The present invention relates to a method for preparing amides of β-alanine, in particular pseudodipeptides such as, for example, carcinine. It furthermore relates to novel cyanoacetamides as intermediates in the method of the invention.
Carcinine (β-alanylhistamine) is a naturally occurring pseudodipeptide of the structure below, which can be isolated from animal tissue. Carcinine has an antioxidative action and has been proposed as drug for certain complications of diabetes (U.S. Pat. No. 5,561,110), in particular cataract (U.S. Pat. No. 5,792,784), and as component of cosmetic preparations (U.S. Pat. No. 6,280,715).
The known syntheses of carcinine from the components histamine and β-alanine require the use of protective groups and/or activated derivatives and are therefore not very suitable for the inexpensive preparation of large amounts.
It was therefore an object of the present invention to provide a method suitable for the technical synthesis of carcinine and other pseudodipeptides of β-alanine, which does not require the use of protective groups or expensive derivatives and which uses only readily accessible starting materials.
According to the invention, this object is achieved by the method of the invention.
The β-alaninamides which can be produced according to the invention have the general formula
Here, R1 is hydrogen or C1-6-alkyl which is unsubstituted or substituted with hydroxy, amino, carboxy, carbamoyl, methylmercapto, guanidino, unsubstituted or substituted aryl or heteroaryl and R2 is hydrogen, or R1 and R2 together form a group of the formula —(CH2)n— where n is 3 or 4.
These compounds may be present in a neutral form or, after protonation of the primary amino group, as salts with acids. Some of the compounds, in particular those containing imidazolyl radicals, may also be present in a plurality of tautomeric forms or as a mixture of such forms.
Here and below, C1-6-alkyl means all linear or branched primary, secondary or tertiary alkyl groups having from 1 to 6 carbon atoms, i.e. for example methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, iso-butyl, pentyl, isopentyl, neopentyl, 2-methylbutyl, hexyl, 2-methylpentyl, 3-methylpentyl etc. This applies accordingly to C1-10-alkyl, in which case, for example, groups such as octyl or 2-ethylhexyl are also included in addition to the groups already mentioned.
Aryl means mono- or polycyclic carbocyclic aromatic groups such as, in particular, phenyl or naphthyl and, accordingly, heteroaryl means mono- or polycyclic heterocyclic aromatic groups having one or more heteroatoms, in particular imidazolyl or indolyl. Where appropriate, aryl groups may also have one or more of the abovementioned substituents, in particular hydroxyl groups as in 4-hydroxyphenyl, for example.
It has been found that amines of the general formula
in which R1 and R2 are as defined above, can be reacted with a cyanoacetic ester of the general formula
in which R3 is C1-10-alkyl, to give a cyanoacetamide of the general formula
in which R1 and R2 are as defined above, or a corresponding salt, and the cyanoacetamide (IV) can be converted to the target compound (I) or a corresponding salt by catalytic hydrogenation.
R1 is preferably hydrogen or unsubstituted or substituted C1-4-alkyl, in particular methyl, isopropyl, isobutyl, sec-butyl, indol-3-ylmethyl, benzyl, p-hydroxybenzyl, 2-(methylsulfanyl)ethyl, hydroxymethyl, 1-hydroxyethyl, carbamoylmethyl, 2-carbamoyl-ethyl, carboxymethyl, 2-carboxyethyl, 4-aminobutyl or 3-guanidinopropyl.
R2 is preferably hydrogen.
Particularly preferably, R1 is imidazol-4-ylmethyl or 3-methylimidazol-4-ylmethyl and R2 is hydrogen.
R3 is preferably methyl or ethyl.
If the amine (II) is present as a salt in which the primary amino group is protonated, the latter must first be deprotonated by adding a base. Bases which may be used here are in principle all bases which are more basic than the primary amino group. Preference is given to using a medium-strength to strong base. Examples of compounds suitable for this are alkali metal hydroxides such as sodium or potassium hydroxide, tertiary amines such as triethylamine, 4-dimethylaminopyridine, 1,4-diaza[2.2.2]bicyclooctane, bicyclic amidines (“DBN”, “DBU”) and, in nonaqueous solvents, alkali metal alkoxides such as sodium methoxide or sodium ethoxide and, in aprotic solvents, also alkali metal hydrides and amides, such as, for example, sodium hydride or sodium amide. The base is preferably used in stoichiometric or nearly stoichiometric amounts.
Preferred solvents for the first stage are polar protic or aprotic solvents such as water, C1-4-alkanols such as, for example, methanol or ethanol and amides such as, for example, N,N-dimethylformamide, N,N-dimethyl-acetamide, 1-methyl-2-pyrrolidone or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU).
Preferred catalysts used for the hydrogenation are metal catalysts based on nickel, cobalt, copper, rhodium, palladium, ruthenium or platinum, which are, where appropriate, applied to a support. These include, for example, nickel and cobalt catalysts of the Raney type, finely divided platinum (obtained, for example, by reduction of PtO2), rhodium, palladium or platinum on activated carbon or aluminum oxide or cobalt on silicon dioxide (silica).
Particular preference is given to Raney nickel and Raney cobalt and to rhodium on activated carbon or aluminum oxide.
Solvents which may be used in the hydrogenation are the usual solvents for hydrogenation of nitrites to amines, such as, for example, water, concentrated aqueous ammonia solution, methanol, ethanol, N,N-dimethyl-formamide or mixtures of said solvents.
The cyanoacetamides of the general formula
in which R1 and R2 are as defined above, and the salts thereof are novel and are likewise subject matter of the invention.
Preference is given to those cyanoacetamides (IV) in which R1 is unsubstituted or substituted imidazol-4-ylmethyl and R2 is hydrogen. Examples of suitable substituents here are C1-6-alkyl groups, in particular methyl.
Particularly preferred cyanoacetamides (IV) are N-(cyanoacetyl)histamine of the formula
and the salts and tautomers thereof and also N-(cyanoacetyl)-3-methylhistamine of the formula
and the salts thereof.
The following examples illustrate the carrying-out of the method of the invention and the preparation of the compounds of the invention and are not to be regarded as being limiting.
7.60 g (67.2 mmol) of ethyl cyanoacetate were added dropwise at 60° C. to a solution of 5.00 g (45 mmol) of histamine in 50 g of ethanol. After 2 h at 80° C., the reaction mixture was concentrated in a rotary evaporator and the residue was purified by means of flash column chromatography on silica gel (eluent: ethyl acetate→ethyl acetate/methanol 1:1 gradient).
Yield: 6.61 g (82%) 1H-NMR (DMSO-d6, 400 MHz): δ=11.8 (br., 1H); 8.28 (t, 1H), 7.52 (s, 1H); 6.80 (s, 1H); 3.60 (s, 2H); 3.30 (q, 2H); 2.65 (t, 2H).
13C NMR (DMSO-d6, 100 MHz): δ=161.92; 134.63; 134.21; 116.64; 116.13; 39.25; 26.63; 25.23.
LC-MS: m/z=179 ([M+H]+), 161, 149, 138, 112, 95, 83.
92 mg of Rh/Al2O3 (5% Rh) were added to a solution of 1.00 g (5.61 mmol) of 2-cyano-N-[2-(1(3)H-imidazol-4-yl)ethyl]acetamide (prepared according to example 1) in 11.4 g of ethanol and 7.6 g of concentrated aqueous ammonia solution. The mixture was hydrogenated at 90° C. and a hydrogen pressure of 50 bar for 2 h. The catalyst was filtered off via Celite® and the filtrate was concentrated in a rotary evaporator. After drying at 50° C./20 mbar for a relatively long time, 0.89 g of crude carcinine with a content (HPLC) of 73% was obtained.
1H-NMR (DMSO-d6, 400 MHz): δ=12 (br., 1H); 7.95 (t, 1H), 7.50 (s, 1H); 6.77 (s, 1H); 3.6 (br., 1H); 3.25 (q, 2H); 2.74 (t, 2H); 2.63 (t, 2H); 2.15 (t, 2H). LC-MS: m/z=183 ([M+H]+), 166, 148, 124, 95.
Number | Date | Country | Kind |
---|---|---|---|
01121342 | Sep 2001 | EP | regional |
This is a 371 national stage application of PCT/EP02/09893, filed on Sep. 4, 2002 that has benefit of U.S. Provisional Application Ser. No. 60/332,547, filed on Nov. 26, 2001, and that has priority benefit of European Patent Application No. 01121342.8, filed on Sep. 6, 2001.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/09893 | 9/4/2002 | WO | 00 | 3/5/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/022795 | 3/20/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4313894 | Kleemann et al. | Feb 1982 | A |
4359416 | Vinick | Nov 1982 | A |
5037849 | Simon et al. | Aug 1991 | A |
5561110 | Michaelis et al. | Oct 1996 | A |
5792771 | App et al. | Aug 1998 | A |
5792784 | Seguin et al. | Aug 1998 | A |
6037440 | Wilson et al. | Mar 2000 | A |
6280715 | Seguin et al. | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
2429927 | Jan 1975 | DE |
0294668 | Dec 1988 | EP |
06247850 | Sep 1994 | JP |
WO 91-05555 | May 1991 | WO |
WO 01-64638 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040220410 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60332547 | Nov 2001 | US |