Method for preparing a densified insulation material for use in appliance insulated structure

Information

  • Patent Grant
  • 12202175
  • Patent Number
    12,202,175
  • Date Filed
    Wednesday, May 3, 2023
    a year ago
  • Date Issued
    Tuesday, January 21, 2025
    a day ago
Abstract
A method for forming a vacuum insulated structure using a prepared core material includes preparing a powder insulation material defining a bulk density, pre-densifying the powder insulation material to form a pre-densified insulation base, crushing the pre-densified insulation base into granular core insulation to define a core density of the granular core insulation, disposing the granular core insulation having the core density into an insulating cavity defined within an insulating structure and expressing gas from the interior cavity of the insulating structure to further densify the granular core insulation to define a target density. The granular core insulation defines the target density disposed within the insulating structure defines the vacuum insulation structure, wherein the target density defines a density in the range of from approximately 80 grams per liter to approximately 350 grams per liter.
Description
BACKGROUND

The device is in the field of insulating materials, specifically, insulating materials that can be densified for use in insulating structures for household appliances.


SUMMARY

In at least one aspect, a method for forming a vacuum insulated structure using a prepared core material includes preparing a powder insulation material defining a bulk density, pre-densifying the powder insulation material to form a pre-densified insulation base and crushing the pre-densified insulation base into granular core insulation to define a core density of the granular core insulation. The granular core insulation having the core density is then disposed into an insulating cavity defined within an insulating structure. Gas is expressed from the interior cavity of the insulating structure to further densify the granular core insulation to define a target density. The granular core insulation defines the target density disposed within the insulating structure that defines the vacuum insulation structure, wherein the target density defines a density in the range of from approximately 80 grams per liter to approximately 350 grams per liter.


In at least another aspect, a method for forming a vacuum insulated appliance cabinet using a prepared core material includes preparing a powder insulation material defining a bulk density, pre-densifying the powder insulation material to form a pre-densified insulation base and crushing the pre-densified insulation base into granular core insulation to define a core density of the granular core insulation. An appliance structure is provided having an outer wrapper and an inner liner, the outer wrapper and inner liner defining an insulating cavity therebetween. The granular core insulation having the core density is disposed into the insulating cavity. The insulating cavity of the appliance structure is sealed to contain the granular core insulation therein and expressing at least a portion of the gas is expressed from within the insulating cavity to form a vacuum insulated structure.


In at least another aspect, a method of preparing a core material for installation into an insulated structure includes blending a plurality of insulating components to form a powder insulation material having a bulk density, wherein the insulating components include at least one of silica, aerogel, glass fibers, and glass spheres. The powder insulation material is pre-densified to form a pre-densified insulation base and the pre-densified insulation base is then crushed to define a granular core insulation having a core density, wherein the core density is different than the bulk density and the core density is in the range of from approximately 80 grams per liter to approximately 350 grams per liter.


These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a front perspective view of a refrigerating appliance incorporating an aspect of the granular core insulation disposed within an insulating structure of the appliance;



FIG. 2 is a schematic flow diagram illustrating an exemplary process for forming an aspect of the granular core insulation;



FIG. 3 is a top perspective view of an exemplary form of a pre-densified insulation base achieved after conducting a pre-densifying step of an exemplary process for forming the granular core insulation;



FIG. 4 is a perspective view of a crushed form of the precompacted insulation base of FIG. 3;



FIG. 5 is a schematic diagram illustrating an exemplary mechanism for performing an aspect for a method for forming the granular core insulation and forming an insulating structure for an appliance;



FIG. 6 is a schematic flow diagram illustrating a method for forming a vacuum insulated structure using a prepared core material;



FIG. 7 is a schematic flow diagram illustrating an aspect of a method for forming a vacuum insulated appliance cabinet using a prepared core material; and



FIG. 8 is a schematic flow diagram illustrating an aspect of a method for preparing a core insulation material for installation into an insulated structure.





DETAILED DESCRIPTION OF EMBODIMENTS

For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in FIG. 1. However, it is to be understood that the device may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


As illustrated in FIGS. 1-5, reference numeral 10 generally refers to a vacuum insulated structure that is disposed within an appliance 12, such as a refrigerator, freezer, dishwasher, water heater, laundry appliance, oven, or other similar appliance or fixture that requires thermal and/or acoustical insulation within an insulated structure 14. Disposed within the insulated structure 14 is a granular core insulation 16 that includes a densified form of a powder insulation material 18. The granular core insulation 16 can be disposed directly into the insulating structure for the appliance 12, such as within an insulating cavity 20 defined between an outer wrapper 22 and an inner liner 24 of the appliance 12. Alternatively, the granular core insulation 16 can be installed within an insulating panel that is then installed as a panel member 26 within the insulating cavity 20 of the insulating structure of the appliance 12.


According to the various embodiments, as exemplified in FIGS. 1-5, the granular core insulation 16 can be prepared, according to at least one aspect, by placing a base insulation 28 into a blending apparatus 30 and combining the base insulation 28 with various additives 32 that can include, but are not limited to, various opacifiers such as carbon black, silicon carbides, titanium oxides, reinforcing materials, such as organic/inorganic fibers and organic/inorganic insulating spheres. The base insulation 28 can include various materials that can include, but are not limited to, fumed silica, precipitated silica, aerogel nano powder, silica fume, inorganic microspheres, organic microspheres, pearlite, rice husk ash, diatomaceous earth and combinations thereof, and other similar powder materials suitable for vacuum insulation structures. The blending apparatus 30 combines these various materials to form the powder insulation material 18 having a bulk density 34. It is contemplated that the powder insulation material 18 can be a nano-porous silica blend micro agglomerate having particle agglomerate sizes that are approximately 1 micron, although other larger and smaller agglomerate sizes are contemplated. The bulk density 34 of the powder insulation material 18 can be within the range of approximately 30 grams/liter to approximately 150 grams/liter. It is contemplated that greater and lesser bulk densities can be achieved depending upon the base insulation 28 and additives 32 included within the blending apparatus 30 to form the powder insulation material 18. The degree of blending, the types of additives 32, types of base insulation 28, and other factors can cause variations in the density of the powder insulation material 18.


Referring again to FIGS. 2-5, undensified silica materials and the one or more opacifiers, and other blend materials, are included within the blending apparatus 30. It is contemplated that where an opacifier is used, the opacifier within the powder insulation material 18 can be from approximately 5% to approximately 40% of the total weight of the material disposed within the blending apparatus 30. The opacifier is added to reduce radiation conduction of the silica mix. This reduction can be within the range of approximately 0.5 mw/mk to 2.0 mw/mk. It is contemplated that the blending apparatus 30 for performing the blending and/or mixing may or may not include an intensifier 40. The intensifier 40 can take various forms that can include various supplemental mixing mechanisms, injectors, combinations thereof, or other similar supplemental mechanisms that intensify the blending/mixing operations of the blending apparatus 30. An exemplary blending apparatus 30 can include a Hosokawa Vrieco-Nauta® with an intensifier 40 or any commercially available high shear mixer such as a V-block tubing mixer, a Ross mixer or similar mixer can be used to prepare this blend. Regardless of the blending apparatus 30 used, the blending apparatus 30 can be run for varying periods of time, where the blending time can depend upon the mixture volume, the various additives 32 included within the powder insulation material 18, and other factors.


Referring again to FIGS. 2-5, in order to achieve the proper density of the granular core insulation 16, the undensified powder insulation material 18 is first compacted by varying means into flakes or blanks or other densified or compacted particles of a pre-densified insulation base 42. These compacted flakes or blanks that form the pre-densified or compacted insulation base 42 have a density greater than that of the granular core insulation 16 that will be disposed within the insulated structure 14. This pre-densifying process can be accomplished by various compacting mechanisms 44, one such exemplary compacting mechanism 44 being a roller compactor 46 such as an APC L 200-50 from Hosokawa. It is contemplated that other compacting mechanisms 44 can be used to perform the pre-densifying steps of the various methods for forming the granular core insulation 16, such as vacuum compactors, presses, and others. Where a roller compactor 46 is used, the compactor may include a series of rollers 48 that serve to compact and densify the powder insulation material 18 between the rollers 48 into the blanks or flakes of the pre-densified insulation base 42 (exemplified in FIG. 3). It is contemplated, according to various aspects of the device, that during the compaction process, the powder insulation material 18 is conveyed into a roller gap of the roller compactor 46 by a cylindrical feeding auger 50 having a conical feed zone 52. Higher yield through the auger 50 can be achieved by including a vacuum de-aeration system within the feeding auger 50. The vacuum de-aeration system may be used at a base of the auger 50 or along the sides of the housing extending around the auger 50. In various embodiments, a lining can be placed on the sides proximate auger 50. Such lining can include a filter media, which may be made of various materials that include, but are not limited to, paper, synthetic material, composite or metal. It is contemplated that the use of the vacuum assist feature of the de-aeration system can serve to increase the compressive strength of the compacted/densified material.


Referring again to FIGS. 2-5, it is contemplated that delivery of the powder insulation material 18 from the blending apparatus 30 to the compacting mechanism 44 can be performed by various delivery systems 60 that can include, but are not limited to, a pumping system, a pneumatic or vacuum conveying system, belt systems, gravity fed systems, flexible screw conveying systems, combinations thereof, and other material delivery systems 60 that can deliver the powder insulation material 18 having a very minimal density.


Referring again to FIGS. 2-5, the pre-densified insulation base 42 formed through the compacting mechanism 44 can be delivered to a crushing apparatus 70 for conversion into an aspect of the granular core insulation 16. Various pressing forces can be applied to the pre-densified insulation base 42 to arrive at a granular core insulation 16 having various densities. By way of example, and not limitation, it has been found that a pressing force of 18 kN results in a core density 72 of the granular core insulation 16 of approximately 173 grams/liter. By reducing this pressing force, or by increasing the speed of the rolls through the crushing apparatus 70, granules 78 of different core density 72 can be achieved. Such core densities 72 can include ranges from approximately 80 grams/liter to 350 grams/liter. It is contemplated that depending upon the desired density of the granular core insulation 16, greater or lesser core densities 72 can be achieved by varying the pressing force from the crushing apparatus 70 or the speed at which the material moves through the crushing apparatus 70.


According to various embodiments, various other mechanisms can be used in conjunction with, or instead of, the crushing apparatus 70 to transform the pre-densified insulation base 42 into the granular core insulation 16. Such mechanisms and processes can include grinders, blenders, mixers, mills, flake crushers, combinations thereof, and other similar mechanisms that can at least partially break down the pre-densified insulation base 42.


According to the various embodiments, after the material for the granular core insulation 16 is generated through operation of the crushing apparatus 70, each granule 78 of the granular core insulation 16 can be coated by one or more binders 80 that can serve to increase the compressive strength of each granule 78. Such binders 80 can include, but are not limited to, binders that include various cellulose, wax, polyethylene glycol, gelatin, starch, polyvinyl alcohol, polymethacrylates, graphites, sodium silicates, various other organic and/or inorganic materials, and other similar materials that can serve to increase the compressive strength of each granule 78 of the granular core insulation 16. The use of the binders 80 can serve to prevent deflection of the walls 82 of the insulated structure 14 during various compacting and/or gas expressing operations. The maximum size of the individual granules 78 for the granular core insulation 16 can be controlled by the inclusion of a screen having a particular mesh size within or proximate the crushing apparatus 70, or by controlling the distance between the mills. Through the various aspects of the processes disclosed herein, granule 78 sizes between 300 nm to 5 mm can be achieved. The granules 78 on the higher size range can have increased compressive strength that can also add to the overall compressive strength of the granular core material 16. The various aspects of the process disclosed herein may produce certain fines or undensified/uncompacted material that was not densified into a granular form. This material can be captured and disposed back into a hopper or the blending apparatus 30 to be processed again.


Referring again to FIGS. 1-5, in forming the granular core insulation 16, it is contemplated that certain additives 32 can be included within the granular core insulation 16 to vary the density, and also modify the insulating properties of the granular core insulation 16. Such additives 32 can include, but are not limited to, insulating gas 90, such as argon, neon, carbon dioxde, xenon, krypton, combinations thereof, and other similar insulating gasses, insulating glass spheres, such as microspheres, nanospheres, hollow spheres, and other forms of insulating organic/inorganic spheres, additional powdered insulation material and other insulating materials. It is contemplated that the additives 32 can be included within the granular core insulation 16 such that an insulating material occupies substantially all of the space within the insulating cavity 20 of the insulated structure 14 when the granular core insulation 16, and the additives 32 are included within the insulating cavity 20 of the insulated structure 14. To assist with the deposition of the granular core insulation 16 and the various additives 32 within the insulated structure 14, various vibrating mechanisms 92 can be implemented to position the various materials in a packed configuration with minimal spaces between particles. Such a vibrating mechanism 92 can be a vibration table that vibrates the entire insulated structure 14. It is contemplated that vibration with low frequency and high impact may yield higher efficiency or better packing of the granular core material 16 within the insulating cavity 20. More efficient packing can serve to increase the compressive strength of the granular core material 16. Alternatively, the vibrating mechanism 92 can be an apparatus that is temporarily placed within the insulating cavity 20 to directly vibrate the various particles of the granular core insulation 16 and the various additives 32.


Referring again to FIGS. 2-5, once the granular core insulation 16 is prepared, it may be necessary to dry the granular core insulation 16 before being disposed within an insulated structure 14 or before being transported to another location for use in any one of various applications. When the granular core insulation 16 is dried and prepared for installation into the insulated structure 14, the granular core insulation 16 can be directly fed into the insulating cavity 20 of the insulated structure 14. By way of example, and not limitation, the granular core insulation 16 can be fed directly into the insulating space defined between an inner liner 24 and an outer wrapper 22 of an insulated structure 14 for an appliance 12. Alternatively, the granular core insulation 16 can be disposed within the insulating cavity 20 of a panel member 26, such that the granular core insulation 16 within the panel member 26 can be formed into a vacuum insulation panel that can be, in turn, installed within the insulating cavity 20 of the insulation structure of an appliance 12. Disposing techniques such as a double diaphragm powder pump, an auger feed, and a flexible screw conveyor can also be used.


Referring now to FIGS. 2-6, having described the process for forming the granular core insulation 16, a method 400 is now disclosed for forming a vacuum insulated structure 10 using a prepared core material, such as the granular core insulation 16. According to the method 400, a powdered insulation material defining a bulk density 34 is prepared. As discussed above, preparation of the powder insulation material 18 can be through the use of a blending apparatus 30, where the powder insulation material 18 includes various insulating materials that can include, but are not limited to, various silica powder, aerogel powder, organic/inorganic fibers, and organic/inorganic micro-nano spheres, pearlite, rice husk ash, diatomaceous earth, and other similar powder type insulation materials (step 402). Once the powder insulation material 18 is prepared, the powder insulation material 18 is pre-densified/compacted to form a pre-densified insulation base 42 (step 404). The pre-densifying step can be accomplished by various compacting operations, such as by a roller compactor 46 or a briquetting machine, vacuum packing, mechanical pressing, or other apparatus that can provide a compressive force against the powder insulation material 18 to form the pre-densified insulation base 42. After forming the pre-densified insulation base 42, the pre-densified/compacted insulation base 42 is crushed into the granular core insulation 16 to define a core density 72 of the granular core insulation 16 (step 406).


According to the various embodiments, the various densifying and pre-densifying steps of the methods disclosed herein can take the form of any one or more processes through which the base insulation 28 is processed into the granular core insulation 16. Such densification processes can include compaction, pressing, rolling, or other similar application of a positive compressive force. It is also contemplated that the densification of the base insulation 28 into the granular core insulation 16 can be accomplished through the extraction of gas, vacuum packing, or other similar application of a negative compressive force. Combinations of the positive and negative compressive forces can also be implemented to form the pre-densified insulation base 42 and/or the granular core insulation 16.


According to the various embodiments, the core density 72 can be less than a target density 100 of the granular core insulation 16. It is contemplated that the core density 72 of the granular core insulation 16 can be provided such that further and finite densification of the granular core insulation 16 can take place during subsequent steps of the process of forming the vacuum insulated structure 10.


Once the granular core insulation 16 having the core density 72 is prepared, the granular core insulation 16 is disposed within an insulating cavity 20 defined within an insulated structure 14 (step 408). As discussed above, the insulated structure 14 can be an insulating structure for an appliance cabinet made from an inner liner 24 and an outer wrapper 22. The insulated structure 14 can also be a panel member 26 that can be used to form a vacuum insulated panel 110 for separate installation within the insulating cavity 20 of the insulated structure 14 for the appliance 12 (step 408). It is contemplated that once the granular core insulation 16 is disposed within the insulating cavity 20, gas 114 can be expressed from the interior cavity of the insulated structure 14 to form the vacuum insulated structure 10 (step 410). As discussed above, further densification of the granular core insulation 16 can occur as gas 114 is being expressed from the interior cavity. In this manner, the granular core insulation 16 having the core density 72, can be further densified into the target density 100 of the granular core insulation 16.


According to the various embodiments, it is contemplated that as gas 114 from within the insulating cavity 20 is expressed, an insulating gas 90 can be injected into the interior cavity, such that the insulating gas 90 replaces air or some other gas 114 having lesser insulating characteristics than the insulating gas 90. Where the insulating gas 90 is injected as the lesser insulating gas 90 is being expressed, it is contemplated that the expression of gas 114 from the interior cavity may not result in further densification of the granular core insulation 16. In such an embodiment, it is contemplated that the crushing step 406 of the pre-densified insulation base 42 into the granular core insulation 16 can result in the core density 72 being substantially similar to the target density 100 desired for the design of the insulated structure 14 of the appliance 12.


Referring again to FIGS. 2-5, it is contemplated that the insulated structure 14 can include the interior insulating cavity 20 and can also include an insulation inlet 130 and a vacuum outlet 132. In such an embodiment, the insulation inlet 130 can be used to dispose the granular core insulation 16, as well as various additives 32, within the interior insulating cavity 20 of the insulated structure 14. Once the proper amount of granular core insulation 16 and additives 32 are installed therein, the insulation inlet 130 can be sealed. The vacuum outlet 132 of the insulated structure 14 can be used, as discussed above, to express gas 114 from the interior cavity of an insulated structure 14. The gas inlet 134 can also be included where the gas inlet 134 provides a conduit through which the insulating gas 90 can be injected as the lesser insulating gas 90 is expressed. Once the various gas injecting/gas expressing steps are completed, each of the gas inlet 134 and vacuum outlet 132 are sealed, thereby hermetically sealing the insulated structure 14 to prevent the dissipation or other loss of insulating gas 90.


Referring now to FIGS. 2-5 and 7, a method 600 is also disclosed for forming an insulated structure 14 in the form of a vacuum insulated cabinet using a prepared core material such as the granular core insulation 16. According to the method 600, the base insulation 28, typically a powder, is prepared, substantially as described above, to create the powder insulation material 18 having the bulk density 34 (step 602). The powder insulation material 18 is then pre-densified to form the pre-densified insulation base 42 (step 604). The pre-densified insulation base 42 is then crushed into the granular core insulation 16 to define either the core density 72 or the target density 100 for the granular core insulation 16 (step 606). As discussed above, the core density 72 of the granular core insulation 16 may be less than the target density 100 of the granular core insulation 16 where further densifying steps may be performed upon the granular core insulation 16 before the vacuum insulated structure 10 is completed. Such further densifying steps, as discussed above, can include, but are not limited to, compressing the granular core insulation 16 through the expression of gas 114 from the interior cavity, further physical compression of the granular core insulation 16 and/or placing of additives 32 within the granular core insulation 16. Where additives 32 are used, the additives 32 can include, but are not limited to, organic/inorganic hollow spheres, pearlite, rice husk ash, diatomaceous earth with binders and opacifiers, insulating gas 90, glass fiber, additional powder insulation material 18 in an uncompacted form, or other similar insulation material.


Referring again to FIGS. 2-5 and 7, according to the method 600, an insulating appliance structure of an appliance 12 made from an outer wrapper 22 and an inner liner 24 can be provided (step 608). The outer wrapper 22 and inner liner 24 are sealed together to define an insulating cavity 20 therebetween. The granular core insulation 16 having either the core density 72 or the target density 100 is then disposed into the insulating cavity 20 of the appliance structure (step 610). The insulating cavity 20 is then sealed at the insulation inlet 130 such that only gas 114 can be injected into or removed from the insulating cavity 20 via the vacuum inlet and/or vacuum outlet 132 (step 612). After the proper amount of granular core insulation 16 is disposed within the insulating cavity 20, at least a portion of the gas 114 is expressed from within the insulating cavity 20 to form a vacuum insulated structure 10 (step 614). As discussed above, as gas 114 is expressed from the insulating cavity 20, insulating gas 90 can be injected into the insulating cavity 20 such that the insulating gas 90 replaces the gas 114 being expressed. Sealing of the insulating cavity 20 is necessary as the insulating gas 90 will disperse, dissipate, or otherwise escape, from the insulating cavity 20 to the atmosphere through any unsealed portion of the insulated structure 14.


According to the various embodiments, the granular core insulation 16 can include one or more binders 80 to increase the compressive strength of each granule 78 of the granular core insulation 16. The increased compressive strength of each granule 78 can serve to prevent deflection of the outer wrapper 22 and/or the inner liner 24 during compression of the granular core insulation 16 and/or as gas 114 is being expressed from the insulating cavity 20 during formation of the vacuum insulated structure 10. The increased compressive strength of the granular core insulation 16, at least partially, withstands the inward deflection of the outer wrapper 22 and inner liner 24 to maintain a substantially consistent thickness of the insulating cavity 20 of the vacuum insulated structure 10.


According to the various embodiments, the inner liner 24 and outer wrapper 22 of the appliance structure can be made of various rigid materials that can form a hermetic seal when attached together. Typically, both the inner liner 24 and outer wrapper 22 will be made of the same material, such as both being metal, both being a high barrier polymer-type material, or other similar material that can be hermetically sealed together. It is also contemplated, that in various embodiments, the outer wrapper 22 can be metal and the inner liner 24 can be plastic, or vice versa, or the outer wrapper 22 and inner liner 24 can be made of various other similar or differing materials that can be hermetically sealed together to form the vacuum insulated structure 10.


Referring now to FIGS. 2-5 and 8, a method 800 is disclosed for preparing a core insulation material for installation into an insulated structure 14. According to the method 800, a plurality of insulating components are blended to form a powder insulation material 18 having a bulk density 34 (step 802). As discussed above, these insulating components can include at least one of silica powder, aerogel powder, organic/inorganic fibers, and organic/inorganic micro-nano spheres, pearlite, rice husk ash, diatomaceous earth with opacifiers like carbon black and silicon carbide as well as with some binders that include various cellulose, wax, polyethylene glycol, gelatin, starch, polyvinyl alcohol, polymethacrylates and other organic materials as well as inorganic material such as sodium silicates. The powder insulation material 18 is then pre-densified to form a pre-densified insulation base 42 (step 804). The pre-densified insulation base 42 is then crushed to define a granular core insulation 16 having a core density 72, where the core density 72 is more dense than the bulk density 34 (step 806).


According to the various aspects of the methods disclosed herein, it is contemplated that an insulating gas carrier 90 can be used to assist in the movement of the base insulation 28 through the blending apparatus 30, the delivery system 60, the compacting mechanism 44 and/or the crushing apparatus 70. In such an embodiment, it is further contemplated that at least the blending apparatus 30, compacting mechanism 44 and the crushing apparatus 70 can be housed within a closed system. This closed system can include various inlet and outlet valves through which gas 114 and insulating gas 90 can be injected and/or expressed. Through the use of insulating gasses 90, the base insulation 28, and ultimately the granular core insulation 16 can be delivered from the closed system of the blending apparatus 30, compacting mechanism 44 and the crushing apparatus 70 into the insulating cavity 20 of the insulated structure 14. The transport of the granular core insulation 16 into the insulating cavity 20 is assisted by the flow of the insulating gas 90 and the insulating gas 90 is thereby delivered into the insulating cavity 20 to act as an additional insulating material. The insulating gas 90 can include, but is not limited to, argon, krypton, neon, carbon dioxide, xenon, combinations thereof and other insulating gasses 90.


According to the various embodiments, it is contemplated that the granular core insulation 16 can then be installed within an insulated structure 14, such as an appliance cabinet, vacuum insulating panel, or other similar insulating structure. It is also contemplated that the granular core insulation 16 can then be packaged for shipment to other locations for use in varying applications.


According to the various embodiments, it is contemplated that the granular core insulation 16 can be used during the manufacture of various fixtures and/or appliances 12 requiring at least some insulation. Such appliances 12 can include, but are not limited to, water heaters, ductwork, fluid piping, household wall/roof insulation, vehicle insulation, insulation for various household and commercial appliances, and other similar applications. Typically, the granular core insulation 16 will be used for household appliances that can include, but are not limited to, refrigerators, freezers, dishwashers, laundry appliances, ovens, water heaters and other similar household appliances. Additionally, it is contemplated that the granular core insulation 16 can be directly installed within the insulating cavity 20 for an appliance cabinet without using additional barrier films, vapor barriers, or other sealing mechanisms. In such an embodiment, the granular core insulation 16 is installed directly within the insulating cavity 20 defined between the outer wrapper 22 and inner liner 24 of the insulating structure for the appliance 12. It is also contemplated that the granular core insulation 16 can be fed into a flexible vacuum envelope or bag to make a two-dimensional or three-dimensional vacuum insulated panel 110 that can be later installed within the insulated structure 14 for the appliance 12. It is also contemplated that the insulated structures 14 for appliances 12 can include structures for the cabinet, doors, door panels, drawers, and other components of the appliance 12.


It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. A method of preparing a core material for installation into an insulated structure, the method comprising steps of: blending a plurality of insulating components to form a powder insulation material having a bulk density, wherein the insulating components include at least one of silica powder, aerogel powder, insulating fibers, insulating spheres, perlite, rice husk ash, diatomaceous earth and at least one opacifier;pre-densifying the powder insulation material using a roller compactor to form a pre-densified insulation base;crushing the pre-densified insulation base using a separate roller compactor to further densify the powder insulation material and to define adhered granules of a granular core insulation having a core density, wherein the adhered granules are adhered particles of the powder insulation material; andcoating the adhered granules of the granular core insulation with a binder to increase a compressive strength of the adhered granules and to define the granular core insulation to be a flowable material.
  • 2. The method of claim 1, wherein the bulk density is defined by a density within a range of from approximately 30 grams per liter to approximately 150 grams per liter.
  • 3. The method of claim 2, wherein the core density defines a density in a range of from approximately 80 grams per liter to approximately 350 grams per liter.
  • 4. The method of claim 1, wherein the binder used in coating the adhered granules includes at least one of cellulose, wax, polyethylene glycol, gelatin, starch, polyvinyl alcohol, polymethacrylate, graphite and sodium silicate.
  • 5. The method of claim 1, wherein the granular core insulation is mixed with an additive, wherein the additive includes at least one of insulating glass spheres and additional amounts of the powder insulation material, pearlite, rice husk ash, diatomaceous earth, at least one binder, at least one opacifier and glass fiber.
  • 6. The method of claim 1, wherein the pre-densified insulation base is combined in a blending operation in a blending apparatus having an intensifier mechanism for performing the blending operation.
  • 7. A method of preparing a core material for installation into an insulated structure, the method comprising steps of: blending a plurality of insulating components to form a powder insulation material having a bulk density, wherein the insulating components include at least one of silica powder, aerogel powder, insulating fibers, insulating spheres, perlite, rice husk ash, diatomaceous earth and at least one opacifier;pre-densifying the powder insulation material using a roller compactor to form a pre-densified insulation base;crushing the pre-densified insulation base using a separate roller compactor to further densify the powder insulation material and to define adhered granules of a granular core insulation having a core density, wherein the adhered granules are adhered particles of the powder insulation material; andcoating the adhered granules of the granular core insulation with a binder to increase a compressive strength of the adhered granules and to define the granular core insulation to be a flowable material;disposing the granular core insulation into a cavity of an insulating structure having an outer wrapper and an inner liner; andsealing the cavity of the insulating structure to contain the granular core insulation therein.
  • 8. The method of claim 7, further comprising the step of: expressing gas from within the insulating structure to form a vacuum insulated structure.
  • 9. The method of claim 7, further comprising the step of: disposing an additive within the cavity of the insulating structure, wherein the additive includes an insulating gas.
  • 10. The method of claim 9, wherein the insulating gas includes at least one of argon, neon, carbon dioxide, xenon, and krypton.
  • 11. The method of claim 7, wherein the core density of the granular core insulation is equivalent to a target density for a vacuum insulated structure, wherein the step of expressing gas is substantially free of compression of the granular core insulation, and wherein the step of expressing gas further densifies the granular core insulation to be compressed from the core density to a target density, wherein the target density is different than the core density.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a divisional of U.S. patent application Ser. No. 17/361,907 filed Jun. 29, 2021, entitled METHOD FOR PREPARING A DENSIFIED INSULATION MATERIAL FOR USE IN APPLIANCE INSULATED STRUCTURE, now U.S. Pat. No. 11,691,318, which is a continuation of U.S. patent application Ser. No. 14/961,934 filed Dec. 8, 2015, entitled METHOD FOR PREPARING A DENSIFIED INSULATION MATERIAL FOR USE IN APPLIANCE INSULATED STRUCTURE, now U.S. Pat. No. 11,052,579, the entire disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (478)
Number Name Date Kind
948541 Coleman Feb 1910 A
1275511 Welch Aug 1918 A
1849369 Frost Mar 1932 A
1921576 Muffly Aug 1933 A
2108212 Schellens Feb 1938 A
2128336 Torstensson Aug 1938 A
2164143 Munters Jun 1939 A
2191659 Hintze Feb 1940 A
2318744 Brown May 1943 A
2356827 Coss et al. Aug 1944 A
2432042 Richard Dec 1947 A
2439602 Heritage Apr 1948 A
2439603 Heritage Apr 1948 A
2451884 Stelzer Oct 1948 A
2538780 Hazard Jan 1951 A
2559356 Hedges Jul 1951 A
2729863 Kurtz Jan 1956 A
2768046 Evans Oct 1956 A
2817123 Jacobs Dec 1957 A
2942438 Schmeling Jun 1960 A
2985075 Knutsson-Hall May 1961 A
2989156 Brooks Jun 1961 A
3086830 Malia Apr 1963 A
3125388 Constantini et al. Mar 1964 A
3137900 Carbary Jun 1964 A
3218111 Steiner Nov 1965 A
3258883 Companaro et al. Jul 1966 A
3290893 Haldopoulos Dec 1966 A
3338451 Kesling Aug 1967 A
3353301 Heilweil et al. Nov 1967 A
3353321 Heilweil et al. Nov 1967 A
3358059 Snyder Dec 1967 A
3379481 Fisher Apr 1968 A
3408316 Mueller et al. Oct 1968 A
3471416 Fijal Oct 1969 A
3597850 Jenkins Aug 1971 A
3607169 Coxe Sep 1971 A
3632012 Kitson Jan 1972 A
3633783 Aue Jan 1972 A
3634971 Kesling Jan 1972 A
3635536 Lackey et al. Jan 1972 A
3670521 Dodge, III et al. Jun 1972 A
3688384 Mizushima et al. Sep 1972 A
3769770 Deschamps et al. Nov 1973 A
3862880 Feldman Jan 1975 A
3868829 Mann et al. Mar 1975 A
3875683 Waters Apr 1975 A
3910658 Lindenschmidt Oct 1975 A
3933398 Haag Jan 1976 A
3935787 Fisher Feb 1976 A
4005919 Hoge et al. Feb 1977 A
4006947 Haag et al. Feb 1977 A
4043624 Lindenschmidt Aug 1977 A
4050145 Benford Sep 1977 A
4067628 Sherburn Jan 1978 A
4170391 Bottger Oct 1979 A
4242241 Rosen et al. Dec 1980 A
4260876 Hochheiser Apr 1981 A
4303730 Torobin Dec 1981 A
4303732 Torobin Dec 1981 A
4325734 Burrage et al. Apr 1982 A
4330310 Tate, Jr. et al. May 1982 A
4332429 Frick et al. Jun 1982 A
4396362 Thompson et al. Aug 1983 A
4417382 Schilf Nov 1983 A
4492368 DeLeeuw et al. Jan 1985 A
4529368 Makansi Jul 1985 A
4548196 Torobin Oct 1985 A
4583796 Nakajima et al. Apr 1986 A
4660271 Lenhardt Apr 1987 A
4671909 Torobin Jun 1987 A
4671985 Rodrigues et al. Jun 1987 A
4681788 Barito et al. Jul 1987 A
4745015 Cheng et al. May 1988 A
4777154 Torobin Oct 1988 A
4781968 Kellerman Nov 1988 A
4805293 Buchser Feb 1989 A
4865875 Kellerman Sep 1989 A
4870735 Jahr et al. Oct 1989 A
4914341 Weaver et al. Apr 1990 A
4917841 Jenkins Apr 1990 A
4955675 Donaghy Sep 1990 A
5007226 Nelson Apr 1991 A
5018328 Cur et al. May 1991 A
5033636 Jenkins Jul 1991 A
5066437 Barito et al. Nov 1991 A
5082335 Cur et al. Jan 1992 A
5084320 Barito et al. Jan 1992 A
5094899 Rusek, Jr. Mar 1992 A
5118174 Benford et al. Jun 1992 A
5121593 Forslund Jun 1992 A
5157893 Benson et al. Oct 1992 A
5168674 Molthen Dec 1992 A
5171346 Hallett Dec 1992 A
5175975 Benson et al. Jan 1993 A
5212143 Torobin May 1993 A
5221136 Hauck et al. Jun 1993 A
5227245 Brands et al. Jul 1993 A
5231811 Andrepont et al. Aug 1993 A
5248196 Lynn et al. Sep 1993 A
5251455 Cur et al. Oct 1993 A
5252408 Bridges et al. Oct 1993 A
5263773 Gable et al. Nov 1993 A
5273801 Barry et al. Dec 1993 A
5318108 Benson et al. Jun 1994 A
5340208 Hauck et al. Aug 1994 A
5353868 Abbott Oct 1994 A
5359795 Mawby et al. Nov 1994 A
5375428 LeClear et al. Dec 1994 A
5397759 Torobin Mar 1995 A
5418055 Chen et al. May 1995 A
5433056 Benson et al. Jul 1995 A
5477676 Benson et al. Dec 1995 A
5500287 Henderson Mar 1996 A
5500305 Bridges et al. Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507999 Copsey et al. Apr 1996 A
5509248 Dellby et al. Apr 1996 A
5512345 Tsutsumi et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5533311 Tirrell et al. Jul 1996 A
5562154 Benson et al. Oct 1996 A
5586680 Dellby et al. Dec 1996 A
5599081 Revlett et al. Feb 1997 A
5600966 Valence et al. Feb 1997 A
5632543 McGrath et al. May 1997 A
5640828 Reeves et al. Jun 1997 A
5643485 Potter et al. Jul 1997 A
5652039 Tremain et al. Jul 1997 A
5716581 Tirrell et al. Feb 1998 A
5768837 Sjoholm Jun 1998 A
5792801 Tsuda et al. Aug 1998 A
5813454 Potter Sep 1998 A
5826780 Nesser et al. Oct 1998 A
5827385 Meyer et al. Oct 1998 A
5834126 Sheu Nov 1998 A
5843353 DeVos et al. Dec 1998 A
5866228 Awata Feb 1999 A
5866247 Klatt et al. Feb 1999 A
5868890 Fredrick Feb 1999 A
5900299 Wynne May 1999 A
5918478 Bostic et al. Jul 1999 A
5924295 Park Jul 1999 A
5950395 Takemasa et al. Sep 1999 A
5952404 Simpson et al. Sep 1999 A
5966963 Kovalaske Oct 1999 A
5985189 Lynn et al. Nov 1999 A
6001450 Tanimoto et al. Dec 1999 A
6013700 Asano et al. Jan 2000 A
6063471 Dietrich et al. May 2000 A
6094922 Ziegler Aug 2000 A
6109712 Haworth et al. Aug 2000 A
6128914 Tamaoki et al. Oct 2000 A
6132837 Boes et al. Oct 2000 A
6158233 Cohen et al. Dec 2000 A
6163976 Tada et al. Dec 2000 A
6164030 Dietrich Dec 2000 A
6164739 Schulz et al. Dec 2000 A
6187256 Aslan et al. Feb 2001 B1
6209342 Banicevic et al. Apr 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6221456 Pogorski et al. Apr 2001 B1
6224179 Wenning et al. May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6260377 Tamaoki et al. Jul 2001 B1
6266970 Nam et al. Jul 2001 B1
6294595 Tyagi et al. Sep 2001 B1
6305768 Nishimoto Oct 2001 B1
6485122 Wolf et al. Jan 2002 B2
6390378 Briscoe, Jr. et al. May 2002 B1
6406449 Moore et al. Jun 2002 B1
6408841 Hirath et al. Jun 2002 B1
6415623 Jennings et al. Jul 2002 B1
6428130 Banicevic et al. Aug 2002 B1
6430780 Kim et al. Aug 2002 B1
6460955 Vaughan et al. Oct 2002 B1
6519919 Takenouchi et al. Feb 2003 B1
6623413 Wynne Sep 2003 B1
6629429 Kawamura et al. Oct 2003 B1
6651444 Morimoto et al. Nov 2003 B2
6655766 Hodges Dec 2003 B2
6689840 Eustace et al. Feb 2004 B1
6716501 Kovalchuk et al. Apr 2004 B2
6736472 Banicevic May 2004 B2
6749780 Tobias Jun 2004 B2
6773082 Lee Aug 2004 B2
6858280 Allen et al. Feb 2005 B2
6860082 Yamamoto et al. Mar 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
6997530 Avendano et al. Feb 2006 B2
7008032 Chekal et al. Mar 2006 B2
7026054 Ikegawa et al. Apr 2006 B2
7197792 Moon Apr 2007 B2
7197888 LeClear et al. Apr 2007 B2
7207181 Murray et al. Apr 2007 B2
7210308 Tanimoto et al. May 2007 B2
7234247 Maguire Jun 2007 B2
7263744 Kim et al. Sep 2007 B2
7278279 Hirai et al. Oct 2007 B2
7284390 Van Meter et al. Oct 2007 B2
7296432 Muller et al. Nov 2007 B2
7316125 Uekado et al. Jan 2008 B2
7343757 Egan et al. Mar 2008 B2
7360371 Feinauer et al. Apr 2008 B2
7386992 Adamski et al. Jun 2008 B2
7449227 Echigoya et al. Nov 2008 B2
7475562 Jackovin Jan 2009 B2
7517031 Laible Apr 2009 B2
7517576 Echigoya et al. Apr 2009 B2
7537817 Tsunetsugu et al. May 2009 B2
7614244 Venkatakrishnan et al. Nov 2009 B2
7625622 Teckoe et al. Dec 2009 B2
7641298 Hirath et al. Jan 2010 B2
7665326 LeClear et al. Feb 2010 B2
7703217 Tada et al. Apr 2010 B2
7703824 Kittelson et al. Apr 2010 B2
7757511 LeClear et al. Jul 2010 B2
7762634 Tenra et al. Jul 2010 B2
7794805 Aumaugher et al. Sep 2010 B2
7815269 Wenning et al. Oct 2010 B2
7842269 Schachtely et al. Nov 2010 B2
7845745 Gorz et al. Dec 2010 B2
7861538 Welle et al. Jan 2011 B2
7886559 Hell et al. Feb 2011 B2
7893123 Luisi Feb 2011 B2
7905614 Aoki Mar 2011 B2
7908873 Cur et al. Mar 2011 B1
7930892 Vonderhaar Apr 2011 B1
7938148 Carlier et al. May 2011 B2
7992257 Kim Aug 2011 B2
8049518 Wern et al. Nov 2011 B2
8074469 Hamel et al. Dec 2011 B2
8079652 Laible et al. Dec 2011 B2
8083985 Luisi et al. Dec 2011 B2
8108972 Bae et al. Feb 2012 B2
8113604 Olson et al. Feb 2012 B2
8117865 Allard et al. Feb 2012 B2
8157338 Seo et al. Apr 2012 B2
8162415 Hagele et al. Apr 2012 B2
8163080 Meyer et al. Apr 2012 B2
8176746 Allard et al. May 2012 B2
8182051 Laible et al. May 2012 B2
8197019 Kim Jun 2012 B2
8202599 Henn Jun 2012 B2
8211523 Fujimori et al. Jul 2012 B2
8266923 Bauer et al. Sep 2012 B2
8281558 Hiemeyer et al. Oct 2012 B2
8299545 Chen et al. Oct 2012 B2
8299656 Allard et al. Oct 2012 B2
8343395 Hu et al. Jan 2013 B2
8353177 Adamski et al. Jan 2013 B2
8382219 Hottmann et al. Feb 2013 B2
8434317 Besore May 2013 B2
8439460 Laible et al. May 2013 B2
8453476 Kendall et al. Jun 2013 B2
8456040 Allard et al. Jun 2013 B2
8491070 Davis et al. Jul 2013 B2
8516845 Wuesthoff et al. Aug 2013 B2
8522563 Allard et al. Sep 2013 B2
8528284 Aspenson et al. Sep 2013 B2
8590992 Lim et al. Nov 2013 B2
8717029 Chae et al. May 2014 B2
8726690 Cur et al. May 2014 B2
8733123 Adamski et al. May 2014 B2
8739567 Junge Jun 2014 B2
8739568 Allard et al. Jun 2014 B2
8752918 Kang Jun 2014 B2
8752921 Gorz et al. Jun 2014 B2
8756952 Adamski et al. Jun 2014 B2
8763847 Mortarotti Jul 2014 B2
8764133 Park et al. Jul 2014 B2
8770682 Lee et al. Jul 2014 B2
8776390 Hanaoka et al. Jul 2014 B2
8790477 Tenra et al. Jul 2014 B2
8840204 Bauer et al. Sep 2014 B2
8852708 Kim et al. Oct 2014 B2
8871323 Kim et al. Oct 2014 B2
8881398 Hanley et al. Oct 2014 B2
8899068 Jung et al. Dec 2014 B2
8905503 Sahasrabudhe et al. Dec 2014 B2
8927084 Jeon et al. Jan 2015 B2
8943770 Sanders et al. Feb 2015 B2
8944541 Allard et al. Feb 2015 B2
8986483 Cur et al. Mar 2015 B2
9009969 Choi et al. Apr 2015 B2
RE45501 Maguire May 2015 E
9038403 Cur et al. May 2015 B2
9056952 Eilbracht et al. Jun 2015 B2
9071907 Kuehl et al. Jun 2015 B2
9074811 Korkmaz Jul 2015 B2
9080808 Choi et al. Jul 2015 B2
9102076 Doshi et al. Aug 2015 B2
9103482 Fujimori et al. Aug 2015 B2
9125546 Kleemann et al. Sep 2015 B2
9140480 Kuehl et al. Sep 2015 B2
9140481 Cur et al. Sep 2015 B2
9170045 Oh et al. Oct 2015 B2
9170046 Jung et al. Oct 2015 B2
9182158 Wu Nov 2015 B2
9188382 Kim et al. Nov 2015 B2
8955352 Lee et al. Dec 2015 B2
9221210 Wu et al. Dec 2015 B2
9228386 Thielmann et al. Jan 2016 B2
9252570 Allard et al. Feb 2016 B2
9267727 Lim et al. Feb 2016 B2
9303915 Kim et al. Apr 2016 B2
9328951 Shin et al. May 2016 B2
9353984 Kim et al. May 2016 B2
9410732 Choi et al. Aug 2016 B2
9423171 Betto et al. Aug 2016 B2
9429356 Kim et al. Aug 2016 B2
9448004 Kim et al. Sep 2016 B2
9463917 Wu et al. Oct 2016 B2
9482463 Choi et al. Nov 2016 B2
9506689 Carbajal et al. Nov 2016 B2
9518777 Lee et al. Dec 2016 B2
9568238 Kim et al. Feb 2017 B2
D781641 Incukur Mar 2017 S
D781642 Incukur Mar 2017 S
9605891 Lee et al. Mar 2017 B2
9696085 Seo et al. Jul 2017 B2
9702621 Cho et al. Jul 2017 B2
9759479 Ramm et al. Sep 2017 B2
9777958 Choi et al. Oct 2017 B2
9791204 Kim et al. Oct 2017 B2
9833942 Wu et al. Dec 2017 B2
11052579 Deka et al. Jul 2021 B2
20020004111 Matsubara et al. Jan 2002 A1
20020114937 Albert et al. Aug 2002 A1
20020144482 Henson et al. Oct 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030008100 Horn Jan 2003 A1
20030041612 Piloni et al. Mar 2003 A1
20030056334 Finkelstein Mar 2003 A1
20030157284 Tanimoto et al. Aug 2003 A1
20030167789 Tanimoto et al. Sep 2003 A1
20030173883 Koons Sep 2003 A1
20040012114 Eyerer et al. Jan 2004 A1
20040144130 Jung Jul 2004 A1
20040178707 Avendano Sep 2004 A1
20040180176 Rusek Sep 2004 A1
20040226141 Yates et al. Nov 2004 A1
20040253406 Hayashi et al. Dec 2004 A1
20050042247 Gomoll et al. Feb 2005 A1
20050229614 Ansted Oct 2005 A1
20050235682 Hirai et al. Oct 2005 A1
20060064846 Espindola et al. Mar 2006 A1
20060076863 Echigoya et al. Apr 2006 A1
20060201189 Adamski et al. Sep 2006 A1
20060261718 Miseki et al. Nov 2006 A1
20060263571 Tsunetsugu et al. Nov 2006 A1
20060266075 Itsuki et al. Nov 2006 A1
20070001563 Park et al. Jan 2007 A1
20070099502 Ferinauer May 2007 A1
20070176526 Gomoll et al. Aug 2007 A1
20070266654 Noale Nov 2007 A1
20080044488 Zimmer et al. Feb 2008 A1
20080048540 Kim Feb 2008 A1
20080138458 Ozasa et al. Jun 2008 A1
20080196441 Ferreira Aug 2008 A1
20080300356 Meyer et al. Dec 2008 A1
20080309210 Luisi et al. Dec 2008 A1
20090032541 Rogala et al. Feb 2009 A1
20090056367 Neumann Mar 2009 A1
20090058244 Cho et al. Mar 2009 A1
20090113925 Korkmaz May 2009 A1
20090131571 Fraser et al. May 2009 A1
20090179541 Smith et al. Jul 2009 A1
20090205357 Lim et al. Aug 2009 A1
20090302728 Rotter et al. Dec 2009 A1
20090322470 Yoo et al. Dec 2009 A1
20090324871 Henn Dec 2009 A1
20100206464 Heo et al. Aug 2010 A1
20100218543 Duchame Sep 2010 A1
20100231109 Matzke et al. Sep 2010 A1
20100287843 Oh Nov 2010 A1
20100287974 Cur et al. Nov 2010 A1
20100293984 Adamski et al. Nov 2010 A1
20100295435 Kendall et al. Nov 2010 A1
20110011119 Kuehl et al. Jan 2011 A1
20110023527 Kwon et al. Feb 2011 A1
20110030894 Tenra et al. Feb 2011 A1
20110095669 Moon et al. Apr 2011 A1
20110146325 Lee Jun 2011 A1
20110146335 Jung et al. Jun 2011 A1
20110165367 Kojima et al. Jul 2011 A1
20110215694 Fink et al. Sep 2011 A1
20110220662 Kim et al. Sep 2011 A1
20110241513 Nomura et al. Oct 2011 A1
20110241514 Nomura et al. Oct 2011 A1
20110260351 Corradi et al. Oct 2011 A1
20110290808 Bai et al. Dec 2011 A1
20110309732 Horil et al. Dec 2011 A1
20110315693 Cur et al. Dec 2011 A1
20120000234 Adamski et al. Jan 2012 A1
20120011879 Gu Jan 2012 A1
20120060544 Lee et al. Mar 2012 A1
20120099255 Lee et al. Apr 2012 A1
20120103006 Jung et al. May 2012 A1
20120104923 Jung et al. May 2012 A1
20120118002 Kim et al. May 2012 A1
20120137501 Allard et al. Jun 2012 A1
20120152151 Meyer et al. Jun 2012 A1
20120196059 Fujimori et al. Aug 2012 A1
20120231204 Jeon et al. Sep 2012 A1
20120237715 McCracken Sep 2012 A1
20120240612 Wusthoff et al. Sep 2012 A1
20120273111 Nomura et al. Nov 2012 A1
20120279247 Katu et al. Nov 2012 A1
20120280608 Park et al. Nov 2012 A1
20120285971 Junge et al. Nov 2012 A1
20120297813 Hanley et al. Nov 2012 A1
20120324937 Adamski et al. Dec 2012 A1
20130026900 Oh et al. Jan 2013 A1
20130033163 Kang Feb 2013 A1
20130043780 Ootsuka et al. Feb 2013 A1
20130052393 Hahn et al. Feb 2013 A1
20130068990 Eilbracht et al. Mar 2013 A1
20130111941 Yu et al. May 2013 A1
20130221819 Wing Aug 2013 A1
20130255304 Cur et al. Oct 2013 A1
20130256318 Kuehl et al. Oct 2013 A1
20130256319 Kuehl et al. Oct 2013 A1
20130257256 Allard et al. Oct 2013 A1
20130257257 Cur et al. Oct 2013 A1
20130264439 Allard et al. Oct 2013 A1
20130270732 Wu et al. Oct 2013 A1
20130285527 Choi et al. Oct 2013 A1
20130293080 Kim et al. Nov 2013 A1
20130305535 Cur et al. Nov 2013 A1
20130328472 Shim et al. Dec 2013 A1
20140009055 Cho et al. Jan 2014 A1
20140097733 Seo et al. Apr 2014 A1
20140132144 Kim et al. May 2014 A1
20140166926 Lee et al. Jun 2014 A1
20140171578 Meyer et al. Jun 2014 A1
20140190978 Bowman et al. Jul 2014 A1
20140196305 Smith Jul 2014 A1
20140216706 Melton et al. Aug 2014 A1
20140232250 Kim et al. Aug 2014 A1
20140260332 Wu Sep 2014 A1
20140346942 Kim et al. Nov 2014 A1
20140364527 Matthias et al. Dec 2014 A1
20150011668 Kolb et al. Jan 2015 A1
20150015133 Carbajal et al. Jan 2015 A1
20150017386 Kolb et al. Jan 2015 A1
20150027628 Cravens et al. Jan 2015 A1
20150059399 Hwang et al. Mar 2015 A1
20150115790 Ogg Apr 2015 A1
20150147514 Shinohara et al. May 2015 A1
20150159936 Oh et al. Jun 2015 A1
20150168050 Cur et al. Jun 2015 A1
20150176888 Cur et al. Jun 2015 A1
20150184923 Jeon Jul 2015 A1
20150190840 Muto et al. Jul 2015 A1
20150224685 Amstutz Aug 2015 A1
20150241115 Strauss et al. Aug 2015 A1
20150241118 Wu Aug 2015 A1
20150285551 Aiken et al. Oct 2015 A1
20160084567 Fernandez et al. Mar 2016 A1
20160116100 Thiery et al. Apr 2016 A1
20160123055 Jeyama May 2016 A1
20160161175 Benold et al. Jun 2016 A1
20160178267 Hao et al. Jun 2016 A1
20160178269 Hiemeyer et al. Jun 2016 A1
20160235201 Soot Aug 2016 A1
20160240839 Umeyama et al. Aug 2016 A1
20160258671 Allard et al. Sep 2016 A1
20160290702 Sexton et al. Oct 2016 A1
20160348957 Hitzelberger et al. Dec 2016 A1
20170038126 Lee et al. Feb 2017 A1
20170157809 Deka et al. Jun 2017 A1
20170176086 Kang Jun 2017 A1
20170184339 Liu et al. Jun 2017 A1
20170191746 Seo Jul 2017 A1
20170232640 Hollar, Jr. et al. Aug 2017 A1
20210323200 Naik et al. Oct 2021 A1
Foreign Referenced Citations (217)
Number Date Country
626838 May 1961 CA
1320631 Jul 1993 CA
2259665 Jan 1998 CA
2640006 Aug 2007 CA
1158509 Jul 2004 CN
1970185 May 2007 CN
100359272 Jan 2008 CN
101437756 May 2009 CN
201680116 Dec 2010 CN
201748744 Feb 2011 CN
102296714 May 2012 CN
102452522 May 2012 CN
102717578 Oct 2012 CN
102720277 Oct 2012 CN
103072321 May 2013 CN
202973713 Jun 2013 CN
203331442 Dec 2013 CN
104816478 Aug 2015 CN
105115221 Dec 2015 CN
2014963379 Jan 2016 CN
1150190 Jun 1963 DE
4110292 Oct 1992 DE
4409091 Sep 1995 DE
19818890 Nov 1999 DE
19914105 Sep 2000 DE
19915311 Oct 2000 DE
102008026528 Dec 2009 DE
102009046810 May 2011 DE
102010024951 Dec 2011 DE
102011051178 Dec 2012 DE
102012223536 Jun 2014 DE
102012223541 Jun 2014 DE
0260699 Mar 1988 EP
0480451 Apr 1992 EP
0645576 Mar 1995 EP
0691518 Jan 1996 EP
0860669 Aug 1998 EP
1087186 Mar 2001 EP
1200785 May 2002 EP
1243880 Sep 2002 EP
1496322 Jan 2005 EP
1505359 Feb 2005 EP
1602425 Dec 2005 EP
1624263 Aug 2006 EP
1484563 Oct 2008 EP
2342511 Aug 2012 EP
2543942 Jan 2013 EP
2607073 Jun 2013 EP
2789951 Oct 2014 EP
2878427 Jun 2015 EP
2980963 Apr 2013 FR
2991698 Dec 2013 FR
837929 Jun 1960 GB
1214548 Jun 1960 GB
4828353 Aug 1973 JP
51057777 May 1976 JP
59191588 Dec 1984 JP
03013779 Jan 1991 JP
404165197 Jun 1992 JP
04165197 Oct 1992 JP
04309778 Nov 1992 JP
06159922 Jun 1994 JP
7001479 Jan 1995 JP
H07144955 Jun 1995 JP
H07167377 Jul 1995 JP
08300052 Nov 1996 JP
H08303686 Nov 1996 JP
H09166271 Jun 1997 JP
10113983 May 1998 JP
11159693 Jun 1999 JP
11311395 Nov 1999 JP
11336990 Dec 1999 JP
2000097390 Apr 2000 JP
2000117334 Apr 2000 JP
2000320958 Nov 2000 JP
2001038188 Feb 2001 JP
2001116437 Apr 2001 JP
2001116443 Apr 2001 JP
2001336691 Dec 2001 JP
2001343176 Dec 2001 JP
2002068853 Mar 2002 JP
3438948 Aug 2003 JP
03478771 Dec 2003 JP
2004303695 Oct 2004 JP
2005069596 Mar 2005 JP
2005098637 Apr 2005 JP
2005114015 Apr 2005 JP
2005164193 Jun 2005 JP
2005256849 Sep 2005 JP
2006077792 Mar 2006 JP
2006161834 Jun 2006 JP
2006161945 Jun 2006 JP
03792801 Jul 2006 JP
2006200685 Aug 2006 JP
2007263186 Oct 2007 JP
4111096 Jul 2008 JP
2008157431 Jul 2008 JP
2008190815 Aug 2008 JP
2009063064 Mar 2009 JP
2009162402 Jul 2009 JP
2009524570 Jul 2009 JP
2010017437 Jan 2010 JP
2010071565 Apr 2010 JP
2010108199 May 2010 JP
2010145002 Jul 2010 JP
04545126 Sep 2010 JP
2010236770 Oct 2010 JP
2010276309 Dec 2010 JP
2011002033 Jan 2011 JP
2011069612 Apr 2011 JP
04779684 Sep 2011 JP
2011196644 Oct 2011 JP
2012026493 Feb 2012 JP
04897473 Mar 2012 JP
2012063029 Mar 2012 JP
2012087993 May 2012 JP
2012163258 Aug 2012 JP
2012189114 Oct 2012 JP
2012242075 Dec 2012 JP
2013002484 Jan 2013 JP
2013050242 Mar 2013 JP
2013050267 Mar 2013 JP
2013076471 Apr 2013 JP
2013088036 May 2013 JP
2013195009 Sep 2013 JP
20020057547 Jul 2002 KR
20020080938 Oct 2002 KR
20030083812 Nov 2003 KR
20040000126 Jan 2004 KR
20050095357 Sep 2005 KR
100620025 Sep 2006 KR
20070044024 Apr 2007 KR
1020070065743 Jun 2007 KR
1020080103845 Nov 2008 KR
20090026045 Mar 2009 KR
1017776 Feb 2011 KR
20120007241 Jan 2012 KR
2012046621 May 2012 KR
2012051305 May 2012 KR
20150089495 Aug 2015 KR
2061925 Jun 1996 RU
2077411 Apr 1997 RU
2081858 Jun 1997 RU
2132522 Jun 1999 RU
2162576 Jan 2001 RU
2166158 Apr 2001 RU
2187433 Aug 2002 RU
2234645 Aug 2004 RU
2252377 May 2005 RU
2253792 Jun 2005 RU
2349618 Mar 2009 RU
2414288 Mar 2011 RU
2422598 Jun 2011 RU
142892 Jul 2014 RU
2529525 Sep 2014 RU
2571031 Dec 2015 RU
203707 Dec 1967 SU
00476407 Jul 1975 SU
547614 May 1977 SU
648780 Feb 1979 SU
01307186 Apr 1987 SU
9614207 May 1996 WO
9614207 May 1996 WO
9721767 Jun 1997 WO
1998049506 Nov 1998 WO
9920961 Apr 1999 WO
9920964 Apr 1999 WO
199920964 Apr 1999 WO
200160598 Aug 2001 WO
200202987 Jan 2002 WO
2002052208 Apr 2002 WO
02060576 Aug 2002 WO
03072684 Sep 2003 WO
03089729 Oct 2003 WO
2004010042 Jan 2004 WO
2006045694 May 2006 WO
2006073540 Jul 2006 WO
2007033836 Mar 2007 WO
2007085511 Aug 2007 WO
2007106067 Sep 2007 WO
2008065453 Jun 2008 WO
2008077741 Jul 2008 WO
2008118536 Oct 2008 WO
2008122483 Oct 2008 WO
2009013106 Jan 2009 WO
2009112433 Sep 2009 WO
2009147106 Dec 2009 WO
2010007783 Jan 2010 WO
2010029730 Mar 2010 WO
2010043009 Apr 2010 WO
2010092627 Aug 2010 WO
2010127947 Nov 2010 WO
2010127947 Nov 2010 WO
2011003711 Jan 2011 WO
2011058678 May 2011 WO
2011058678 May 2011 WO
2011081498 Jul 2011 WO
2012023705 Feb 2012 WO
2012026715 Mar 2012 WO
2012031885 Mar 2012 WO
2012044001 Apr 2012 WO
2012043990 May 2012 WO
2012085212 Jun 2012 WO
2012119892 Sep 2012 WO
2012152646 Nov 2012 WO
2013116103 Aug 2013 WO
2013116302 Aug 2013 WO
2014038150 Mar 2014 WO
2014038150 Mar 2014 WO
2014095542 Jun 2014 WO
2014121893 Aug 2014 WO
2014121893 Aug 2014 WO
2014184393 Nov 2014 WO
2014184393 Nov 2014 WO
2013140816 Aug 2015 WO
2016082907 Jun 2016 WO
2017029782 Feb 2017 WO
Non-Patent Literature Citations (7)
Entry
BASF, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015.
BASF, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015.
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer--Balindur+The+new+VIP+fixation+technology-English.pdf, at least as early as Dec. 21, 2015.
Kitchen Aid, “Refrigerator User Instructions,” 120 pages, published Sep. 5, 2015.
feedmachinery.com, Roller Mill (2013).
Cai et al., “Generation of Metal Nanoparticles By Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636.
Raszewski et al., “Methods For Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages.
Related Publications (1)
Number Date Country
20230271354 A1 Aug 2023 US
Divisions (1)
Number Date Country
Parent 17361907 Jun 2021 US
Child 18311277 US
Continuations (1)
Number Date Country
Parent 14961934 Dec 2015 US
Child 17361907 US