85/100; 80/20), 4220731/5550711 (85/83.33; 75/60), 3420136/4220731 (95/83.33; 75/40), 2370754/4220731 (95/83.33; 75/20), 2370754/5550711 (85/83.33; 7520/) and 4260767/6590484 (80/100; 75/20).




















TABLE 9





OBS
rep
index
pbnum
pb1
pb2
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1


























1
78
25
2
2360672
3130370
85
66.67
85
80
0
1


2
78
2
2
770400
2360672
70
33.33
80
80
0
1


3
78
11
2
770400
5960072
90
66.67
80
80
0
1


4
78
30
2
2360672
5080692
65
50
80
80
0
1


5
78
32
2
2360672
5960072
95
66.67
80
80
0
1


6
78
33
2
2360672
6590484
75
33.33
80
80
0
1


7
78
41
2
2370754
5960072
80
83.33
95
40
1
0


8
78
61
2
3440189
5550711
85
83.33
90
60
1
0


9
78
56
2
3420136
5960072
90
83.33
90
40
1
0


10
78
38
2
2370754
4260767
80
100
90
0
1
0


11
78
21
2
2030332
5550711
90
83.33
85
60
1
0


12
78
51
2
3420136
3440189
85
83.33
85
60
1
0


13
78
34
2
2370754
3130370
80
83.33
85
40
1
0


14
78
28
2
2360672
4220731
80
83.33
80
60
1
0


15
78
58
2
3440189
4220731
85
83.33
80
60
1
0


16
78
64
2
4220731
4260767
85
100
80
20
1
0


17
78
66
2
4220731
5550711
85
83.33
75
60
1
0


18
78
52
2
3420136
4220731
95
83.33
75
40
1
0


19
78
37
2
2370754
4220731
95
83.33
75
20
1
0


20
78
40
2
2370754
5550711
85
83.33
75
20
1
0


21
78
72
2
4260767
6590484
80
100
75
20
1
0


22
78
14
2
2030332
2370754
80
66.67
95
60
0
0


23
78
16
2
2030332
3420136
90
66.67
95
60
0
0


24
78
1
2
770400
2030332
85
50
90
60
0
0


25
78
19
2
2030332
4260767
75
83.33
90
40
0
0


26
78
7
2
770400
4220731
70
66.67
85
60
0
0


27
78
15
2
2030332
3130370
80
66.67
85
60
0
0


28
78
17
2
2030332
3440189
90
50
85
60
0
0


29
78
22
2
2030332
5960072
95
50
85
60
0
0


30
78
23
2
2030332
6590484
85
50
85
60
0
0


31
78
31
2
2360672
5550711
75
83.33
85
60
0
0


32
78
78
2
5960072
6590484
80
50
85
60
0
0


33
78
3
2
770400
2370754
55
66.67
85
40
0
0


34
78
13
2
2030332
2360672
80
50
85
40
0
0


35
78
18
2
2030332
4220731
80
66.67
85
40
0
0


36
78
24
2
2360672
2370754
70
66.67
85
40
0
0


37
78
67
2
4220731
5960072
75
83.33
85
40
0
0


38
78
76
2
5550711
5960072
80
66.67
85
40
0
0


39
78
10
2
770400
5550711
80
66.67
80
60
0
0


40
78
36
2
2370754
3440189
75
100
80
60
0
0


41
78
48
2
3130370
5550711
65
100
80
60
0
0


42
78
49
2
3130370
5960072
80
66.67
80
60
0
0


43
78
62
2
3440189
5960072
85
66.67
80
60
0
0


44
78
77
2
5550711
6590484
90
66.67
80
60
0
0


45
78
29
2
2360672
4260767
75
100
80
40
0
0


46
78
45
2
3130370
4220731
75
66.67
80
40
0
0


47
78
55
2
3420136
5550711
70
83.33
80
40
0
0


48
78
59
2
3440189
4260767
75
100
80
40
0
0


49
78
8
2
770400
4260767
70
100
80
20
0
0









(3) Discrimination Rate Based on 3 Genes


The number of combinations of 3 genes from the 13 genes is 286, and some of them are shown in Table 10. For example, the set of 3 gene probes that permitted prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life was only one set: 2360672/3440189/4220731 (Table 10: 1). Prediction based on this gene set resulted in a short life discrimination rate (ccvP0) of 90% using the training data (40 individuals) and a short life discrimination rate (ctcP0) of 83.33% using the test data (11 individuals). On the other hand, the prediction resulted in a long life discrimination rate (ccvP1) of 90% using the training data and a long life discrimination rate (ctcP1) of 80% using the test data. Likewise, examples of the probe sets that permit prediction of long life with a discrimination rate of 80% or more include 16 sets (Table 10: 2 to 17). In addition, examples of the probe sets that permits prediction of short life with a discrimination rate of 90% or more include the following gene probe sets: 2030332/2370754/4260767, 2030332/2370754/3440189, 3440189/5080692/5550711, 2360672/4220731/5550711, 3440189/4220731/5550711, 2370754/3440189/5550711, 2370754/3440189/4220731, 2370754/4220731/4260767, 3420136/4220731/5550711, 3420136/4220731/4260767 and 3130370/3420136/4220731.





















TABLE 10





OBS
rep
index
pbnum
pb1
pb2
pb3
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1



























1
286
146
3
2360672
3440189
4220731
90
83.33
90
80
1
1


2
286
33
3
770400
3130370
4220731
75
66.67
90
80
0
1


3
286
65
3
770400
5550711
6590484
85
33.33
90
80
0
1


4
286
30
3
770400
2370754
6590484
85
66.67
85
80
0
1


5
286
46
3
770400
3440189
4220731
75
66.67
85
80
0
1


6
286
66
3
770400
5960072
6590484
80
33.33
85
80
0
1


7
286
130
3
2360672
2370754
6590484
80
66.67
85
80
0
1


8
286
162
3
2360672
6080692
5960072
85
50
85
80
0
1


9
286
165
3
2360672
5550711
6590484
85
66.67
85
80
0
1


10
286
166
3
2360672
5960072
6590484
90
50
85
80
0
1


11
286
20
3
770400
2360672
5960072
80
66.67
80
100
0
1


12
286
21
3
770400
2360672
6590484
75
16.67
80
100
0
1


13
286
63
3
770400
5080692
6590484
70
0
80
100
0
1


14
286
40
3
770400
3420136
4220731
80
66.67
80
80
0
1


15
286
53
3
770400
4220731
5080692
75
33.33
80
80
0
1


16
286
62
3
770400
5080692
5960072
80
50
80
80
0
1


17
286
138
3
2360672
3130370
6590484
90
50
80
80
0
1


18
286
78
3
2030332
2370754
3420136
85
83.33
100
60
1
0


19
286
96
3
2030332
3420136
4260767
90
83.33
100
60
1
0


20
286
234
3
3420136
3440189
5550711
85
83.33
100
60
1
0


21
286
274
3
4220731
5550711
5960072
90
83.33
100
40
1
0


22
286
81
3
2030332
2370754
4260767
95
100
100
20
1
0


23
286
36
3
770400
3130370
5550711
85
83.33
95
60
1
0


24
286
49
3
770400
3440189
5550711
95
83.33
95
60
1
0


25
286
77
3
2030332
2370754
3130370
90
83.33
95
60
1
0


26
286
84
3
2030332
2370754
5960072
95
83.33
95
60
1
0


27
286
113
3
2030332
4260767
5550711
80
100
95
40
1
0


28
286
143
3
2360672
3420136
5550711
80
83.33
95
40
1
0


29
286
191
3
2370754
4220731
5960072
90
83.33
95
40
1
0


30
286
249
3
3420136
5550711
5960072
85
83.33
95
40
1
0


31
286
243
3
3420136
4260767
5550711
80
100
95
20
1
0


32
286
269
3
4220731
4260767
5960072
90
83.33
95
20
1
0


33
286
7
3
770400
2030332
4260767
80
83.33
90
60
1
0


34
286
67
3
2030332
2360672
2370754
90
83.33
90
60
1
0


35
286
79
3
2030332
2370754
3440189
100
100
90
60
1
0


36
286
83
3
2030332
2370754
5550711
90
83.33
90
60
1
0


37
286
95
3
2030332
3420136
4220731
90
83.33
90
60
1
0


38
286
104
3
2030332
3440189
5550711
90
83.33
90
60
1
0


39
286
122
3
2360672
2370754
3130370
85
83.33
90
60
1
0


40
285
213
3
3130370
3440189
5550711
80
83.33
90
60
1
0


41
286
228
3
3130370
5550711
5960072
85
83.33
90
60
1
0


42
286
258
3
3440189
4260767
5550711
85
100
90
60
1
0


43
286
261
3
3440189
5080692
5550711
90
100
90
60
1
0


44
286
264
3
3440189
5550711
5960072
80
83.33
90
60
1
0


45
286
265
3
3440189
5550711
6590484
80
83.33
90
60
1
0


46
286
154
3
2360672
4220731
5550711
90
100
90
40
1
0


47
286
173
3
2370754
3130370
5960072
80
83.33
90
40
1
0


48
286
219
3
3130370
4220731
5960072
85
83.33
90
40
1
0


49
286
240
3
3420136
4220731
5960072
85
100
90
40
1
0









(4) Discrimination Rate Based on 4 Genes


The number of combinations of 4 genes from the 13 genes is 715, and some of them are shown in Table 11. For example, the sets of 4 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 18 sets [Table 11: 1 to 18].






















TABLE 11





OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1




























1
715
152
4
770400
3130370
4220731
5550711
85
100
95
80
1
1


2
715
188
4
770400
3440189
4220731
5550711
95
100
95
80
1
1


3
715
70
4
770400
2360672
3130370
5550711
90
83.33
90
80
1
1


4
715
88
4
770400
2360672
4220731
5550711
80
83.33
90
80
1
1


5
715
165
4
770400
2370754
3440189
4220731
90
100
90
80
1
1


6
715
420
4
2360672
2360672
5550711
6590484
90
83.33
90
80
1
1


7
715
437
4
2360672
3130370
4220731
5550711
90
100
90
80
1
1


8
715
473
4
2360672
3440189
4220731
5550711
90
100
90
80
1
1


9
715
494
4
2360672
4220731
5550711
6590484
90
100
90
80
1
1


10
715
59
4
770400
2360672
2370754
4220731
80
83.33
85
80
1
1


11
715
74
4
770400
2360672
3420136
4220731
90
83.33
85
80
1
1


12
715
83
4
770400
2360672
3440189
5550711
90
83.33
85
80
1
1


13
715
138
4
770400
3130370
3420136
4220731
90
83.33
85
80
1
1


14
715
215
4
770400
4260967
5550711
6590484
90
83.33
85
80
1
1


15
715
401
4
2360672
2370754
3440189
4220731
100
100
85
80
1
1


16
715
423
4
2360672
3130370
3420136
4220731
90
83.33
85
80
1
1


17
715
56
4
770400
2360672
2370754
3130370
80
100
80
80
1
1


18
715
457
4
2360672
3420136
4220731
5080692
90
83.33
80
80
1
1


19
715
205
4
770400
4220731
5080692
5550711
85
66.67
95
80
0
1


20
715
209
4
770400
4220731
5550711
6590484
80
66.67
95
80
0
1


21
715
64
4
770400
2360672
2370754
6590484
75
50
90
80
0
1


22
715
99
4
770400
2360672
5550711
6590484
85
33.33
90
80
0
1


23
715
135
4
770400
2370754
5550711
6590484
80
50
90
80
0
1


24
715
163
4
770400
3130370
5550711
6590484
90
66.67
90
80
0
1


25
715
184
4
770400
3420136
5550711
6590484
90
50
90
80
0
1


26
715
199
4
770400
3440189
5550711
6590434
90
66.67
90
80
0
1


27
715
100
4
770400
2360672
5960072
6590484
85
50
85
100
0
1


28
715
58
4
770400
2360672
2370754
3440189
75
83.33
85
80
0
1


29
715
80
4
770400
2360672
3440189
4220731
85
66.67
85
80
0
1


30
715
150
4
770400
3130370
4220731
4260767
75
100
85
80
0
1


31
715
151
4
770400
3130370
4220731
5080692
70
66.67
85
80
0
1


32
715
154
4
770400
3130370
4220731
6590484
75
66.67
85
80
0
1


33
715
190
4
770400
3440189
4220731
6590484
75
66.67
85
80
0
1


34
715
218
4
770400
5080692
5550711
6590484
85
33.33
85
80
0
1


35
715
418
4
2360672
2370754
5080692
6590484
85
50
85
80
0
1


36
715
429
4
2360672
3130370
3440189
4220731
90
66.67
85
80
0
1


37
715
436
4
2360672
3130370
4220731
5080692
85
66.67
85
80
0
1


38
715
472
4
2360672
3440189
4220731
5080692
90
66.67
85
80
0
1


39
715
490
4
2360672
4220731
5080692
5550711
85
66.67
85
80
0
1


40
715
85
4
770400
2360672
3440189
6590484
85
33.33
80
100
0
1


41
715
97
4
770400
2360672
5080692
6590484
85
33.33
80
100
0
1


42
715
65
4
770400
2360672
3130370
3420136
80
66.67
80
80
0
1


43
715
67
4
770400
2360672
3130370
4220731
75
66.67
80
80
0
1


44
715
73
4
770400
2360672
3420136
3440189
80
66.67
80
80
0
1


45
715
87
4
770400
2360672
4220731
5080692
75
66.67
80
80
0
1


46
715
90
4
770400
2360672
4220731
6590484
70
50
80
80
0
1


47
715
96
4
770400
2360672
5080692
5960072
85
50
80
80
0
1


48
715
133
4
770400
2370754
5080692
6590484
80
50
80
80
0
1


49
715
170
4
770400
3420136
3440189
6590484
95
50
80
80
0
1









(5) Discrimination Rate Based on 5 Genes


The number of combinations of 5 genes from the 13 genes is 1287, and some of them are shown in Table 12. For example, the sets of 5 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 55 sets [Table 12: 1 to 55].























TABLE 12





OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1





























1
1287
337
5
770400
2370754
3440189
4220731
5550711
95
100
95
80
1
1


2
1287
378
5
770400
3130370
3420136
4220731
5550711
85
83.33
95
80
1
1


3
1287
393
5
770400
3130370
3440189
4220731
5550711
90
100
95
80
1
1


4
1287
407
5
770400
3130370
4220731
4260767
5550711
85
100
95
80
1
1


5
1287
410
5
770400
3130370
4220731
5080692
5550711
85
83.33
95
80
1
1


6
1287
414
5
770400
3130370
4220731
5550711
6590484
85
100
95
80
1
1


7
1287
426
5
770400
3420136
3440189
4220731
4280767
85
100
95
80
1
1


8
1287
428
5
770400
3420136
3440189
4220731
5550711
90
83.33
95
80
1
1


9
1287
469
5
770400
3440189
4220731
5550711
6590484
90
100
95
80
1
1


10
1287
171
5
770400
2360672
2370754
3130370
5550711
90
83.33
90
80
1
1


11
1287
186
5
770400
2360672
2370754
3440189
6590484
85
83.33
90
80
1
1


12
1287
189
5
770400
2360672
2370754
4220731
5550711
85
83.33
90
80
1
1


13
1287
191
5
770400
2360672
2370754
4220731
6590484
80
83.33
90
80
1
1


14
1287
212
5
770400
2360672
3130370
3440189
5550711
90
83.33
90
80
1
1


15
1287
217
5
770400
2360672
3130370
4220731
5550711
85
100
90
80
1
1


16
1287
218
5
770400
2360672
3130370
4220731
5960072
85
83.33
90
80
1
1


17
1287
224
5
770400
2360672
3130370
5080692
5550711
85
83.33
90
80
1
1


18
1287
228
5
770400
2360672
3130370
5550711
6590484
90
83.33
90
80
1
1


19
1287
253
5
770400
2360672
3440189
4220731
5550711
90
100
90
80
1
1


20
1287
267
5
770400
2380672
4220731
4260767
5550711
80
100
90
80
1
1


21
1287
280
5
770400
2360672
4260767
5550711
6590484
85
83.33
90
80
1
1


22
1287
465
5
770400
3440189
4220731
5080692
5550711
95
100
90
80
1
1


23
1287
485
5
770400
4220731
4260767
5550711
6590484
85
83.33
90
80
1
1


24
1287
898
5
2360672
2370754
4220731
5550711
6590484
85
83.33
90
80
1
1


25
1287
933
5
2360672
3130370
3440189
4220731
5550711
85
100
90
80
1
1


26
1287
950
5
2360672
3130370
4220731
5080692
5550711
90
83.33
90
80
1
1


27
1287
1002
5
2360672
3440189
4220731
4260767
5550711
90
100
90
80
1
1


28
1287
1009
5
2360672
3440189
4220731
5550711
6590484
90
100
90
80
1
1


29
1287
168
5
770400
2360672
2370754
3130370
4220731
90
100
85
80
1
1


30
1287
175
5
770400
2360672
2370754
3420136
4220731
85
83.33
85
80
1
1


31
1287
206
5
770400
2360672
3130370
3420136
5550711
85
83.33
85
80
1
1


32
1287
251
5
770400
2360672
3440189
4220731
4260767
80
83.33
85
80
1
1


33
1287
254
5
770400
2360672
3440189
4220731
5960072
85
83.33
85
80
1
1


34
1287
255
5
770400
2360672
3440189
4220731
6590484
80
83.33
85
80
1
1


35
1287
257
5
770400
2360672
3440189
4260767
5550711
90
83.33
85
80
1
1


36
1287
314
5
770400
2370754
3420136
3440189
4220731
100
100
85
80
1
1


37
1287
427
5
770400
3420136
3440189
4220731
5080692
90
83.33
85
80
1
1


38
1287
430
5
770400
3420136
3440189
4220731
6590484
80
100
85
80
1
1


39
1287
864
5
2360672
2370754
3420136
4220731
6590484
80
100
85
80
1
1


40
1287
954
5
2360672
3130370
4220731
5550711
6590484
85
100
85
80
1
1


41
1287
181
5
770400
2360672
2370754
3440189
4220731
100
100
80
80
1
1


42
1287
203
5
770400
2360672
3130370
3420136
4220731
85
83.33
80
80
1
1


43
1287
230
5
770400
2360672
3420136
3440189
4220731
90
83.33
80
80
1
1


44
1287
237
5
770400
2360672
3420136
4220731
5080692
90
83.33
80
80
1
1


45
1287
259
5
770400
2360672
3440189
4260767
6590484
85
83.33
80
80
1
1


46
1287
278
5
770400
2360672
4280767
5080692
6590484
80
83.33
80
80
1
1


47
1287
287
5
770400
2370754
3130370
3420136
4220731
90
83.33
80
80
1
1


48
1287
336
5
770400
2370754
3440189
4220731
5030692
95
100
80
80
1
1


49
1287
370
5
770400
3130370
3420136
3440189
4220731
90
100
80
80
1
1


50
1287
377
5
770400
3130370
3420136
4220731
5080692
85
83.33
80
80
1
1


51
1287
380
5
770400
3130370
3420136
4220731
6590484
90
83.33
80
80
1
1


52
1287
861
5
2360672
2370754
3420136
4220731
5080692
85
83.33
80
80
1
1


53
1287
910
5
2360672
3130370
3420136
3440189
4220731
95
100
80
80
1
1


54
1287
970
5
2360672
3420136
3440189
4220731
6590484
90
100
80
80
1
1


55
1287
987
5
2360672
3420136
4220731
5080692
6590484
90
83.33
80
80
1
1


56
1287
462
5
770400
3440189
4220731
4260767
5550711
95
66.67
95
80
0
1


57
1287
200
5
770400
2360672
2370754
5550711
6590484
80
50
90
80
0
1


58
1287
249
5
770400
2360672
3420136
5550711
6590484
85
66.67
90
80
0
1


59
1287
250
5
770400
2360672
3420136
5960072
6590484
85
50
90
80
0
1


60
1287
264
5
770400
2360672
3440189
5550711
6590484
90
66.67
90
80
0
1


61
1287
270
5
770400
2360672
4220731
5080692
5550711
75
66.67
90
80
0
1


62
1287
274
5
770400
2360672
4220731
5550711
6590484
80
66.67
90
80
0
1


63
1287
367
5
770400
2370754
5080692
5550711
6590484
80
50
90
80
0
1


64
1287
449
5
770400
3420136
4220731
5550711
6590484
85
66.67
90
80
0
1


65
1287
488
5
770400
4220731
5080692
5550711
6590484
85
50
90
80
0
1


66
1287
180
5
770400
2360672
2370754
3420136
6590484
85
50
85
80
0
1


67
1287
198
5
770400
2360672
2370754
5080692
6590484
75
50
85
80
0
1


68
1287
215
5
770400
2360672
3130370
4220731
4260767
75
83.33
85
80
0
1


69
1287
216
5
770400
2360672
3130370
4220731
5080692
80
66.67
85
80
0
1


70
1287
219
5
770400
2360672
3130370
4220731
6590434
75
66.67
85
80
0
1


71
1287
283
5
770400
2360672
5080692
5550711
6590484
80
33.33
85
80
0
1


72
1287
284
5
770400
2360672
5080692
5960072
6590484
85
50
85
80
0
1


73
1287
412
5
770400
3130370
4220731
5080692
6590484
65
66.67
85
80
0
1


74
1287
932
5
2360672
3130370
3440189
4220731
5080692
90
66.67
85
80
0
1


75
1287
265
5
770400
2360672
3440189
5960072
6590484
85
50
80
100
0
1


76
1287
170
5
770400
2360672
2370754
3130370
5080692
75
83.33
80
80
0
1


77
1287
173
5
770400
2360672
2370754
3130370
6590484
85
66.67
80
80
0
1


78
1287
188
5
770400
2360672
2370754
4220731
5080692
80
66.67
80
80
0
1


79
1287
205
5
770400
2360672
3130370
3420136
5080692
80
66.67
80
80
0
1


80
1287
208
5
770400
2360672
3130370
3420136
6590484
80
50
80
80
0
1


81
1287
211
5
770400
2360672
3130370
3440189
5080692
85
50
80
80
0
1


82
1287
235
5
770400
2360672
3420136
3440189
6590484
90
50
80
80
0
1


83
1287
252
5
770400
2360672
3440189
4220731
5080692
80
66.67
80
80
0
1


84
1287
272
5
770400
2360672
4220731
5080692
6590484
75
50
80
80
0
1


85
1287
391
5
770400
3130370
3440189
4220731
4260767
75
83.33
80
80
0
1


86
1287
406
5
770400
3130370
4220731
4260767
5080692
70
66.67
80
80
0
1


87
1287
409
5
770400
3130370
4220731
4260767
6590484
75
100
80
80
0
1


88
1287
464
5
770400
3440189
4220731
4260767
6590484
75
100
80
80
0
1


89
1287
483
5
770400
4220731
4260767
5080692
6590484
70
83.33
80
80
0
1


90
1287
896
5
2360672
2370754
4220731
5080692
6590484
85
66.67
80
80
0
1


91
1287
1001
5
2360672
3440189
4220731
4260767
5080692
80
66.67
80
80
0
1


92
1287
1007
5
2360672
3440189
4220731
5080692
6590484
80
66.67
80
80
0
1


93
1287
1028
5
2360672
4220731
5080692
5550711
6590484
85
66.67
80
80
0
1


94
1287
4
5
770400
2030332
2360672
2370754
4220731
95
83.33
100
60
1
0


95
1287
5
5
770400
2030332
2360672
2370754
4260767
90
100
100
60
1
0


96
1287
46
5
770400
2030332
2370754
3130370
3420136
90
83.33
100
60
1
0


97
1287
49
5
770400
2030332
2370754
3130370
4260767
90
100
100
60
1
0


98
1287
55
5
770400
2030332
2370754
3420136
4220731
95
83.33
100
60
1
0


99
1287
62
5
770400
2030332
2370754
3440189
4260767
90
100
100
60
1
0









(6) Discrimination Rate Based on 6 Genes


The number of combinations of 6 genes from the 13 genes is 1716, and some of them are shown in Table 13. For example, the sets of 6 gene probes that permit prediction with a discrimination rate of 801 or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 71 sets [Table 13: 1 to 71].

















TABLE 13







OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5





1
1716
473
6
770400
2360672
3420136
3440189
4220731


2
1716
510
6
770400
2360672
3440189
4220731
5080692


3
1716
549
6
770400
2370754
3130370
3420136
4220731


4
1716
564
6
770400
2370754
3130370
3440189
4220731


5
1716
599
6
770400
2370754
3420136
3440189
4220731


6
1716
633
6
770400
2370754
3440189
4220731
4260767


7
1716
669
6
770400
3130370
3420136
3440189
4220731


8
1716
683
6
770400
3130370
3420136
4220731
4260767


9
1716
686
6
770400
3130370
3420136
4220731
5080692


10
1716
690
6
770400
3130370
3420136
4220731
5550711


11
1716
710
6
770400
3130370
3440189
4220731
5550711


12
1716
726
6
770400
3130370
4220731
4260767
5550711


13
1716
745
6
770400
3420136
3440189
4220731
5550711


14
1716
776
6
770400
3440189
4220731
4260767
5550711


15
1716
346
6
770400
2360672
2370754
3130370
4220731


16
1716
382
6
770400
2360672
2370754
3440189
4220731


17
1716
393
6
770400
2360672
2370754
3440189
5550711


18
1716
399
6
770400
2360672
2370754
4220731
5080692


19
1716
403
6
770400
2360672
2370754
4220731
5550711


20
1716
423
6
770400
2360672
3130370
3420136
4220731


21
1716
438
6
770400
2360672
3130370
3440189
4220731


22
1716
449
6
770400
2360672
3130370
3440189
5550711


23
1716
452
6
770400
2360672
3130370
4220731
4260767


24
1716
459
6
770400
2360672
3130370
4220731
5550711


25
1716
465
6
770400
2360672
3130370
4260767
5550711


26
1716
514
6
770400
2360672
3440189
4220731
5550711


27
1716
520
6
770400
2360672
3440189
4260767
5550711


28
1716
530
6
770400
2360672
4220731
4260767
5550711


29
1716
581
6
770400
2370754
3130370
4220731
5080692


30
1716
659
6
770400
2370754
4220731
5080692
5550711


31
1716
706
6
770400
3130370
3440189
4220731
5080692


32
1716
722
6
770400
3130370
4220731
4260767
5080692


33
1716
740
6
770400
3420136
3440189
4220731
4260767


34
1716
761
6
770400
3420136
4220731
4260767
5550711


35
1716
779
6
770400
3440189
4220731
5080692
5550711


36
1716
1424
6
2360672
3130370
3440189
4220731
5550711


37
1716
1443
6
2360672
3130370
4220731
5080692
5550711


38
1716
1490
6
2360672
3440189
4220731
4260767
5550711


39
1716
332
6
770400
2360672
2370754
3130370
3420136


40
1716
348
6
770400
2360672
2370754
3130370
4220731


41
1716
359
6
770400
2360672
2370754
3420136
3440189


42
1716
369
6
770400
2360672
2370754
3420136
4220731


43
1716
434
6
770400
2360672
3130370
3420136
5550711


44
1716
439
6
770400
2360672
3130370
3440189
4220731


45
1716
455
6
770400
2360672
3130370
4220731
5080692


46
1716
474
6
770400
2360672
3420136
3440189
4220731


47
1716
528
6
770400
2360672
4220731
4260767
5080692


48
1716
541
6
770400
2370754
3130370
3420136
3440189


49
1716
668
6
770400
3130370
3420136
3440189
4220731


50
1716
729
6
770400
3130370
4220731
5080692
5550711


51
1716
737
6
770400
3420136
3440189
4220731
4260767


52
1716
743
6
770400
3420136
3440189
4220731
5080692


53
1716
1373
6
2360672
2370754
4220731
5080692
5550711


54
1716
1402
6
2360672
3130370
3420136
4220731
5080692


55
1716
337
6
770400
2360672
2370754
3130370
3420136


56
1716
338
6
770400
2360672
2370754
3130370
3440189


57
1716
343
6
770400
2360672
2370754
3130370
3440189


58
1716
421
6
770400
2360672
3130370
3420136
4220731


59
1716
422
6
770400
2360672
3130370
3420136
4220731


60
1716
425
6
770400
2360672
3130370
3420136
4220731


61
1716
463
6
770400
2360672
3130370
4260767
5080692


62
1716
471
6
770400
2360672
3420136
3440189
4220731


63
1716
472
6
770400
2360672
3420136
3440189
4220731


64
1716
475
6
770400
2360672
3420136
3440189
4220731


65
1716
485
6
770400
2360672
3420136
3440189
5960072


66
1716
486
6
770400
2360672
3420136
4220731
4260767


67
1716
489
6
770400
2360672
3420136
4220731
4260767


68
1716
618
6
770400
2370754
3420136
4220731
5080692


69
1716
667
6
770400
3130370
3420136
3440189
4220731


70
1716
671
6
770400
3130370
3420136
3440189
4220731


71
1716
1332
6
2360672
2370754
3420136
4220731
5080692


72
1716
412
6
770400
2360672
2370754
5080692
5550711


73
1716
503
6
770400
2360672
3420136
5080692
5550711


74
1716
537
6
770400
2360672
4260767
5080692
5550711


75
1716
703
6
770400
3130370
3440189
4220731
4260767


76
1716
738
6
770400
3420136
3440189
4220731
4260767


77
1716
357
6
770400
2360672
2370754
3130370
5550711


78
1716
378
6
770400
2360672
2370754
3420136
5550711


79
1716
507
6
770400
2360672
3440189
4220731
4260767


80
1716
526
6
770400
2360672
4220731
4260767
5080692


81
1716
533
6
770400
2360672
4220731
5080692
5550711


82
1716
620
6
770400
2370754
3420136
4220731
5550711


83
1716
764
6
770400
3420136
4220731
5080692
5550711


84
1716
772
6
770400
3440189
4220731
4260767
5080692


85
1716
788
6
770400
4220731
4260767
5080692
5550711


86
1716
345
6
770400
2360672
2370754
3130370
4220731


87
1716
420
6
770400
2360672
3130370
3420136
3440189


88
1716
432
6
770400
2360672
3130370
3420136
5080692


89
1716
451
6
770400
2360672
3130370
4220731
4260767


90
1716
457
6
770400
2360672
3130370
4220731
5080692


91
1716
468
6
770400
2360672
3130370
5080692
5550711


92
1716
509
6
770400
2360672
3440189
4220731
4260767


93
1716
1422
6
2360672
3130370
3440189
4220731
5080692


94
1716
355
6
770400
2360672
2370754
3130370
5080692


95
1716
366
6
770400
2360672
2370754
3420136
4220731


96
1716
376
6
770400
2360672
2370754
3420136
5080692


97
1716
401
6
770400
2360672
2370754
4220731
5080692


98
1716
437
6
770400
2360672
3130370
3440189
4220731


99
1716
440
6
770400
2360672
3130370
3440189
4220731



















OBS
pb6
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1







1
5550711
90
83.33
95
80
1
1



2
5550711
95
100
95
80
1
1



3
5550711
85
83.33
95
80
1
1



4
5550711
90
100
95
80
1
1



5
5550711
90
100
95
80
1
1



6
5550711
95
100
95
80
1
1



7
5550711
90
83.33
95
80
1
1



8
5550711
85
83.33
95
80
1
1



9
5550711
85
83.33
95
80
1
1



10
6590484
85
83.33
95
80
1
1



11
6590484
85
100
95
80
1
1



12
6590484
85
100
95
80
1
1



13
6590484
90
100
95
80
1
1



14
6590484
85
83.33
95
80
1
1



15
5550711
85
83.33
90
80
1
1



16
5550711
95
100
90
80
1
1



17
6590484
85
83.33
90
80
1
1



18
5550711
80
83.33
90
80
1
1



19
6590484
85
83.33
90
80
1
1



20
5550711
85
83.33
90
80
1
1



21
5550711
85
100
90
80
1
1



22
6590484
90
83.33
90
80
1
1



23
5550711
85
100
90
80
1
1



24
6590484
85
100
90
80
1
1



25
6590484
85
83.33
90
80
1
1



26
6590484
90
100
90
80
1
1



27
6590484
90
83.33
90
80
1
1



28
6590484
80
83.33
90
80
1
1



29
5550711
90
83.33
90
80
1
1



30
6590484
85
83.33
90
80
1
1



31
5550711
95
100
90
80
1
1



32
5550711
85
100
90
80
1
1



33
6590484
80
100
90
80
1
1



34
6590484
85
83.33
90
80
1
1



35
6590484
90
100
90
80
1
1



36
6590484
90
100
90
80
1
1



37
6590484
85
100
90
80
1
1



38
6590484
90
100
90
80
1
1



39
4220731
85
100
85
80
1
1



40
6590484
85
100
85
80
1
1



41
4220731
95
100
85
80
1
1



42
6590484
80
83.33
85
80
1
1



43
6590484
90
83.33
85
80
1
1



44
5960072
80
83.33
85
80
1
1



45
5550711
80
83.33
85
80
1
1



46
5960072
95
83.33
85
80
1
1



47
6590484
80
83.33
85
80
1
1



48
4220731
100
100
85
80
1
1



49
5080692
90
83.33
85
80
1
1



50
6590484
85
83.33
85
80
1
1



51
5080692
85
83.33
85
80
1
1



52
6590484
85
83.33
85
80
1
1



53
6590484
85
83.33
85
80
1
1



54
6590484
90
83.33
85
80
1
1



55
6590484
85
83.33
80
80
1
1



56
4220731
95
100
80
80
1
1



57
6590484
85
83.33
80
80
1
1



58
4260767
80
100
80
80
1
1



59
5080692
85
83.33
80
80
1
1



60
6590484
80
83.33
80
80
1
1



61
6590484
80
83.33
80
80
1
1



62
4260767
90
100
80
80
1
1



63
5080692
90
83.33
80
80
1
1



64
6590484
85
100
80
80
1
1



65
6590484
85
83.33
80
80
1
1



66
5080692
85
83.33
80
80
1
1



67
6590484
80
100
80
80
1
1



68
6590484
95
83.33
80
80
1
1



69
4260767
85
100
80
80
1
1



70
6590484
85
100
80
80
1
1



71
6590484
85
83.33
80
80
1
1



72
6590484
75
33.33
95
80
0
1



73
6590484
85
33.33
95
80
0
1



74
6590484
85
66.67
95
80
0
1



75
5550711
90
66.67
95
80
0
1



76
5550711
90
66.67
95
80
0
1



77
6590484
90
66.67
90
80
0
1



78
6590484
85
50
90
80
0
1



79
5550711
90
66.67
90
80
0
1



80
5550711
75
83.33
90
80
0
1



81
6590484
75
50
90
80
0
1



82
6590484
85
66.67
90
80
0
1



83
6590484
85
66.67
90
80
0
1



84
5550711
95
66.67
90
80
0
1



85
6590484
85
66.67
90
80
0
1



86
5080692
90
66.67
85
80
0
1



87
6590484
85
50
85
80
0
1



88
6590484
80
50
85
80
0
1



89
5080692
75
66.67
85
80
0
1



90
6590484
80
66.67
85
80
0
1



91
6590484
90
50
85
80
0
1



92
6590484
75
83.33
85
80
0
1



93
6590484
90
66.67
85
80
0
1



94
6590484
90
50
80
80
0
1



95
5080692
85
66.67
80
80
0
1



96
6590484
90
33.33
80
80
0
1



97
6590484
80
66.67
80
80
0
1



98
5080692
75
66.67
80
80
0
1



99
6590484
80
66.67
80
80
0
1










(7) Discrimination Rate Based on 7 Genes


The number of combinations of 7 genes from the 13 genes is 1715, and some of them are shown in Table 13. For example, the sets of 7 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life are 63 sets [Table 14: 1 to 63].

















TABLE 14







OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5





1
1716
521
7
770400
2360672
2370754
3420136
3440189


2
1716
558
7
770400
2360672
2370754
3440189
4220731


3
1716
574
7
770400
2360672
2370754
4220731
4260767


4
1716
663
7
770400
2360672
3420136
3440189
4220731


5
1716
667
7
770400
2350672
3420136
3440189
4220731


6
1716
701
7
770400
2360672
3440189
4220731
5080692


7
1716
717
7
770400
2370754
3130370
3420136
3440189


8
1716
738
7
770400
2370754
3130370
3420136
4220731


9
1716
751
7
770400
2370754
3130370
3440189
4220731


10
1716
786
7
770400
2370754
3420136
3440189
4220731


11
1716
849
7
770400
3130370
3420136
3440189
4220731


12
1716
865
7
770400
3130370
3420136
4220731
4260767


13
1716
868
7
770400
3130370
3420136
4220731
5080692


14
1716
880
7
770400
3130370
3440189
4220731
4260767


15
1716
471
7
770400
2360672
2370754
3130370
3420136


16
1716
486
7
770400
2360672
2370754
3130370
3440189


17
1716
500
7
770400
2360672
2370754
3130370
4220731


18
1716
507
7
770400
2360672
2370754
3130370
4220731


19
1716
555
7
770400
2360672
2370754
3440189
4220731


20
1716
562
7
770400
2360672
2370754
3440189
4220731


21
1716
578
7
770400
2360672
2370754
4220731
4260767


22
1716
581
7
770400
2360672
2370754
4220731
5080692


23
1716
591
7
770400
2360672
3130370
3420136
3440189


24
1716
605
7
770400
2360672
3130370
3420136
4220731


25
1716
612
7
770400
2360672
3130370
3420136
4220731


26
1716
625
7
770400
2360672
3130370
3440189
4220731


27
1716
628
7
770400
2360672
3130370
3440189
4220731


28
1716
632
7
770400
2360672
3130370
3440189
4220731


29
1716
638
7
770400
2360672
3130370
3440189
4260767


30
1716
648
7
770400
2360672
3130370
4220731
4260767


31
1716
694
7
770400
2360672
3440189
4220731
4260767


32
1716
698
7
770400
2360672
3440189
4220731
4260767


33
1716
710
7
770400
2360672
4220731
4260767
5030692


34
1716
812
7
770400
2370754
3420136
4220731
5030692


35
1716
883
7
770400
3130370
3440189
4220731
5080692


36
1716
913
7
770400
3420136
4220731
4260767
5080692


37
1716
919
7
770400
3440189
4220731
4260767
5030692


38
1716
1552
7
2360672
3130370
3440189
4220731
4260767


39
1716
463
7
770400
2360672
2370754
3130370
3420136


40
1716
470
7
770400
2360672
2370754
3130370
3420136


41
1716
473
7
770400
2360672
2370754
3130370
3420136


42
1716
503
7
770400
2360672
2370754
3130370
4220731


43
1716
505
7
770400
2360672
2370754
3130370
4220731


44
1716
523
7
770400
2360672
2370754
3420136
3440189


45
1716
604
7
770400
2360672
3130370
3420136
4220731


46
1716
608
7
770400
2360672
3130370
3420136
4220731


47
1716
621
7
770400
2360672
3130370
3420136
5080692


48
1716
644
7
770400
2360672
3130370
4220731
4260767


49
1716
651
7
770400
2360672
3130370
4220731
5080692


50
1716
659
7
770400
2360672
3420136
3440189
4220731


51
1716
820
7
770400
2370754
3440189
4220731
4260767


52
1716
847
7
770400
3130370
3420136
3440189
4220731


53
1716
892
7
770400
3130370
4220731
4260767
5080692


54
1716
899
7
770400
3420136
3440189
4220731
4260767


55
1716
520
7
770400
2360672
2370754
3420136
3440189


56
1716
560
7
770400
2360672
2370754
3440189
4220731


57
1716
589
7
770400
2360672
3130370
3420136
3440189


58
1716
590
7
770400
2360672
3130370
3420136
3440189


59
1716
607
7
770400
2360672
3130370
3420136
4220731


60
1716
627
7
770400
2360672
3130370
3440189
4220731


61
1716
662
7
770400
2360672
3420136
3440189
4220731


62
1716
665
7
770400
2360672
3420136
3440189
4220731


63
1716
681
7
770400
2360672
3420136
4220731
4260767


64
1716
551
7
770400
2360672
2370754
3420136
5080692


65
1716
660
7
770400
2360672
3420136
3440189
4220731


66
1716
842
7
770400
3130370
3420136
3440189
4220731


67
1716
901
7
770400
3420136
3440189
4220731
4260767


68
1716
686
7
770400
2360672
3420136
4220731
5080692


69
1716
876
7
770400
3130370
3440189
4220731
4260767


70
1716
897
7
770400
3420136
3440189
4220731
4260767


71
1716
516
7
770400
2360672
2370754
3130370
5080692


72
1716
646
7
770400
2360672
3130370
4220731
4260767


73
1716
540
7
770400
2360672
2370754
3420136
4220731


74
1716
624
7
770400
2360672
3130370
3440189
4220731


75
1716
630
7
770400
2360672
3130370
3440189
4220731


















OBS
pb6
pb7
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1





1
4220731
5550711
90
100
95
80
1
1


2
5080692
5550711
95
100
95
80
1
1


3
5080692
5550711
85
100
95
80
1
1


4
5080692
5550711
90
100
95
80
1
1


5
5550711
6590484
90
100
95
80
1
1


6
5550711
6590484
90
100
95
80
1
1


7
4220731
5550711
90
100
95
80
1
1


8
5550711
6590484
85
83.33
95
80
1
1


9
4260767
5550711
90
100
95
80
1
1


10
4260767
5550711
90
100
95
80
1
1


11
5550711
6590484
90
100
95
80
1
1


12
5550711
6590484
85
83.33
95
80
1
1


13
5550711
6590484
85
83.33
95
80
1
1


14
5550711
6590484
85
83.33
95
80
1
1


15
4220731
5550711
85
100
90
80
1
1


16
4220731
5550711
90
100
90
80
1
1


17
4260767
5550711
85
100
90
80
1
1


18
5550711
6590484
85
100
90
80
1
1


19
4260767
5550711
95
100
90
80
1
1


20
5550711
6590484
95
100
90
80
1
1


21
5550711
6590484
90
100
90
80
1
1


22
5550711
6590484
80
83.33
90
80
1
1


23
4220731
5550711
90
83.33
90
80
1
1


24
4260767
5550711
85
100
90
80
1
1


25
5550711
6590484
85
83.33
90
80
1
1


26
4260767
5550711
85
83.33
90
80
1
1


27
5030692
5550711
95
100
90
80
1
1


28
5550711
6590484
85
100
90
80
1
1


29
5550711
6590484
90
83.33
90
80
1
1


30
5550711
6590484
85
100
90
80
1
1


31
5080692
5550711
95
83.33
90
80
1
1


32
5550711
6590484
90
83.33
90
80
1
1


33
5550711
6590484
80
83.33
90
80
1
1


34
5550711
6590484
85
83.33
90
80
1
1


35
5550711
6590484
90
100
90
80
1
1


36
5550711
6590484
85
83.33
90
80
1
1


37
5550711
6590484
95
83.33
90
80
1
1


38
5550711
6590484
90
100
90
80
1
1


39
3440189
4220731
90
100
85
80
1
1


40
4220731
5080692
85
100
85
80
1
1


41
4220731
6590484
85
100
85
80
1
1


42
5080692
5550711
85
83.33
85
80
1
1


43
5080692
6590434
85
100
85
80
1
1


44
4220731
6590484
95
100
85
80
1
1


45
4260767
5080692
80
83.33
85
80
1
1


46
5080692
5550711
80
83.33
85
80
1
1


47
5550711
6590484
85
83.33
85
80
1
1


48
5080692
5550711
85
100
85
80
1
1


49
5550711
6590484
80
83.33
85
80
1
1


50
4260767
5080692
85
83.33
85
80
1
1


51
5080692
5550711
95
83.33
85
80
1
1


52
5080692
6590484
85
83.33
85
80
1
1


53
5550711
6590484
85
100
85
80
1
1


54
5080692
6590484
80
83.33
85
80
1
1


55
4220731
5080692
90
100
80
80
1
1


56
5080692
6590484
95
100
80
80
1
1


57
4220731
4260767
90
100
80
80
1
1


58
4220731
5080692
90
83.33
80
80
1
1


59
4260767
6590484
80
100
80
80
1
1


60
4260767
6590484
80
100
80
80
1
1


61
4260767
6590484
90
100
80
80
1
1


62
5080692
6590484
80
83.33
80
80
1
1


63
5080692
6590484
85
83.33
80
80
1
1


64
5550711
6590484
80
50
95
80
0
1


65
4260767
5550711
90
66.67
95
80
0
1


66
4260767
5550711
90
66.67
95
80
0
1


67
5550711
6590484
90
66.67
95
80
0
1


68
5550711
6590484
80
66.67
90
80
0
1


69
5080692
5550711
95
66.67
90
80
0
1


70
5080692
5550711
90
66.67
90
80
0
1


71
5550711
6590484
90
66.67
85
80
0
1


72
5080692
6590484
75
83.33
85
80
0
1


73
5080692
6590484
85
66.67
80
80
0
1


74
4260767
5080692
75
66.67
80
80
0
1


75
5080692
6590484
80
66.67
80
80
0
1









(8) Discrimination Rate Based on 8 Genes


The number of combinations of 8 genes from the 13 genes is 1287, and some of them are shown in Table 15. For example, the sets of 8 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 45 sets [Table 15: 1 to 45].


















TABLE 15







OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5
pb6





1
1287
534
8
770400
2360672
2370754
3420136
3440189
4220731


2
1287
541
8
770400
2360672
2370754
3420136
3440189
4220731


3
1287
568
8
770400
2360672
2370754
3440189
4220731
4260767


4
1287
575
8
770400
2360672
2370754
3440189
4220731
5080692


5
1287
584
8
770400
2360672
2370754
4220731
4260767
5080692


6
1287
593
8
770400
2360672
3130370
3420136
3440189
4220731


7
1287
597
8
770400
2360672
3130370
3420136
3440189
4220731


8
1287
649
8
770400
2360672
3420136
3440189
4220731
4260767


9
1287
652
8
770400
2360672
3420136
3440189
4220731
5080692


10
1287
674
8
770400
2370754
3130370
3420136
3440189
4220731


11
1287
733
8
770400
2370754
3420136
3440189
4220731
4260767


12
1287
761
8
770400
3130370
3420136
3440189
4220731
4260767


13
1287
786
8
770400
3420136
3440189
4220731
4260767
5080692


14
1287
465
8
770400
2360672
2370754
3130370
3420136
3440189


15
1287
467
8
770400
2360672
2370754
3130370
3420136
3440189


16
1287
479
8
770400
2360672
2370754
3130370
3420136
4220731


17
1287
482
8
770400
2360672
2370754
3130370
3420136
4220731


18
1287
486
8
770400
2360672
2370754
3130370
3420136
4220731


19
1287
499
8
770400
2360672
2370754
3130370
3440189
4220731


20
1287
502
8
770400
2360672
2370754
3130370
3440189
4220731


21
1287
506
8
770400
2360672
2370754
3130370
3440189
4220731


22
1287
522
8
770400
2360672
2370754
3130370
4220731
4260767


23
1287
525
8
770400
2360672
2370754
3130370
4220731
5080692


24
1287
539
8
770400
2360672
2370754
3420136
3440189
4220731


25
1287
572
8
770400
2360672
2370754
3440189
4220731
4260767


26
1287
613
8
770400
2360672
3130370
3420136
4220731
4260767


27
1287
624
8
770400
2360672
3130370
3440189
4220731
4260767


28
1287
628
8
770400
2360672
3130370
3440189
4220731
4260767


29
1287
631
8
770400
2360672
3130370
3440189
4220731
5080692


30
1287
667
8
770400
2360672
3440189
4220731
4260767
5080692


31
1287
779
8
770400
3130370
3440189
4220731
4260767
5080692


32
1287
464
8
770400
2360672
2370754
3130370
3420136
3440189


33
1287
518
8
770400
2360672
2370754
3130370
4220731
4260767


34
1287
570
8
770400
2360672
2370754
3440189
4220731
4260767


35
1287
609
8
770400
2360672
3130370
3420136
4220731
4260767


36
1287
616
8
770400
2360672
3130370
3420136
4220731
5080692


37
1287
640
8
770400
2360672
3130370
4220731
4260767
5080692


38
1287
647
8
770400
2360672
3420136
3440189
4220731
4260767


39
1287
708
8
770400
2370754
3130370
3440189
4220731
4260767


40
1287
751
8
770400
2370754
3440189
4220731
4260767
5080692


41
1287
484
8
770400
2360672
2370754
3130370
3420136
4220731


42
1287
589
8
770400
2360672
3130370
3420136
3440189
4220731


43
1287
592
8
770400
2360672
3130370
3420136
3440189
4220731


44
1287
595
8
770400
2360672
3130370
3420136
3440189
4220731


45
1287
759
8
770400
3130370
3420136
3440189
4220731
4260767


46
1287
645
8
770400
2360672
3420136
3440189
4220731
4260767


47
1287
590
8
770400
2360672
3130370
3420136
3440189
4220731


48
1287
757
8
770400
3130370
3420136
3440189
4220731
4280767


49
1287
7
8
770400
2030332
2360672
2370754
3130370
3420136


















OBS
pb7
pb8
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1





1
4260767
5550711
90
100
95
80
1
1


2
5550711
6590484
90
100
95
80
1
1


3
5080692
5550711
95
83.33
95
80
1
1


4
5550711
6590484
95
100
95
80
1
1


5
5550711
6590484
85
100
95
80
1
1


6
5080692
5550711
90
100
95
80
1
1


7
5550711
6590484
90
100
95
80
1
1


8
5550711
6590484
90
83.33
95
80
1
1


9
5550711
6590484
90
100
95
80
1
1


10
4260767
5550711
90
100
95
80
1
1


11
5550711
6590484
90
100
95
80
1
1


12
5550711
6590484
90
83.33
95
80
1
1


13
5550711
6590484
90
83.33
95
80
1
1


14
4220731
5550711
85
100
90
80
1
1


15
4220731
6590484
90
100
90
80
1
1


16
4260767
5550711
85
100
90
80
1
1


17
5080692
5550711
80
100
90
80
1
1


18
5550711
6590484
85
100
90
80
1
1


19
4260767
5550711
90
100
90
80
1
1


20
5080692
5550711
95
100
90
80
1
1


21
5550711
6590484
85
100
90
80
1
1


22
5550711
6590484
85
100
90
80
1
1


23
5550711
6590484
80
83.33
90
80
1
1


24
5080692
6590484
90
100
90
80
1
1


25
5550711
6590484
95
100
90
80
1
1


26
5550711
6590484
85
100
90
80
1
1


27
5080692
5550711
95
83.33
90
80
1
1


28
5550711
6590484
85
83.33
90
80
1
1


29
5550711
6590484
90
100
90
80
1
1


30
5550711
6590484
90
83.33
90
80
1
1


31
5550711
6590484
95
83.33
90
80
1
1


32
4220731
5080692
90
100
85
80
1
1


33
5080692
5550711
80
100
85
80
1
1


34
5080692
6590484
90
100
85
80
1
1


35
5080692
5550711
80
100
85
80
1
1


36
5550711
6590484
80
100
85
80
1
1


37
5550711
6590484
80
100
85
80
1
1


38
5080692
6590484
85
83.33
85
80
1
1


39
5080692
5550711
95
83.33
85
80
1
1


40
5550711
6590484
95
83.33
85
80
1
1


41
5080692
6590484
85
100
80
80
1
1


42
4260767
5080692
85
83.33
80
80
1
1


43
4260767
6590484
90
100
80
80
1
1


44
5080692
6590484
85
83.33
80
80
1
1


45
5080692
6590484
85
100
80
80
1
1


46
5080692
5550711
90
66.67
95
80
0
1


47
4260767
5550711
90
66.67
90
80
0
1


48
5080692
5550711
95
66.67
90
80
0
1


49
4220731
4260767
90
100
100
60
1
0









(9) Discrimination Rate Based on 9 Genes


The number of combinations of 9 genes from the 13 genes is 715, and some of them are shown in Table 16. For example, the sets of 9 gene probes that permit prediction with a discrimination rate of BO % or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 22 sets [Table 16: 1 to 22].


















TABLE 16







OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5
pb6





1
715
339
9
770400
2360672
2370754
3130370
3420136
3440189


2
715
387
9
770400
2360672
2370754
3420136
3440189
4220731


3
715
391
9
770400
2360672
2370754
3420136
3440189
4220731


4
715
419
9
770400
2360672
3130370
3420136
3440189
4220731


5
715
444
9
770400
2360672
3420136
3440189
4220731
4260767


6
715
455
9
770400
2370754
3130370
3420136
3440189
4220731


7
715
332
9
770400
2360672
2370754
3130370
3420136
3440189


8
715
355
9
770400
2360672
2370754
3130370
3420136
4220731


9
715
358
9
770400
2360672
2370754
3130370
3420136
4220731


10
715
366
9
770400
2360672
2370754
3130370
3440189
4220731


11
715
370
9
770400
2360672
2370754
3130370
3440189
4220731


12
715
373
9
770400
2360672
2370754
3130370
3440189
4220731


13
715
382
9
770400
2360672
2370754
3130370
4220731
4260767


14
715
409
9
770400
2360672
2370754
3440189
4220731
4260767


15
715
422
9
770400
2360672
3130370
3420136
3440189
4220731


16
715
437
9
770400
2360672
3130370
3440189
4220731
4260767


17
715
480
9
770400
2370754
3420136
3440189
4220731
4260767


18
715
488
9
770400
3130370
3420136
3440189
4220731
4260767


19
715
337
9
770400
2360672
2370754
3130370
3420136
3440189


20
715
431
9
770400
2360672
3130370
3420136
4220731
4260767


21
715
473
9
770400
2370754
3130370
3440189
4220731
4260767


22
715
417
9
770400
2360672
3130370
3420136
3440189
4220731


23
715
415
9
770400
2360672
3130370
3420136
3440189
4220731


24
715
7
9
770400
2030332
2360672
2370754
3130370
3420136


25
715
10
9
770400
2030332
2360672
2370754
3130370
3420136





















OBS
pb7
pb8
pb9
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1







1
4220731
5550711
6590484
90
100
95
80
1
1



2
4260767
5080692
5550711
90
83.33
95
80
1
1



3
4260767
5550711
6590484
90
100
95
80
1
1



4
4260767
5550711
6590484
90
83.33
95
80
1
1



5
5080692
5550711
6590484
90
83.33
95
80
1
1



6
4260767
5550711
6590484
90
100
95
80
1
1



7
4220731
4260767
5550711
85
100
90
80
1
1



8
4260767
5550711
6590484
85
100
90
80
1
1



9
5080692
5550711
6590484
80
100
90
80
1
1



10
4260767
5080692
5550711
95
83.33
90
80
1
1



11
4260767
5550711
6590484
85
100
90
80
1
1



12
5080692
5550711
6590484
95
100
90
80
1
1



13
5080692
5550711
6590484
80
100
90
80
1
1



14
5080692
5550711
6590484
95
83.33
90
80
1
1



15
5080692
5550711
6590484
90
100
90
80
1
1



16
5080692
5550711
6590484
90
83.33
90
80
1
1



17
5080692
5550711
6590484
90
83.33
90
80
1
1



18
5080692
5550711
6590484
90
83.33
90
80
1
1



19
4220731
5080692
6590484
90
100
85
80
1
1



20
5080692
5550711
6590484
80
100
85
80
1
1



21
5080692
5550711
6590484
95
83.33
85
80
1
1



22
4260767
5080692
6590484
85
83.33
80
80
1
1



23
4260767
5080692
5550711
90
66.67
95
80
0
1



24
3440189
4260767
5550711
90
100
100
60
1
0



25
3440189
5080692
5550711
95
100
100
60
1
0










(10) Discrimination Rate Based on 10 Genes


The number of combinations of 10 genes from the 13 genes is 286, and some of them are shown in Table 17. For example, the sets of 10 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 7 sets [Table 17: 1 to 7].



















TABLE 17







OBS
rep
index
pbnum
pb1
pb2
pb3
pb4
pb5
pb6
pb7





1
286
166
10
770400
2360672
2370754
3130370
3420136
3440189
4220731


2
286
170
10
770400
2360672
2370754
3130370
3420136
3440189
4220731


3
286
195
10
770400
2360672
2370754
3420136
3440189
4220731
4260767


4
286
182
10
770400
2360672
2370754
3130370
3420136
4220731
4260767


5
286
203
10
770400
2360672
3130370
3420136
3440189
4220731
4260767


6
286
212
10
770400
2370754
3130370
3420136
3440189
4220731
4260767


7
286
188
10
770400
2360672
2370754
3130370
3440189
4220731
4260767


8
286
5
10
770400
2030332
2360672
2370754
3130370
3420136
3440189


9
286
11
10
770400
2030332
2360672
2370754
3130370
3420136
3440189


10
286
14
10
770400
2030332
2360672
2370754
3130370
3420136
3440189


11
286
15
10
770400
2030332
2360672
2370754
3130370
3420136
3440189


12
286
17
10
770400
2030332
2360672
2370754
3130370
3420136
3440189


13
286
22
10
770400
2030332
2360672
2370754
3130370
3420136
4220731


14
286
31
10
770400
2030332
2360672
2370754
3130370
3420136
4260767


15
286
37
10
770400
2030332
2360672
2370754
3130370
3440189
4220731


16
286
42
10
770400
2030332
2360672
2370754
3130370
3440189
4220731


17
286
46
10
770400
2030332
2360672
2370754
3130370
3440189
4260767


18
286
49
10
770400
2030332
2360672
2370754
3130370
3440189
4260767


19
286
56
10
770400
2030332
2360672
2370754
3130370
4260767
5080692


20
286
63
10
770400
2030332
2360672
2370754
3420136
3440189
4220731


21
286
67
10
770400
2030332
2360672
2370754
3420136
3440189
4260767


22
286
71
10
770400
2030332
2360672
2370754
3420136
3440189
5080692


23
286
91
10
770400
2030332
2360672
3130370
3420136
3440189
4220731


24
286
124
10
770400
2030332
2370754
3130370
3420136
3440189
4220731


25
286
127
10
770400
2030332
2370754
3130370
3420136
3440189
4220731





















OBS
pb8
pb9
pb10
ccvP0
ctcP0
ccvP1
ctcP1
flg0
flg1







1
4260767
5080692
5550711
90
83.33
95
80
1
1



2
4260767
5550711
6590484
90
100
95
80
1
1



3
5090692
5550711
6590484
90
83.33
95
80
1
1



4
5090692
5550711
6590484
80
100
90
80
1
1



5
5090692
5550711
6590484
90
83.33
90
80
1
1



6
5090692
5550711
6590434
90
83.33
90
80
1
1



7
5090692
5550711
6590484
95
83.33
85
80
1
1



8
4220731
5080692
5550711
95
100
100
60
1
0



9
4260767
5080692
5550711
85
100
100
60
1
0



10
4260767
5550711
5960072
95
100
100
60
1
0



11
4260767
5550711
6590484
90
83.33
100
60
1
0



12
5080692
5550711
5960072
95
83.33
100
60
1
0



13
4260767
5080692
5960072
95
83.33
100
60
1
0



14
5080692
5550711
5960072
95
100
100
60
1
0



15
4260767
5080692
5960072
95
83.33
100
60
1
0



16
5080692
5550711
5960072
100
100
100
60
1
0



17
5080692
5550711
5960072
95
100
100
60
1
0



18
5550711
5960072
6590484
100
83.33
100
60
1
0



19
5550711
5960072
6590484
100
83.33
100
60
1
0



20
5080692
5550711
5960072
100
100
100
60
1
0



21
5080692
5550711
5960072
95
100
100
60
1
0



22
5550711
5960072
6590484
100
83.33
100
60
1
0



23
5080692
5550711
5960072
100
83.33
100
60
1
0



24
4260767
5550711
5960072
100
83.33
100
60
1
0



25
5080692
5550711
5960072
100
100
100
60
1
0










(11) Discrimination Rate Based on 11 Genes


The number of combinations of 11 genes from the 13 genes is 78. For example, the sets of 11 gene probes that permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life include 1 set [770400/2360672/2370754/3130370/3420136/3440189/4220731/4 260767/5080692/5550711/6590484.


A study was made on combinations of 12 or 13 genes selected from the 13 genes in the same way as above. No gene probe set was found to permit prediction with a discrimination rate of 80% or more in training data (40 individuals) and test data (11 individuals) as to the discrimination of long life or short life.


(14) Selection of Gene Advantageous for Discrimination


As described above, when 1, 2, . . . , 13 genes are used from the 13 genes, 4 genes that offered a favorable discrimination rate (highly frequent genes used in the gene sets that resulted in a discrimination rate of 80% or more) were selected (probe ID NOs: 770400, 2360672, 4220731 and 5550711). Table 18 and FIG. 5 show the appearance frequency of each probe obtained from the combinations of probes that result in both flg0 and flg1 of 1 (discrimination rate of 80% or more in both training data and test data). The combinations involving these 4 genes exhibited high prognostic predictability.













TABLE 18





OBS
Probe_ID
Symbol
Accession
frequency



















1
770400
LOC653600
XM_928349.1
257


2
2030332
PTPN18
NM_014369.2
0


3
2360672
TNFRSF19
NM_148957.2
203


4
2370754
G3BP2
NM_012297.3
112


5
3130370
ZNF83
NM_018300.2
157


6
3420136
C6orf222
NM_001010903.3
140


7
3440189
ZBTB20
NM_015642.3
161


8
4220731
P4HA1
NM_000917.2
257


9
4260767
GP1BA
NM_000173.4
112


10
5080692
HLA-A29.1
NM_001080840.1
115


11
5550711
SYNE1
NM_182961.2
186


12
5960072

BY797688
5


13
6590484
NAP1L1
NM_139207.1
151









Example 2
1: Selection of Immunologically Relevant Gene

In the same way as in Example 1, the short-lived group and the long-lived group were subjected to t-test with focusing on 748 immunologically relevant genes from the 16968 genes. As a result, top 100 genes with a small P-value (large significant difference) were selected as candidates (Table 19). The expression levels (fluorescence reader-measured values) of these 100 genes are shown in the columns “0” (short-lived group) and “1” (long-lived group) of Table 19.


















TABLE 19







OBS
ProbeID
Symbol
Accession
_0
_1
_dif01
Method
Variances
tValue





1
4830255
DPP4
NM_001935.3
6.8716
7.179
−0.3074
Pooled
Equal
−4.52


2
1110091
TIAL1
NM_001033925.1
7.6534
7.8873
−0.2339
Pooled
Equal
−3.9


3
6940433
STAT5B
NM_012448.3
8.5812
8.8213
−0.2402
Pooled
Equal
−3.67


4
2640025
HP
NM_005143.2
7.3689
6.9621
0.4068
Pooled
Equal
3.6


5
3520601
MPO
NM_000250.1
8.129
7.1635
0.9655
Pooled
Equal
3.39


6
6550600
MYC
NM_002467.3
7.5767
7.914
−0.3374
Pooled
Equal
−3.37


7
3610735
F12
NM_000505.3
6.8105
6.7151
0.0954
Pooled
Equal
3.09


8
5900100
BCR
NM_021574.2
6.6621
6.5878
0.0743
Pooled
Equal
3.07


9
3130669
SATB1
NM_002971.2
7.0787
7.2949
−0.2162
Pooled
Equal
−3.05


10
1500735
CTSG
NM_001911.2
8.781
7.5263
1.2547
Pooled
Equal
3


11
5420095
MYC
NM_002467.3
8.2483
8.6315
−0.3832
Pooled
Equal
−2.91


12
5670739
AZU1
NM_001700.3
7.3525
6.7459
0.6066
Pooled
Equal
2.89


13
10358
SPN
NM_001030288.1
8.4201
8.0743
0.3457
Pooled
Equal
2.86


14
770021
PRKRA
NM_003690.3
8.4218
8.6512
−0.2294
Pooled
Equal
−2.82


15
2940767
CEBPE
NM_001805.2
6.7703
6.625
0.1453
Pooled
Equal
2.78


16
4250577
HSPD1
NM_002156.4
6.5931
6.5566
0.0365
Pooled
Equal
2.76


17
940356
IL15RA
NM_002189.2
6.8246
6.7111
0.1135
Pooled
Equal
2.76


18
6250615
PGLYRP1
NM_005091.1
8.0051
7.3418
0.6634
Pooled
Equal
2.76


19
4390398
LCN2
NM_005564.3
9.4014
8.4624
0.9391
Pooled
Equal
2.76


20
5490403
CD1E
NM_001042586.1
6.8164
6.9676
−0.1512
Pooled
Equal
−2.73


21
6900634
CD69
NM_001781.1
8.5701
9.0537
−0.4836
Pooled
Equal
−2.65


22
6400176
IRF7
NM_004029.2
9.7006
9.3658
0.3348
Pooled
Equal
2.64


23
2030767
CD48
NM_001778.2
11.9662
12.2108
−0.2446
Pooled
Equal
−2.63


24
5360719
MAPK9
NM_002752.3
6.8029
6.9261
−0.1232
Pooled
Equal
−2.62


25
5860075
CAMP
NM_004345.3
9.9646
8.9318
1.0328
Pooled
Equal
2.61


26
3170543
TIAL1
NM_001033925.1
8.8499
9.0269
−0.1771
Pooled
Equal
−2.59


27
360719
CD44
NM_000610.3
7.2686
7.5049
−0.2363
Pooled
Equal
−2.58


28
5870138
VWF
NM_000552.3
6.8198
6.6721
0.1477
Pooled
Equal
2.58


29
6370435
ETS1
NM_005238.2
10.2
10.6678
−0.4678
Pooled
Equal
−2.57


30
3170017
MAP2K3
NM_002756.3
8.5386
8.2263
0.3122
Pooled
Equal
2.54


31
1400079
CRHR1
NM_004382.3
6.9215
6.8466
0.0749
Pooled
Equal
2.54


32
1240450
CD27
NM_001242.4
8.27
8.6406
−0.3706
Pooled
Equal
−2.5


33
6960072
HSPD1
NM_002156.4
8.7781
9.056
−0.2779
Pooled
Equal
−2.49


34
5260315
ZBT87B
NM_015872.1
6.901
6.7793
0.1217
Pooled
Equal
2.47


35
70605
HSPD1
NM_002156.4
9.9989
10.2759
−0.2769
Pooled
Equal
−2.45


36
5420441
TNFSF9
NM_003811.2
6.7756
6.6769
0.0987
Pooled
Equal
2.44


37
270156
UBE2N
NM_003348.3
9.546
9.757
−0.2109
Pooled
Equal
−2.43


38
3610709
PAG1
NM_018440.3
8.3033
8.4991
−0.1958
Pooled
Equal
−2.42


39
1770386
MALT1
NM_006785.2
8.068
8.2886
−0.2205
Pooled
Equal
−2.4


40
4780075
CEACAM8
NM_001816.2
7.982
7.2856
0.6964
Pooled
Equal
2.38


41
1690626
CMKLR1
NM_004072.1
6.7231
6.6274
0.0956
Pooled
Equal
2.38


42
780465
SLC11A1
NM_000578.3
9.8466
9.4391
0.4075
Pooled
Equal
2.36


43
1430709
SPACA3
NM_173847.3
6.6516
6.5805
0.071
Pooled
Equal
2.29


44
870193
SP140
NM_001005176.1
7.4131
7.2877
0.1255
Pooled
Equal
2.28


45
5290040
TNFRSF4
NM_003327.2
6.5992
6.5555
0.0437
Pooled
Equal
2.24


46
1059482
CD46
NM_172358.1
6.8321
6.9637
−0.1316
Pooled
Equal
−2.23


47
2140707
SLPI
NM_003064.2
7.3095
6.923
0.3864
Pooled
Equal
2.21


48
4560193
CD44
NM_001001392.1
8.9576
9.1696
−0.212
Pooled
Equal
−2.2


49
4200746
BPI
NM_001725.1
7.8696
7.3048
0.5649
Pooled
Equal
2.18


50
4590026
IMPDH2
NM_000884.2
9.3239
9.5538
−0.2299
Pooled
Equal
−2.17


51
5420091
LTB
NM_002341.1
9.8693
10.162
−0.2927
Pooled
Equal
−2.14


52
5910019
C1QB
NM_000491.3
7.4045
7.1647
0.2398
Pooled
Equal
2.11


53
6840435
LILRB1
NM_001081637.1
12.6694
12.9059
−0.2366
Pooled
Equal
−2.09


54
6290343
CRH
NM_000756.1
6.6596
6.623
0.0366
Pooled
Equal
2.07


55
7200392
C1QBP
NM_001212.3
9.8569
10.0245
−0.1675
Pooled
Equal
−2.06


56
4120379
GFI1
NM_005263.2
7.8526
7.6175
0.235
Pooled
Equal
2.06


57
3990703
IL10
NM_000572.2
10.7567
11.1219
−0.3652
Pooled
Equal
−2.05


58
1230767
IFITM2
NM_006435.2
12.8638
12.476
0.3878
Pooled
Equal
2.05


59
6400386
MAP4K2
NM_004579.2
9.8522
9.6326
0.2196
Pooled
Equal
2.05


60
10142
CD164
NM_006016.3
6.8434
6.9864
−0.143
Pooled
Equal
−2.03


61
3180494
BCL2
NM_000633.2
8.2881
8.6083
−0.3202
Pooled
Equal
−2.03


62
290592
CASP8
NM_033356.3
6.7671
6.6696
0.0975
Pooled
Equal
2.03


63
7200386
GFI1B
NM_004188.3
6.6923
6.6295
0.0628
Pooled
Equal
2.01


64
5090368
HSPA4
NM_198431.1
9.2162
9.405
−0.1888
Pooled
Equal
−1.99


65
6330445
CASP3
NM_004346.3
6.6553
6.6183
0.037
Pooled
Equal
1.98


66
4810333
IL12RB1
NM_153701.1
7.4262
7.2541
0.1721
Pooled
Equal
1.98


67
3520167
CD63
NM_001040034.1
8.9275
8.6779
0.2495
Pooled
Equal
1.98


68
2490537
TNFRSF1B
NM_001066.2
9.3305
9.0642
0.2663
Pooled
Equal
1.98


69
5570730
TICAM1
NM_182919.1
8.2608
7.9802
0.2806
Pooled
Equal
1.98


70
2900451
MR1
NM_001531.1
8.1442
7.9975
0.1467
Pooled
Equal
1.97


71
3290441
BMPR1A
NM_004329.2
6.8959
6.9693
−0.0734
Pooled
Equal
−1.96


72
6650242
IFITM3
NM_021034.2
11.7018
11.2156
0.4862
Pooled
Equal
1.94


73
5310053
LTB
NM_002341.1
12.2713
12.556
−0.2846
Pooled
Equal
−1.94


74
1010246
IFI6
NM_022872.2
9.0927
8.5078
0.5849
Pooled
Equal
1.94


75
3140242
KIR2DL3
NM_014511.3
9.2033
8.6994
0.504
Pooled
Equal
1.91


76
2970201
ABHD2
NM_152924.3
6.9306
6.8658
0.0648
Pooled
Equal
1.9


77
4180088
ABL1
NM_005157.3
7.3424
7.1924
0.15
Pooled
Equal
1.89


78
3800725
SPHK2
NM_020126.3
7.9083
7.7437
0.1646
Pooled
Equal
1.89


79
5310754
VNN1
NM_004666.1
7.0161
6.888
0.128
Pooled
Equal
1.88


80
430142
HSPA4
NM_002154.3
7.086
7.2329
−0.147
Pooled
Equal
−1.85


81
1030270
FPR1
NM_002029.3
11.6868
11.3479
0.3389
Pooled
Equal
1.85


82
540671
LILRB2
NM_001080978.1
9.4993
9.272
0.2273
Pooled
Equal
1.83


83
610601
LYST
NM_000081.2
7.7998
7.9903
−0.1905
Pooled
Equal
−1.82


84
4810474
IL18
NM_001562.2
13.2815
13.4723
−0.1908
Pooled
Equal
−1.81


85
2810156
IGF2R
NM_000876.2
9.8756
9.6428
0.2328
Pooled
Equal
1.81


86
1190519
MS4A1
NM_021950.3
6.7216
6.8175
−0.096
Pooled
Equal
−1.8


87
5390246
CCR7
NM_001838.2
9.9724
10.3942
−0.4218
Pooled
Equal
−1.8


88
4250136
LTB4R
NM_181657.1
7.8286
7.6741
0.1546
Pooled
Equal
1.79


89
610113
TNFSF14
NM_003807.2
7.4507
7.2152
0.2355
Pooled
Equal
1.78


90
3400392
FPR2
NM_001462.3
7.9307
7.6552
0.2754
Pooled
Equal
1.78


91
2060377
TLR3
NM_003265.2
6.6058
6.5672
0.0385
Pooled
Equal
1.77


92
2070037
ICOS
NM_012092.2
8.6581
8.9752
−0.317
Pooled
Equal
−1.77


93
830324
FLT3LG
NM_001459.2
7.9726
8.1475
−0.175
Pooled
Equal
−1.77


94
3610440
MAF
NM_005360.3
9.0803
8.8146
0.2657
Pooled
Equal
1.77


95
6520215
ANXA1
NM_000700.1
12.4165
12.6172
−0.2006
Pooled
Equal
−1.76


96
5220189
PIK3AP1
NM_152309.2
7.5028
7.6659
−0.1531
Pooled
Equal
−1.75


97
620717
CCL5
NM_002985.2
13.3773
13.0768
0.3005
Pooled
Equal
1.75


98
6110343
CCL23
NM_145898.1
7.3429
7.2314
0.1115
Pooled
Equal
1.74


99
5490750
RELA
NM_021975.2
7.1608
7.006
0.1547
Pooled
Equal
1.74


100
1260601
ST6GAL1
NM_173216.1
6.7798
6.8588
−0.079
Pooled
Equal
−1.74





















OBS
DF
Probt
P_KW
flg1
flg2
flg3
FC
_lpval_t
_lpval_w







1
38
<.0001
0.00019
1
1
2
−0.3074
4.23172
3.7229



2
38
0.0004
0.00141
1
1
2
−0.23391
3.42496
2.84975



3
38
0.0007
0.00088
1
1
2
−0.24015
3.12747
3.05682



4
38
0.0009
0.00187
1
1
2
0.40682
3.03732
2.72907



5
38
0.0016
0.0008
1
1
2
0.96555
2.7846
3.09913



6
38
0.0017
0.00048
1
1
2
−0.33736
2.75912
3.31516



7
38
0.0037
0.00245
1
1
2
0.09539
2.43139
2.61106



8
38
0.004
0.00204
1
1
2
0.07433
2.4012
2.68944



9
38
0.0041
0.00803
1
1
2
−0.21617
2.38317
2.09542



10
38
0.0048
0.00869
1
1
2
1.25466
2.3209
2.06078



11
38
0.0061
0.00451
1
1
2
−0.38321
2.21614
2.34605



12
38
0.0063
0.00741
1
1
2
0.60663
2.20215
2.13034



13
38
0.0069
0.00803
1
1
2
0.34574
2.16135
2.09542



14
38
0.0075
0.00803
1
1
2
−0.22936
2.12341
2.09542



15
38
0.0084
0.00224
1
1
2
0.14529
2.0756
2.65011



16
38
0.0088
0.02655
1
1
2
0.0365
2.05747
1.57598



17
38
0.0088
0.0186
1
1
2
0.1135
2.05697
1.73038



18
38
0.0088
0.01018
1
1
2
0.66337
2.05532
1.99238



19
38
0.0089
0.02476
1
1
2
0.93905
2.04895
1.60628



20
38
0.0094
0.01018
1
1
2
−0.15121
2.02472
1.99238



21
38
0.0117
0.011
1
1
2
−0.48356
1.93088
1.95862



22
38
0.0118
0.02149
1
1
2
0.3348
1.92745
1.66776



23
38
0.0124
0.02845
1
1
2
−0.24463
1.90778
1.54595



24
38
0.0124
0.01188
1
1
2
−0.12321
1.90534
1.92515



25
38
0.0129
0.02
1
1
2
1.03277
1.89047
1.69892



26
38
0.0135
0.02476
1
1
2
−0.17707
1.86892
1.60628



27
38
0.0139
0.01282
1
1
2
−0.23628
1.8562
1.89196



28
38
0.0139
0.05146
1
0
1
0.14772
1.85661
1.28851



29
38
0.0141
0.0058
1
1
2
−0.46775
1.85086
2.23688



30
38
0.0152
0.00451
1
1
2
0.31225
1.81911
2.34605



31
38
0.0153
0.01282
1
1
2
0.07494
1.81484
1.89196



32
38
0.017
0.01383
1
1
2
−0.37061
1.76963
1.85907



33
38
0.0172
0.02655
1
1
2
−0.27785
1.76391
1.57598



34
38
0.0183
0.011
1
1
2
0.12174
1.73678
1.95862



35
38
0.019
0.01491
1
1
2
−0.27691
1.72222
1.82646



36
38
0.0195
0.0186
1
1
2
0.09871
1.70969
1.73038



37
38
0.02
0.02
1
1
2
−0.21093
1.69802
1.69892



38
38
0.0205
0.02476
1
1
2
−0.19579
1.68762
1.60628



39
38
0.0214
0.00941
1
1
2
−0.22051
1.67057
2.02644



40
38
0.0222
0.02149
1
1
2
0.69644
1.65321
1.66776



41
38
0.0223
0.011
1
1
2
0.09561
1.65075
1.95862



42
38
0.0235
0.0188
1
1
2
0.4075
1.629
1.73038



43
38
0.0277
0.00533
1
1
2
0.07103
1.55822
2.27297



44
38
0.0286
0.06586
1
0
1
0.12546
1.54419
1.18141



45
38
0.0313
0.04831
1
1
2
0.04373
1.50467
1.31599



46
38
0.032
0.02655
1
1
2
−0.13161
1.49515
1.57598



47
38
0.0332
0.04248
1
1
2
0.38644
1.47913
1.37178



48
38
0.0342
0.03046
1
1
2
−0.21201
1.46649
1.51622



49
38
0.0352
0.03487
1
1
2
0.56488
1.45399
1.45759



50
38
0.0366
0.02845
1
1
2
−0.22987
1.43659
1.54595



51
38
0.0384
0.03048
1
1
2
−0.29269
1.41519
1.51622



52
38
0.0417
0.04532
1
1
2
0.23979
1.37949
1.34375



53
38
0.0429
0.04532
1
1
2
−0.23657
1.3676
1.34375



54
38
0.0451
0.02476
1
1
2
0.03659
1.34582
1.60628



55
38
0.046
0.06993
1
0
1
−0.16752
1.33722
1.15533



56
38
0.0463
0.05479
1
0
1
0.23505
1.33486
1.26132



57
38
0.047
0.05146
1
0
1
−0.36524
1.32783
1.28851



58
38
0.0473
0.04831
1
1
2
0.38784
1.3249
1.31599



59
38
0.0474
0.05479
1
0
1
0.21964
1.3242
1.26132



60
38
0.0489
0.02307
1
1
2
−0.14303
1.31036
1.63688



61
38
0.0493
0.0398
1
1
2
−0.32016
1.30743
1.4001



62
39
0.0499
0.02845
1
1
2
0.09746
1.30167
1.54595



63
38
0.0519
0.09893
0
0
0
0.06283
1.28501
1.00466



64
38
0.0543
0.03726
0
1
1
−0.18878
1.26483
1.42871



65
38
0.0548
0.12982
0
0
0
0.03704
1.2616
0.88665



66
38
0.055
0.08342
0
0
0
0.17215
1.25985
1.07876



67
38
0.0553
0.06586
0
0
0
0.24953
1.25701
1.18141



68
38
0.0554
0.05479
0
0
0
0.26631
1.25678
1.26132



69
38
0.0554
0.15167
0
0
0
0.28059
1.25666
0.8191



70
38
0.0557
0.12311
0
0
0
0.14673
1.25425
0.90971



71
38
0.0575
0.06586
0
0
0
−0.07343
1.24053
1.18141



72
38
0.0594
0.04248
0
1
1
0.48619
1.22644
1.37178



73
38
0.0603
0.09352
0
0
0
−0.28465
1.21984
1.02909



74
38
0.0603
0.06586
0
0
0
0.58489
1.21951
1.18141



75
38
0.0635
0.08835
0
0
0
0.50399
1.19711
1.05378



76
38
0.0655
0.06586
0
0
0
0.06478
1.18408
1.18141



77
38
0.066
0.07421
0
0
0
0.14999
1.18021
1.12953



78
38
0.0666
0.10459
0
0
0
0.1646
1.17643
0.98052



79
38
0.0679
0.0398
0
1
1
0.12802
1.16809
1.4001



80
38
0.0717
0.05829
0
0
0
−0.14695
1.14455
1.2344



81
38
0.0725
0.09893
0
0
0
0.33894
1.1395
1.00466



82
38
0.0744
0.02149
0
1
1
0.22727
1.12837
1.66776



83
38
0.0763
0.0398
0
1
1
−0.1905
1.11768
1.4001



84
38
0.0774
0.08835
0
0
0
−0.1908
1.11102
1.05378



85
38
0.0788
0.1105
0
0
0
0.23285
1.10327
0.95664



86
38
0.0791
0.23397
0
0
0
−0.09595
1.10207
0.63085



87
38
0.0792
0.09352
0
0
0
−0.42181
1.10121
1.02909



88
38
0.0813
0.06993
0
0
0
0.15458
1.08977
1.15533



89
38
0.0834
0.07421
0
0
0
0.23552
1.079
1.12953



90
38
0.0836
0.1441
0
0
0
0.27545
1.07776
0.84135



91
38
0.084
0.05146
0
0
0
0.03854
1.07572
1.28851



92
38
0.0847
0.09352
0
0
0
−0.31702
1.07188
1.02909



93
38
0.0852
0.12982
0
0
0
−0.17496
1.06948
0.88665



94
38
0.0853
0.09352
0
0
0
0.26566
1.0688
1.02909



95
38
0.0869
0.08342
0
0
0
−0.20065
1.06109
1.07876



96
38
0.0876
0.12311
0
0
0
−0.1531
1.05764
0.90971



97
38
0.0889
0.02845
0
1
1
0.30045
1.05105
1.54595



98
38
0.0891
0.15954
0
0
0
0.11147
1.04993
0.79712



99
38
0.0893
0.09352
0
0
0
0.15475
1.04908
1.02909



100
38
0.0903
0.15167
0
0
0
−0.07899
1.04414
0.8191










As a result of performing variable selection using the 100 immunologically relevant genes, 29 genes were selected (Table 20). The gene set of these 29 genes permitted prediction with a discrimination rate of 100% in training data (40 individuals) as to the discrimination of long life or short life. The discrimination of test data (11 individuals) based on this gene set resulted in a short life discrimination rate (ctcP0) of 83.33% and a long life discrimination rate (ctcP1) of 80% (Table 21).














TABLE 20







OBS
probeID
Symbol
Accession





















1
610113
TNFSF14
NM_003807.2



2
610170
EREG
NM_001432.2



3
870156
CD1A
NM_001763.2



4
940356
IL15RA
NM_002189.2



5
1110091
TIAL1
NM_001033925.1



6
1300274
ANXA11
NM_001157.2



7
1450008
IL16
NM_172217.1



8
2260731
ERAP2
NM_022350.2



9
2640025
HP
NM_005143.2



10
2750324
PRKCZ
NM_002744.4



11
2760500
CD38
NM_001775.2



12
3420026
FAS
NM_152877.1



13
3520601
MPO
NM_000250.1



14
4210612
AP3D1
NM_003938.5



15
4220152
SIRPG
NM_018556.3



16
4290736
MAP2K2
NM_030662.2



17
4390241
BCL2L11
NM_207002.2



18
4830255
DPP4
NM_001935.3



19
5080608
LAT
NM_014387.3



20
5420095
MYC
NM_002467.3



21
5810685
THBS1
NM_003246.2



22
5960136
CLEC4C
NM_130441.2



23
6220639
HSF1
NM_005526.2



24
6450390
IL2RG
NM_000206.1



25
6520725
TNFRSF14
NM_003820.2



26
6580408
CTSW
NM_001335.3



27
6900424
TYK2
NM_003331.3



28
7210543
PLD2
NM_002663.2



29
7610390
NOD1
NM_006092.1























TABLE 21





pbnum
ccvP0
ccvP1
ctcP0
ctcP1
flg_ccv
flg_ctc







29
100
100
83.33
80
1
1









From these 29 immunologically relevant genes, top 11 genes that were considered particularly relevant and exhibited the high correlation between survival time and gene expression were selected, and addition of a TNF-related gene (2360672) (a total of 12 genes) resulted in selecting 12 genes (Table 22).














TABLE 22







OBS
probeID
Symbol
Accession





















1
610113
TNFSF14
NM_003807.2



2
940356
IL15RA
NM_002189.2



3
1110091
TIAL1
NM_001033925.1



4
2360672
TNFRSF19
NM_148957.2



5
2640025
HP
NM_005143.2



6
3420026
FAS
NM_152877.1



7
3520601
MPO
NM_000250.1



8
4830255
DPP4
NM_001935.3



9
5420095
MYC
NM_002467.3



10
5960136
CLEC4C
NM_130441.2



11
6450390
IL2RG
NM_000206.1



12
6520725
TNFRSF14
NM_003820.2










2: Discrimination Rate Based on Selected Gene

(1) Discrimination rate based on combinations of 1 to 12 genes


Of the 12 genes, one gene probe 4830255 (Table 23) permitted prediction with a high rate (ccvP0 ccvP1 ctcP0+ctcP1>290) by itself. This gene probe permitted prediction with 90% probability in the training data (40 individuals) and 50% probability in the test data (11 individuals) as to the discrimination of short life and with 70% probability in the training data and 80% probability in the test data as to the discrimination of long life.
















TABLE 23





pb1
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc







4830255
90
70
50
80
290
0
0









Of the 12 genes, examples of 2 to 11 gene probes that permitted prediction with a high rate (ccvP0+ccvP1+ctcP0+ctcP1>290) are shown in the following Tables:









TABLE 24







Combination of 2 genes















pb1
pb2
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc


















2360672
5420095
75
85
50
100
310
0
0


4830255
6450390
90
70
67
80
307
0
0


940356
4830255
85
70
67
80
302
0
0


610113
4830255
90
70
50
80
290
0
0
















TABLE 25







Combination of 3 genes
















pb1
pb2
pb3
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc



















940356
2360672
4830255
95
80
67
80
322
1
0


610113
1110091
2360672
85
80
50
100
315
1
0


610113
2360672
4830255
85
80
67
80
312
1
0


2360672
2640025
4830255
85
80
67
80
312
1
0


2360672
3420026
5420095
75
85
50
100
310
0
0


1110091
2360672
4830255
85
90
33
100
308
1
0


610113
4830255
6450390
90
70
67
80
307
0
0


2360672
3420026
4830255
90
85
50
80
305
1
0


2360672
4830255
6520725
90
85
50
80
305
1
0


610113
2360672
2640025
65
75
83
80
303
0
1


610113
940356
4830255
85
70
67
80
302
0
0


3420026
4830255
6450390
90
65
67
80
302
0
0


4830255
6450390
6520725
85
70
67
80
302
0
0


2360672
5420095
5960136
70
80
50
100
300
0
0


1110091
2360672
2640025
85
80
33
100
298
1
0


1110091
2360672
5420095
75
90
33
100
298
0
0


2360672
5420095
6450390
70
75
50
100
295
0
0


1110091
2360672
6450390
80
80
33
100
293
1
0


610113
3520601
5420095
70
90
33
100
293
0
0


2360672
3520601
5420095
75
85
33
100
293
0
0


3520601
5420095
5960136
70
90
33
100
293
0
0


610113
940356
2360672
70
75
67
80
292
0
0


2360672
2640025
6520725
65
80
67
80
292
0
0


3420026
4830255
5960136
90
70
50
80
290
0
0
















TABLE 26







Combination of 4 genes

















pb1
pb2
pb3
pb4
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc




















940356
2360672
48730255
6520725
95
70
83
80
328
0
1


610113
1110091
2360672
3420026
85
80
50
100
315
1
0


610113
1110091
2360672
5960136
85
80
50
100
315
1
0


610113
1110091
2360672
6520725
85
80
50
100
315
1
0


610113
2360672
2640025
4830255
85
80
67
80
312
1
0


2360672
2640025
4830255
6520725
85
80
67
80
312
1
0


610113
940356
2360672
4830255
90
75
67
80
312
0
0


940356
2360672
4830255
5960136
95
70
67
80
312
0
0


610113
1110091
2360672
6450390
80
80
50
100
310
1
0


610113
1110091
2360672
5420095
75
85
50
100
310
0
0


1110091
2360672
4830255
5960136
85
90
33
100
308
1
0


2360672
2640025
4830255
5960136
80
80
67
80
307
1
0


610113
2360672
4830255
6450390
85
75
67
80
307
0
0


610113
2360672
4830255
6520725
85
75
67
80
307
0
0


2360672
2640025
3430026
4830255
85
75
67
80
307
0
0


2360672
2640025
4830255
6450390
85
75
67
80
307
0
0


2360672
3420026
4830255
6450390
90
85
50
80
305
1
0


2360672
3420026
4830255
6520725
90
85
50
80
305
1
0


2360672
4830255
6450390
6520725
90
85
50
80
305
1
0


2360672
3420026
5420095
5960136
70
85
50
100
305
0
0


2360672
3520601
5420095
5960136
70
85
50
100
305
0
0


610113
1110091
2360672
4830255
85
85
33
100
303
1
0


940356
1110091
2360672
3520601
90
80
33
100
303
1
0


1110091
3420026
3520601
4830255
90
80
33
100
303
1
0


940356
2360672
2640025
3520601
85
85
50
80
300
1
0


940356
2360672
2640025
5420095
85
85
50
80
300
1
0


2360672
4830255
5960136
6520725
90
80
50
80
300
1
0


2360672
3420026
5420095
6520725
70
80
50
100
300
0
0


610113
940356
1110091
2360672
85
80
33
100
298
1
0


1110091
2360672
2640025
6520725
85
80
33
100
298
1
0


1110091
2360672
3520601
5420095
80
85
33
100
298
1
0


1110091
2360672
5420095
6450390
80
85
33
1090
298
1
0


610113
2360672
2640025
5960136
60
75
83
80
298
0
1


610113
2360672
2640025
6450390
65
70
83
80
298
0
1


1110091
2360672
3420026
5420095
75
90
33
100
298
0
0


1110091
2360672
5420095
5960136
75
90
33
100
298
0
0


1110091
2360672
5420095
6520725
75
90
33
100
298
0
0


610113
2360672
2640025
3420026
75
75
67
80
297
0
0


610113
2640025
3420028
4830255
85
65
67
80
297
0
0


610113
3420026
4830255
6450390
85
65
67
80
297
0
0


610113
2360672
3420026
4830255
85
80
50
80
295
1
0


2360672
2640025
3520601
4830255
85
80
50
80
295
1
0


610113
940356
2360672
3420026
90
75
50
80
295
0
0


610113
2360672
3520601
5420095
85
80
50
100
295
0
0


940356
2360672
2640025
4830255
90
75
50
80
295
0
0
















TABLE 27







Combination of 5 genes


















pb1
pb2
pb3
pb4
pb5
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc





















610113
940356
2360672
4830255
6520725
95
70
83
80
328
0
1


2360672
2640025
4830255
6450390
6520725
90
80
67
80
317
1
0


610113
1110091
2360672
3420026
5960136
85
80
50
100
315
1
0


610113
1110091
2360672
3420026
6520725
85
80
50
100
315
1
0


610113
1110091
2360672
5960136
6520725
85
80
50
100
315
1
0


610113
1110091
2360672
6450390
6520725
85
80
50
100
315
1
0


610113
2360672
2640025
4830255
6520725
85
80
67
80
312
1
0


2360672
2640025
3520601
4830255
6450390
85
80
67
80
312
1
0


2360672
2640025
4830255
5960136
6520725
85
80
67
80
312
1
0


610113
2360672
2640025
3420026
3520601
65
80
67
100
312
0
0


610113
1110091
2360672
2640025
5960136
80
80
50
100
310
1
0


610113
1110091
2360672
3420026
6450390
80
80
50
100
310
1
0


610113
1110091
2360672
3420026
5420095
75
85
50
100
310
0
0


610113
1110091
2360672
5420095
5960136
75
85
50
100
310
0
0


610113
1110091
2360672
5420095
6450390
75
85
90
100
310
0
0


1110091
2360672
4830255
6450390
6520725
85
90
33
100
308
1
0


610113
2360672
2640025
4830255
5960136
80
80
67
80
307
1
0


610113
2360672
2640025
3420026
4830255
85
75
67
80
307
0
0


610113
2360672
2640025
4830255
6450390
85
75
67
80
307
0
0


2360672
2640025
3420026
4830255
6450390
85
75
67
80
307
0
0


2360672
2640025
3420026
4830255
6520725
85
75
67
80
307
0
0


2360672
2640025
4830255
5960136
6450390
85
75
67
80
307
0
0


940356
2360672
2640025
3520601
4830255
90
85
50
80
305
1
0


940356
2360672
2640025
4830255
6520725
95
80
50
80
305
1
0


1110091
2360672
2640025
4830255
5960136
90
85
50
80
305
1
0


1110091
2360672
2640025
4830255
6450390
90
85
50
80
305
1
0


2360672
3420026
4830255
6450390
6520725
90
85
50
80
305
1
0


610113
1110091
2360672
5420095
6520725
75
80
50
100
305
0
0
















TABLE 28







Combination of 6 genes



















pb1
pb2
pb3
pb4
pb5
pb6
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc






















610113
1110091
2360672
3420026
5420095
6450390
75
85
67
100
327
0
0


610113
1110091
2360672
5420095
5960136
6450390
70
85
67
100
322
0
0


610113
1110091
2360672
5420095
6450390
6520725
80
75
67
100
322
0
0


610113
1110091
2360672
4830255
6450390
6520725
85
85
50
180
320
1
0


610113
2360672
2640025
4830255
6450390
6520725
90
80
67
80
317
1
0


1110091
2360672
2640025
3420026
4830255
6450390
90
80
67
80
317
1
0


610113
1110091
2360672
3420026
5960136
6520725
85
80
50
100
316
1
0


610113
1110091
2360672
3420026
6450390
6520725
85
80
50
100
316
1
0


610113
1110091
2360672
5960136
6450390
6520725
85
80
50
100
315
1
0


1110091
2360672
3420026
4830255
6450390
6520725
80
85
50
100
315
1
0


1110091
2360672
3520601
4830255
6450390
6520725
80
85
50
100
315
1
0


610113
2360672
2640025
3520601
4830255
6450390
85
80
67
80
312
1
0


2360672
2640025
3420026
3520601
4830255
6450390
85
80
67
80
312
1
0


2360672
2640025
3420026
3520601
4830255
6520725
85
80
67
80
312
1
0


2360672
2640025
4830255
5960136
6450390
6520725
90
75
67
80
312
0
0


610113
1110091
2360672
2640025
3420026
5960136
80
80
50
100
310
1
0


610113
1110091
2360672
2640025
5960136
6520725
80
80
50
100
310
1
0


610113
1110091
2360672
3420026
5420095
5960136
75
85
50
100
310
0
0


610113
1110091
3420026
3520601
4830255
6520725
90
85
33
100
308
1
0


940356
1110091
2360672
2640025
3520601
6520725
90
85
33
100
308
1
0


1110091
2360672
4830255
5960136
6450390
6520725
85
90
33
100
308
1
0


610113
2360672
2640025
4830255
5960136
6520725
80
80
67
80
307
1
0


940356
1110091
3420026
3520601
4830255
6520725
100
90
17
100
307
1
0


2360672
2640025
3520601
4830255
6450390
6520725
80
80
67
80
307
1
0


610113
2360672
2640025
3420026
4830255
6450390
85
75
67
80
307
0
0


610113
2360672
2640025
3420026
4830255
6520725
85
75
67
80
307
0
0


610113
2360672
2640025
4830255
5960136
6450390
85
75
67
80
307
0
0


940356
2360672
2640025
5960136
6450390
6520725
85
75
67
80
307
0
0


2360672
2640025
3420026
4830255
5960136
6450390
85
75
67
80
307
0
0


2360672
2640025
3420026
4830255
5960136
6520725
85
75
67
80
307
0
0


2360672
2640025
3420026
4830255
6450390
6520725
85
75
67
80
307
0
0


2360672
2640025
3520601
4830255
5960136
6450390
85
75
67
80
307
0
0


610113
940356
2360672
2640025
3520601
4830255
90
85
50
80
305
1
0


610113
940356
2360672
2640025
4830255
6520725
95
80
50
80
305
1
0


610113
1110091
2360672
2640025
4830255
5960136
90
85
50
80
305
1
0


610113
1110091
2360672
2640025
4830255
6450390
90
85
50
80
305
1
0


940356
2360672
2640025
3520601
4830255
6520725
90
85
50
80
305
1
0


1110091
2360672
2640025
4830255
5960136
6450390
90
85
50
80
305
1
0
















TABLE 29







Combination of 7 genes




















pb1
pb2
pb3
pb4
pb5
pb6
pb7
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc























610113
1110091
3420026
3520601
4830255
6450390
6520725
90
85
50
100
325
1
0


610113
1110091
2360672
4830255
5960136
6450390
6520725
85
85
50
100
320
1
0


610113
1110091
2360672
2640025
3420026
4830255
6450390
90
80
67
80
317
1
0


1110091
2360672
2640025
3420026
4830255
5960136
6450390
90
80
67
80
317
1
0


610113
1110091
2360672
3420026
5420095
5960136
6450390
70
80
67
100
317
0
0


610113
1110091
2360672
3420026
5420095
6450390
6520725
75
75
67
100
317
0
0


610113
1110091
2360672
5420095
5960136
6450390
6520725
75
75
67
100
317
0
0


610113
1110091
2360672
3420026
4830255
6450390
6520725
80
65
50
100
315
1
0


1110091
2360672
2640025
3520601
4830255
6450390
6520725
80
85
50
100
315
1
0


610113
2360672
2640025
3420026
3520601
4830255
6450390
85
80
67
80
312
1
0


610113
2360672
2640025
3420026
3520601
4830255
6520725
85
80
67
80
312
1
0


940356
2360672
2640025
4830255
5420095
5960136
6520725
85
80
67
80
312
1
0


610113
2360672
2640025
4830255
5960136
6450390
6520725
90
75
67
80
312
0
0


2360672
2640025
3420026
4830255
5960136
6450390
6520725
90
75
67
80
312
0
0


610113
1110091
2360672
2640025
3420026
5960136
6520725
80
80
50
100
310
1
0


610113
1110091
2360672
3420026
5960136
6450390
6520725
80
80
50
100
310
1
0


610113
1110091
2360672
3520601
4830255
6450390
6520725
80
80
50
100
310
1
0


610113
2360672
2640025
3520601
4830255
6450390
6520725
80
80
67
80
307
1
0


2360672
2640025
3420026
3520601
4830255
6450390
6520725
80
80
67
80
307
1
0


610113
2360672
2640025
3420026
4830255
5960136
6520725
85
75
67
80
307
0
0


610113
2360672
2640025
3420026
4830255
6450390
6520725
85
75
67
80
307
0
0


610113
2360672
2640025
3520601
4830255
5960136
6450390
85
75
67
80
307
0
0


2360672
2640025
3420026
3520601
4830255
5960136
6450390
85
75
67
80
307
0
0


610113
1110091
2360672
2640025
4830255
5960136
6450390
90
85
50
80
305
1
0


940356
1110091
2360672
2640025
3420026
4830255
5960136
95
80
50
80
305
1
0


610113
1110091
2360672
2640025
3420026
3520601
5960136
75
80
50
100
305
0
0


610113
1110091
2360672
3420026
5420095
5960136
6520725
75
80
50
100
305
0
0


610113
940356
1110091
2360672
3420026
3520601
6520725
90
80
33
100
303
1
0


610113
1110091
2360672
2640025
4830255
5960136
6520725
85
85
33
100
303
1
0


1110091
2360672
3420026
3520601
4830255
6450390
6520725
85
85
33
100
303
1
0


610113
940356
1110091
3520601
4830255
5960136
6520725
95
90
17
100
302
1
0
















TABLE 30







Combination of 8 genes




















pb1
pb2
pb3
pb4
pb5
pb6
pb7
pb8
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv























610113
1110091
2360672
2640025
3420026
4830255
5960136
6450390
90
80
66.67
80
317
1


610113
1110091
3420026
3520601
4830255
5960136
6450390
6520725
85
80
50
100
315
1


610113
2360672
2640025
3420026
4830255
5960136
6450390
6520725
90
75
66.67
80
312
0


610113
1110091
2360672
3420026
4830255
5960136
6450390
6520725
80
80
50
100
310
1


610113
1110091
2640025
3420026
3520601
4830255
6450390
6520725
80
80
50
100
310
1


1110091
2360672
2640025
3520601
4830255
5960136
6450390
6520725
80
80
50
100
310
1


940356
1110091
2360672
2640025
3520601
5420095
5960136
6520725
90
85
33.33
100
308
1


610113
2360672
2640025
3420026
3520601
4830255
6450390
6520725
80
80
66.67
80
307
1


610113
940356
2360672
2640025
4830255
5420095
5960136
6520725
85
75
66.67
80
307
0


610113
2360672
2640025
3420026
3520601
4830255
5960136
6450390
85
75
66.67
80
307
0


610113
1110091
2360672
2640025
3420026
3520601
5960136
6520725
75
80
50
100
305
0


610113
1110091
2360672
2640025
3520601
4830255
6450390
6520725
80
75
50
100
305
0


610113
940356
1110091
2360672
2640025
3420026
4830255
5960136
95
80
50
80
305
1


610113
940356
1110091
2360672
2640025
4830255
5960136
6450390
95
80
50
80
305
1


940356
1110091
2360672
2640025
3420026
4830255
5960136
6450390
95
80
50
80
305
1


610113
940356
1110091
2360672
2640025
3520601
5960136
6520725
85
85
33.33
100
303
1


940356
1110091
2360672
2640025
3523601
5420095
6450390
6520725
85
85
33.33
100
303
1


610113
940356
1110091
2360672
2640025
3420026
3520601
6520725
90
80
33.33
100
303
1


940356
1110091
2360672
2640025
3420026
3520601
5420095
6520725
90
80
33.33
100
303
1


940356
1110091
2360672
3420026
4830255
5960136
6450390
6520725
90
80
33.33
100
303
1


610113
940356
1110091
2640025
3520601
4830255
5960136
6520725
95
90
16.67
100
302
1


610113
940356
1110091
2360672
3420026
3520601
4830255
6520725
100
85
16.67
100
302
1


610113
2360672
2640025
3520601
4830255
5960136
6450390
6520725
80
75
66.67
80
302
0


2360672
2640025
3420026
3520601
4830255
5960136
6450390
6520725
80
75
66.67
80
302
0


610113
2360672
2640025
3420026
3520601
5420095
5960136
6520725
70
80
50
100
300
0


610113
1110091
2360672
3420026
5420095
5960136
6450390
6520725
75
75
50
100
300
0


1110091
2360672
2640025
3520601
5420095
5960136
6450390
6520725
75
75
50
100
300
0


610113
940356
2360672
2640025
5420095
5960136
6493390
6520725
85
85
50
80
300
1


610113
940356
2360672
2640025
3520601
4830255
5960136
6520725
90
80
50
80
300
1


610113
1110091
2360672
2640025
3420026
3520601
4830255
6450390
90
80
50
80
300
1
















TABLE 31





Combination of 9 genes






















pb1
pb2
pb3
pb4
pb5
pb6
pb7
pb8





610113
940356
1110091
2360672
2640025
3520601
5420095
5960136


940356
1110091
2360672
2640025
3420026
3520601
5420095
5960136


610113
940356
1110091
2360672
2640025
3420026
4830255
5960136


610113
1110091
2360672
2640025
3520601
4830255
5960136
6450390


610113
1110091
2640025
3420026
3520601
4830255
5960136
6450390


610113
940356
1110091
2360672
2640025
3520601
5420095
6450390


610113
940356
1110091
2360672
3420026
4830255
5420095
6450390


610113
2360672
2640025
3420026
3520601
4830255
5960136
6450390


610113
940356
2360672
2640025
3520601
4830255
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
5420095


610113
940356
1110091
2360672
2640025
3420026
3520601
5960136


610113
1110091
2360672
2640025
3420026
3520601
4830255
6450390


940356
1110091
2360672
2640025
3420026
3520601
5420095
6450390


940356
1110091
2360672
2640025
3420026
3520601
5960136
6450390


610113
940356
1110091
2360672
3420026
4830255
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
4830255


610113
940356
1110091
2360672
3420026
3520601
5420095
5960136


610113
940356
1110091
2360672
3520601
4830255
5420095
5960136


940356
1110091
2360672
3420026
3520601
4830255
5420095
5960136


610113
1110091
2360672
2640025
3420026
3520601
4830255
5960136


940356
2360672
2640025
3420026
4830255
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
4830255
5420095
5960136


610113
940356
2360672
2640025
3420026
4830255
5960136
6450390


610113
1110091
2360672
2640025
3520601
5420095
5960136
6450390


1110091
2360672
2640025
3420026
3520601
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
3520601
5960136
6450390


610113
940356
1110091
2360672
3420026
3520601
5960136
6450390


1110091
2360672
2640025
3420026
3520601
4830255
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
6450390


610113
1110091
2360672
2640025
3520601
4830255
5420095
6450390


610113
1110091
2360672
3520601
4830255
5420095
5960136
6450390


1110091
2360672
2640025
3520601
4830255
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
3520601
4830255
6450390


610113
940356
1110091
2360672
3420026
3520601
4830255
5960136


610113
940356
1110091
2360672
3420026
3520601
4830255
6450390


610113
940356
1110091
2640025
3420026
3520601
5420095
5960136


610113
940356
1110091
3520601
4830255
5420095
5960136
6450390


940356
1110091
2360672
2640025
3420026
3520601
4830255
6450390


940356
1110091
2360672
2640025
3520601
4830255
5420095
5960136


940356
1110091
2360672
3520601
4830255
5420095
5960136
6450390


940356
1110091
3420026
3520601
4830255
5420095
5960136
6450390


610113
1110091
2360672
2640025
3420026
4830255
5420095
5960136


610113
940356
2360672
2640025
4830255
5420095
5960136
6450390


610113
1110091
2360672
2640025
3420026
4830255
5960136
6450390


940356
1110091
2360672
2640025
4830255
5420095
5960136
6450390



















pb9
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc







6520725
90
85
33
100
308
1
0



6520725
90
85
33
100
308
1
0



6450390
95
80
50
80
305
1
0



6520725
80
75
50
100
305
0
0



6520725
80
75
50
100
305
0
0



6520725
85
85
33
100
303
1
0



6520725
85
85
33
100
303
1
0



6520725
80
75
67
80
302
0
0



6520725
80
80
50
80
300
1
0



6520725
85
80
33
100
298
1
0



6520725
85
80
33
100
298
1
0



6520725
85
80
33
100
298
1
0



6520725
85
80
33
100
298
1
0



6520725
80
85
33
100
298
1
0



6520725
90
75
33
100
298
0
0



6520725
95
85
33
100
297
1
0



6520725
90
90
17
100
297
1
0



6520725
95
85
17
100
297
1
0



6520725
95
85
17
100
297
1
0



6450390
85
80
50
80
295
1
0



6520725
85
80
50
80
295
1
0



6520725
90
75
50
80
295
0
0



6520725
90
75
50
80
295
0
0



6520725
75
70
50
100
295
0
0



6520725
75
70
50
100
295
0
0



6520725
80
80
33
100
293
1
0



6520725
80
80
33
100
293
1
0



6520725
80
80
33
100
293
1
0



6520725
85
75
33
100
293
0
0



6520725
75
85
33
100
293
0
0



6520725
75
85
33
100
293
0
0



6520725
75
85
33
100
293
0
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
85
90
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
85
90
17
100
292
1
0



6450390
80
80
50
80
290
1
0



6520725
85
75
50
80
290
0
0



6520725
85
75
50
80
290
0
0



6520725
85
75
50
80
290
0
0

















TABLE 32





Combination of 10 genes























pb1
pb2
pb3
pb4
pb5
pb6
pb7
pb8
pb9





610113
940356
1110091
2360672
2640025
3420026
3520601
5420095
5960136


610113
940356
1110091
2360672
3420026
4830255
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
5420095
6450390


610113
940356
1110091
2360672
3420026
3520601
4830255
5420095
5960136


610113
940356
2360672
2640025
3420026
4830255
5420095
5960136
6450390


610113
1110091
2360672
2640025
3420026
3520601
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
5960136
6450390


610113
940356
1110091
2640025
3420026
3520601
4830255
5960136
6450390


610113
1110091
2360672
2640025
3520601
4830255
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
3420026
3520601
4830255
6450390


610113
940356
1110091
2360672
2640025
3520601
4830255
5420095
5960136


610113
940356
1110091
2360672
3520601
4830255
5420095
5960136
6450390


610113
1110091
2360672
2640025
3420026
3520601
4830255
5420095
5960136


940356
1110091
2360672
2640025
3520601
4830255
5420095
5960136
6450390


940356
1110091
2360672
3420026
3520601
4830255
5420095
5960136
6450390


610113
940356
1110091
2360672
2640025
4830255
5420095
5960136
6450390



















pb10
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc







6520725
90
85
33
100
308
1
0



6520725
85
85
33
100
303
1
0



6520725
85
80
33
100
298
1
0



6520725
95
85
17
100
297
1
0



6520725
85
80
50
80
295
1
0



6520725
75
70
50
100
295
0
0



6520725
80
80
33
100
293
1
0



6520725
80
90
33
100
293
1
0



6520725
75
85
33
100
293
0
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
95
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
90
85
17
100
292
1
0



6520725
85
75
50
80
290
0
0

















TABLE 33





Combination of 11 genes























pb1
pb2
pb3
pb4
pb5
pb6
pb7
pb8
pb9





610113
940356
1110091
2360672
3420026
3520601
4830255
5420095
5960136


















pb10
pb11
ccvP0
ccvP1
ctcP0
ctcP1
sumP
flg_ccv
flg_ctc





6450390
6520725
90
85
17
100
292
1
0





In the above-described tables, pb1 to pb11, ccvP0, ccvP1, ctcP0, ctcP1, sumP, flg_ccv, flg_ctc, etc. are defined as follows:


pb1: Probe 1


pb2: Probe 2


pb3: Probe 3


pb4: Probe 4


pb5: Probe 5


pb6: Probe 6


pb7: Probe 7


pb8: Probe 8


pb9: Probe 9


pb10: Probe 10


pb11: Probe 11


pb12: Probe 12


ccvP0: Rate of correct determination “short life → short life” obtained using training data


ccvP1: Rate of correct determination “long life → long life” obtained using training data


ctcP0: Rate of correct determination “short life → short life” obtained using test data


ctcP1: Rate of correct determination “long life → long life” obtained using test data


sumP: ccvP0 + ccvP1 + ctcP0 + ctcP1


flg_ccv: Both ccvP0 and ccvP1 were 80% or more


flg_ctc: Both ctvP0 and ctvP1 were 80% or more






Example 3

Progressive recurrent prostate cancer patients were classified into a long-lived group (16 cases) that survived for 900 days or longer after personalized peptide vaccination and a short-lived group (14 cases) that died within 300 days after the vaccination. The peptide vaccines were appropriately selected by a physician in consideration of host immunity present before the vaccination. Four peptides (3 mg each of the peptides) at the maximum were subcutaneously administered, together with Freund's incomplete adjuvants, to each patient once a week for 6 weeks. Blood was obtained from the patient before the vaccination and after the vaccination. Peripheral blood mononuclear cells (PBMCs) were prepared by density gradient centrifugation using Ficoll-Paque (GE Healthcare Life Sciences, Uppsala, Sweden). Genes that differed in expression in the peripheral blood mononuclear cells (including granulocytes, lymphocytes, etc.) of the patients between two groups (long-lived group and short-lived group) were analyzed in the same way as in Example 1 using DNA microarrays (Human WG-6 v3.0 Expression BeadChip manufactured by Illumine, Inc.). Microarray data was extracted using BeadStudio v3.0 software (Illumine, Inc.). Fold-change (FC) ranking and P-values obtained using Linear Models for Microarray Data (LIMMA) Bioconductor package were employed for evaluating the difference in gene expression between the long-lived group and the short-lived group. FC was calculated according to log2FC=log2(SS/SL) wherein S represents the assay range of the target gene in the long-lived group-derived sample; and SS represents the assay range of the target gene in the short-lived group-derived sample.


A volcano plot was prepared with the difference in expression level (log2FC) as the abscissa and statistical significance (negative log P-value) as the ordinate (FIG. 6). In FIG. 6, for example, the area in the circle shows genes that largely differed in expression between the long-lived group and the short-lived group after the vaccination.


42 probes corresponding to 36 genes that satisfied the conditions of fold-change ranking (log2FC<−1.0 or >1.0) and P-value (P<0.01) were identified. Of them, 1 gene (LTB) exhibited a decreased expression level in the short-lived group, whereas all the remaining 35 genes exhibited an increased expression level therein (Table 34).














TABLE 34





Gene symbol
Gene name

1Fold change


2P-Value


3Expression


4Pre and Post





















LTB
lymphotoxin beta
−1.03
2.01E−05




OLR1
oxidized low density lipoprotein receptor 1
1.04
3.76E−03


CEACAM1
carcinoembryonic antigen-related cell adhesion molecule 1
1.07
3.09E−05
*


ARG1
arginase, liver
1.10
4.66E−06
*


MYL4
myosin, light chain 4 alkali; atrial, embryonic
1.14
7.10E−03


ALAS2
aminolevulinate delta-, synthase 2
1.20
9.35E−03
**


SLPI
secretory leukocyte peptidase inhibitor
1.22
1.58E−05
*


SELENBP1
selenium binding protein 1
1.22
7.56E−03


SNCA
synuclein, alpha
1.25
7.55E−03


AZU1
azurocidin 1
1.25
1.89E−06
*
#


HMGXB4
HMG box domain containing 4
1.27
1.07E−03


RNASE3
ribonuclease, RNase A family, 3
1.28
9.83E−04
*
#


HBQ1
hemoglobin, theta 1
1.31
1.42E−03
**


MMP9
matrix metallopeptidase 9
1.32
3.56E−06
*


GYPE
glycophorin E
1.36
5.00E−04
**


SNCA
synuclein, alpha
1.39
4.85E−03


EPB42
erythrocyte membrane protein band 4.2
1.45
3.00E−03
**


HP
haptoglobin
1.50
2.58E−05
**


IFIT1L
interferon-induced protein with tetratricopeptide repeats 1-like
1.51
2.89E−03


CD24
CD24 molecule
1.55
8.89E−05
*


BPI
bactericidal/permeability-increasing protein
1.64
1.29E−05
*


CEACAM6
carcinoembryonic antigen-related cell adhesion molecule 6
1.72
1.34E−06
*
#


PGLYRP1
peptidoglycan recognition protein 1
1.80
4.59E−05
*
#


MPO
myeloperoxidase
1.94
1.03E−06
*
#


OLFM4
olfactomedin 4
2.01
1.34E−04


HBM
hemoglobin, mu
2.05
1.67E−03
**


ALAS2
aminolevulinate, delta-, synthase 2
2.11
4.62E−03
**


CEACAM8
carcinoembryonic antigen-related cell adhesion molecule 8
2.13
2.97E−06
*
#


ERAF
erythroid associated factor
2.29
2.33E−03
**


CA1
carbonic anhydrase 1
2.31
3.00E−04
*


HBD
hemoglobin, delta
2.37
1.83E−03
**


LCN2
lipocalin 2
2.40
1.94E−05
*
#


CTSG
cathepsin G
2.40
7.60E−07
*
#


DEFA1
defensin, alpha 1
2.40
1.20E−05
*
#


CAMP
cathelicidin antimicrobial peptide
2.41
2.81E−05
*
#


ELA2
elastase 2, neutrophil
2.44
9.74E−07
*
#


DEFA4
defensin, alpha 4, corticostatin
2.53
3.09E−07
*
#


DEFA3
defensin, alpha 3, neutrophil-specific
2.65
7.04E−06
*
#


DEFA1
defensin, alpha 1
2.65
6.70E−06
*
#


DEFA1
defensin, alpha 1
2.67
4.96E−06
*
#


DEFA1
defensin, alpha 1
2.68
6.24E−06
*
#


DEFA1
defensin, alpha 1
2.87
2.15E−06
*
#






1log2(FC):




2P-value (limma):




3Preferential expression;



* Granulocyte,


** Erythroid:



4# Identified in both pre- and post-vaccine PBMCs







It is noteworthy that, of the 35 genes whose expression level was increased in the short-lived group, 20 were genes known to be expressed in granulocytes and in relation to their functions. For example, defensins (DEFA1, DEFA3, and DEFA4), ELA2, CTSG, CAMP, and MPO are known to be localized in granules within granulocytic cells. In addition, molecules, such as MMP9 and arginase, which play an important role in tumor growth or immunosuppression, were observed.


Different gene expressions were confirmed by real-time PCR for 4 genes, i.e., DEFA1, DEFA4, CEACAM8 and MPO, among the genes whose expression level was larger in the short-lived group than in the long-lived group (FIG. 7). The real-time PCR was performed using Thermal Cycler Dice Real Time System (Takara Bic Inc.) and also using SYBR Premix Ex Taq II kit (Takara Bio Inc.). The sequences of primers used for defensin alpha, myeloperoxidase (MPO), carcinoembryonic antigen-related cell adhesion molecule 8 (CEACAM8) and GAPDH are as described in the following (a) to (d):











(a) DEFA1



(SEQ ID NO: 1)



PCR primer 1: 5′-CGGACATCCCAGAAGTGGTTG-3′







(SEQ ID NO: 2)



PCR primer 2: 5′-CCCTGGTAGATGCAGGTTCCATA-3′







(b) DEFA4



(SEQ ID NO: 3)



PCR primer 1: 5′-CACTCCAGGCAAGAGGTGATGA-3′







(SEQ ID NO: 4)



PCR primer 2: 5′-GAGGCAGTTCCCAACACGAAGT-3′







(c) CEACAM8



(SEQ ID NO: 5)



PCR primer 1: 5′-TGGCACATTCCAGCAATACACA-3′







(SEQ ID NO: 6)



PCR primer 2: 5′-ATCATGATGCTGACAGTGGCTCTA-3′







(d) MPO



(SEQ ID NO: 7)



PCR primer 1: 5′-CTGCATCATCGGTACCCAGTTC-3′







(SEQ ID NO: 8)



PCR primer 2: 5′-GATGCCTGTGTTGTCGCAGA-3′







(e) GAPDH



(SEQ ID NO: 9)



PCR primer 1: 5′-GCACCGTCAAGGCTGAGAAC-3′







(SEQ ID NO: 10)



PCR primer 2: 5′-TCCTGAAGACCCCAGTGGA-3′






Example 4

Genes that differed in expression between a long-lived group (20 cases) and a short-lived group (20 cases) were searched for using the peripheral mononuclear cells of patients before vaccination. Both gene expression levels (FC) and limma P-values were lower than those after vaccination (see Example 3). In fact, when genes were selected on the basis of the same values (log2FC<−1.0 or >1.0 and P<0.01) as those after vaccination, only 5 probes derived from 5 genes were identified as different expressed genes. By contrast, 23 probes derived from 19 genes were selected on the basis of values (log2FC<−0.6 or >0.6 and P<0.05) less strict than the same values. Of these genes, 4 genes (PRKAR1A, LRRN3, PCDH17 and TTN) were decreased in the short-lived group, while 15 genes (LAIR2, RNASE3, CEACAM6, AZU1, HIST1H4C, PGLYRP1, CEACAM8, LCN2, MPO, CAMP, DEFA1, DEFA3, CTSG, DEFA4 and ELA2) were increased therein (Table 35).














TABLE 35





Gene symbol
Gene name

1Fold change


2P-Value


3Expression


4Pre and Post





















PRKAR1A
protein kinase, cAMP-dependent, regulatory, type 1, alpha
−0.82
4.89E−02




LRRN3
leucine rich repeat neuronal 3
−0.61
8.40E−03


PCDH17
protocadherin 17
−0.60
2.16E−03


TTN
titin
−0.60
7.55E−03


LAIR2
leukocyte-associated immunoglobulin-like receptor 2
0.60
3.23E−02


RNASE3
ribonuclease, RNase A family, 3
0.63
2.01E−02
*
#


CEACAM6
carcinoembryonic antigen-related cell adhesion molecule 6
0.65
9.92E−03
*
#


AZU1
azurocidin 1
0.66
6.37E−03
*
#


HIST1H4C
histone cluster 1, H4c
0.71
2.47E−02


PGLYRP1
peptidoglycan recognition protein 1
0.72
7.49E−03
*
#


CEACAM8
carcinoembryonic antigen-related cell adhesion molecule 8
0.78
1.52E−02
*
#


LCN2
lipocalin 2
1.00
5.26E−03
*
#


MPO
myeloperoxidase
1.04
1.10E−03
*
#


CAMP
cathelicidin antimicrobial peptide
1.09
6.78E−03
*
#


DEFA1
defensin, alpha 1
1.17
3.15E−02
*
#


DEFA1
defensin, alpha 1
1.20
1.76E−02
*
#


DEFA1
defensin, alpha 1
1.26
1.76E−02
*
#


DEFA3
defensin, alpha 3, neutrophil-specific
1.27
1.65E−02
*
#


DEFA1
defensin, alpha 1
1.27
1.97E−02
*
#


DEFA1
defensin, alpha 1
1.30
1.54E−02
*
#


CTSG
cathepsin G
1.32
2.77E−03
*
#


DEFA4
defensin, alpha 4, corticostatin
1.33
2.06E−03
*
#


ELA2
elastase 2, neutrophil
1.36
1.64E−03
*
#






1log2(FC):




2P-value (limma):




3Preferential expression;



* Granulocyte:



4# Identified in both pre- and post-vaccine PBMCs







It is noteworthy that, of these 15 genes increased in the short-lived group, 13 were granulocyte-specific genes generally identified before and after vaccination.


A most important application of gene expression information based on microarrays is prediction of therapeutic effect. Thus, a study was made on whether gene expression profiles examined using cDNA microarrays in the peripheral mononuclear cells of patients before vaccination were useful in prognostic prediction after the peptide vaccination. A set of four genes (LRRN3, PCDH17, HIST1H4C and PGLYRP1) was selected by variable selection (the stepwise discriminant analysis method) from 23 probes (Table 35) that differed in expression in peripheral mononuclear cells in the 40 cases (long-lived group (20 cases) and short-lived group (20 cases)) before vaccination. This set was used to study prognostic prediction. As a result, the prognosis (long life or short life) after the vaccination could be predicted with respect to 32 patients (80%) out of the 40 patients. Sensitivity (%), specificity (%), positive predictive value, negative predictive value and accuracy (%) were 85% (17/20), 75% (15/20), 77% (17/22), 83% (15/18), and 80% (32/40), respectively (the upper table (Training) of Table 36). For validation, the determination was performed with new independent patients (13 individuals) as subjects using the 4 genes. As a result, the prognosis (long life or short life) after the vaccination could be predicted with respect to 12 patients (93%) out of the 13 patients (the lower table (Test) of Table 36). Sensitivity (%), specificity (%), positive predictive value, negative predictive value, and accuracy (%) were 100% (7/7), 83% (5/6), 88% (7/8), 100% (5/5), and 92% (12/13), respectively. In Table 36, the circled number represents the number of patients who were predicted to belong to the short-lived group and actually had short life, i.e., the number of cases in which the determination of poor prognosis before vaccination was correct, and the boxed number represents the number of patients who were predicted to belong to the long-lived group and actually had short life, i.e., the number of cases in which the determination of good prognosis before vaccination was correct.












TABLE 36









Prediction














Short
Long
Total










Training (n = 40)











Actual
Short


embedded image


 3
20






Long
 5


embedded image


20



Total
22
18
40







Test (n = 13)











Actual
Short


embedded image


 0
 7






Long
 1


embedded image


 6



Total
 8
5
13









The levels of cytokines, chemokines and growth factors in the plasmas of patients before vaccination were detected using bead-based multiplex assay (xMAP; Luminex Corporation, Austin, Tex.). The levels of cytokines, chemokines and growth factors including IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, IFN-α, IFN-γ, TNF-α, G-CSF, GM-CSE, IP-10, RANTES, Eotaxin, MIP-1α, MIP-1β, MCP-1, MIG, VEGF, EGF, HGF and FGF basic were measured using a kit (Invitrogen Corporation: Human 30-Plex).


As a result, IL-6 was present at a high content in the plasmas of the short-lived group, compared with the long-lived group (FIG. 8).


INDUSTRIAL APPLICABILITY

The present invention provides a prediction of patients (poor prognosis group) for whom immunotherapy is not expected to be effective and provides information useful in the selection of treatment methods for cancer patients.


The present application claims priority based on Japanese Patent Application No. 2010-147797. The contents thereof are incorporated herein by reference in its entirety.


[Sequencing Listing]

Claims
  • 1. A method for predicting effect of immunotherapy on a cancer patient, comprising a step of measuring an expression level of each of at least one gene selected from the group of genes shown in Table 1, 19, 34 or 35 in a sample obtained from the cancer patient before the immunotherapy.
  • 2. The method according to claim 1, wherein an expression level of each of LOC653600, TNFRSF19, P4HA1 and SYNE1 is measured.
  • 3. (canceled)
  • 4. The method according to claim 1, wherein an expression level of each of DEFA1, DEFA4, CEACAM8 and MPO is measured.
  • 5. (canceled)
  • 6. The method according to claim 1, wherein an expression level of each of LRRN3, PCDH17, HIST1H4C and PGLYRP1 is measured.
  • 7. The method according to claim 1, further comprising a step of determining a prognosis of the patient by discriminant analysis using the expression level.
  • 8. The method according to claim 1, for predicting a poor prognosis group.
  • 9. The method according to claim 1, wherein the immunotherapy is peptide vaccine therapy.
  • 10. The method according to claim 1, wherein the cancer is prostate cancer.
  • 11. The method according to claim 1, wherein the sample obtained from the cancer patient is blood.
  • 12. A gene set for predicting effect of immunotherapy on a cancer patient, comprising at least one gene selected from the group of genes shown in Table 1, 19, 34 or 35.
  • 13. The gene set according to claim 12, wherein the gene set comprises at least one gene selected from the group of genes shown in Table 2 or 22.
  • 14. The gene set according to claim 12, wherein the gene set comprises LOC653600, TNFRSF19, P4HA1 and SYNE1.
  • 15. The gene set according to claim 12, wherein the gene set comprises DEFA1, DEFA4, CEACAM8 and MPO.
  • 16. The gene set according to claim 12, wherein the gene set comprises LRRN3, PCDH17, HIST1H4C and PGLYRP1.
  • 17. A biomarker for predicting effect of immunotherapy on a cancer patient, consisting of a gene set according to claim 12.
  • 18-20. (canceled)
  • 21. The method according to claim 1, further comprising a step of measuring an expression level of IL-6 protein in blood obtained from the cancer patient before the immunotherapy.
Priority Claims (1)
Number Date Country Kind
2010-147797 Jun 2010 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2011/058094 3/30/2011 WO 00 3/8/2013