The present application claims priority under Japanese Patent Application 2009-250516, filed on Oct. 30, 2009, the contents of the entirety of which are incorporated herein by reference.
The present invention relates to a method for preparing a substrate for arranging animal cells in an array, and to a method for preparing a substrate on which animal cells are arranged in an array.
Attempts have been made to specify, select, and use cells that have been selected at the single-cell level. For example, the detection of the antigen specificity of an individual lymphocyte, the recovery of an individual antigen specific lymphocyte that has been detected, and the use of an individual antigen specific lymphocyte that has been recovered to, for example, produce antibodies are being examined (Patent Reference 1).
Patent Reference 1 employs a microwell array chip to detect antigen specific lymphocytes. The microwell array chip has dimensions and is of a shape such that each microwell holds just one lymphocyte.
It is known that when animal cells are cultured on a substrate surface, an adhesive protein known as extracellular matrix forms outside the cells, adhering the cells to the substrate surface. The separation for use of cells that have adhered to a substrate surface in this manner is also known. The use of electric stimulation is known as a separation method (Patent References 2 to 4).
However, the adhesion of cells to the substrate surface by means of the extracellular matrix and the separation of cells by electric stimulus are not employed as means of arranging individual animal cells on a substrate surface.
The object of the present invention is to provide a new means permitting the arrangement of individual animal cells at the single-cell level on a substrate surface.
The present inventors conducted extensive research into achieving the above object, resulting in the discovery that by means of extracellular matrix adsorption and partial electric stimulus of the extracellular matrix, it was possible to form a culture substrate to which individual animal cells could be made to adhere. The present invention was devised on that basis.
The present invention is as set forth below:
[1] A method for preparing a substrate for arranging animal cells in an array, comprising the steps of:
(1) preparing a substrate having arrayed adsorption surfaces on an electrode substrate surface;
(2) causing an extracellular matrix to adsorb to the electrode surface and the adsorption surfaces of the substrate; and
(3) applying a weak potential to the electrode to cause the extracellular matrix on the electrode surface to separate to obtain a substrate with the extracellular matrix adhered to the adsorption surfaces thereof.
[2] A method for preparing a substrate on which animal cells have been arranged in an array, comprising the steps of:
(1) preparing a substrate having adsorption surfaces in an array on an electrode substrate surface;
(2) causing an extracellular matrix to adsorb to the electrode surface and the adsorption surfaces of the substrate;
(3) applying a weak potential to the electrode to cause the extracellular matrix on the electrode surface to separate to obtain a substrate with the extracellular matrix adhered to the adsorption surfaces thereof;
(4) culturing the animal cells on the surface of the substrate obtained in (3) to obtain a substrate on which the animal cells have adhered to the adsorption surfaces thereof.
[3] The preparation method according to [1] or [2], wherein the dimensions of each of the adsorption surfaces in the array permit the adhesion of a single animal cell to each adsorption surface.
[4] The preparation method according to any one of [1] to [3] wherein the substrate is selected from the group consisting of electrically non-conductive organic materials and inorganic materials.
[5] The preparation method according to any one of [1] to [3] wherein the substrate is glass, plastic, or ceramic.
[6] The preparation method according to any one of [1] to [4], wherein the weak potential in (3) falls within a range of −0.4 V to −0.2 V or +0.2 V to +0.5 V (vs. Ag/Cl).
[7] The preparation method according to any one of [2] to [6], wherein the animal cell culturing in (4) is conducted while applying a potential falling within a range of −0.4 V to −0.2 V (vs. Ag/AgCl) to the electrode to inhibit adhesion of animal cells to the electrode.
[8] The preparation method according to any one of [2] to [6], wherein the animal cell culturing in (4) is conducted by applying a positive potential to the electrode to cause animal cells to adsorb to the electrode, yielding a substrate on which the animal cells have adhered to the adsorption surfaces and the electrode.
The present invention permits the formation of a culture substrate making it possible to cause individual animal cells to adhere. Using this culture substrate, it is possible to separately arrange individual animal cells on the substrate surface.
[
[
[
[
[
[
[
[
The present invention relates to a method for preparing a substrate for arranging animal cells in an array, and to a method employing this substrate to prepare a substrate on which animal cells are arranged in an array. The method for preparing a substrate for arranging animal cells in an array comprises steps (1) to (3) below, and the method for preparing a substrate on which animal cells are arranged in an array comprises steps (1) to (4) below.
Step (1) is a step of preparing a substrate having adsorption surfaces in an array on an electrode substrate surface. On the electrode substrate, the electrode is present over part or all of the surface of an insulating substrate. For example, it can be a glass slide that has been coated with indium [tin] oxide (ITO). However, the insulating substrate is not intended to be limited to glass slides, and the electrode is not intended to be limited to indium [tin] oxide (ITO).
On the electrode substrate, the adsorption surfaces are arranged in an array on the surface. The adsorption surfaces are surfaces for adsorbing extracellular matrix, other than the electrode, that are comprised of a material that is capable of the adsorbing an extracellular matrix. An example of a material that is capable of adsorbing an extracellular matrix is glass. However, there is no specific limitation other than that it be an electrically non-conductive solid. It can be an electrically non-conductive organic material or inorganic material. Examples of electrically non-conductive organic materials and inorganic materials other than glass are plastics and ceramics. Accordingly, a glass surface can be given as an example of an adsorption surface. However, limitation to a glass surface is not intended; a suitable selection can be made from among electrically non-conductive organic materials and inorganic materials. When observing the state of adhesion of cells and the adsorption of the extracellular matrix by microscopy or the like, the substrate is desirably transparent.
The term “in an array” means, for example, that the adsorption surfaces are arranged as multiple microregions in rows and columns. The number of microregions that are arranged in rows and columns is not specifically limited, and can be suitably determined based on the type (size) of the animal cells and the use objective of the substrate on which the animal cells are arranged in an array. For example, the number can fall within a range of 10 to 105 vertically to 10 to 105 horizontally. However, there is no intent to limit this range. The shape of the adsorption surfaces can be rectangular (triangular, rectangular, polyhedral, or the like), circular, elliptical, or the like, and can be suitably determined. The dimensions of the individual adsorption surfaces in an array permit the adhesion of a single animal cell to a single adsorption surface. The dimensions of the animal cells will vary with the cell; the dimensions of the adsorption surfaces can be suitably determined based on the dimensions of the animal cells that are being caused to adhere. However, when the animal cells are HeLa cells, the dimensions of the adsorption surfaces can fall within a range of 25 to 100 μm, for example. The dimensions of the individual adsorption surfaces in an array can also permit the adhesion of two or more animal cells to each adsorption surface.
The adsorption surfaces in an array can be formed on the surface of an electrode substrate, for example, by coating an electrode layer on a substrate surface, forming a mask for the adsorption surfaces in the form of an array on the surface of the electrode layer, etching the surface of the electrode layer through the mask, and removing the mask. Alternatively, the adsorption surfaces in an array can be formed on the surface of an electrode substrate by coating an electrode layer on the substrate surface through a mask for the adsorption surfaces in an array, and then removing the mask. The formation of the electrode layer and etching of the outer surface of the electrode layer can be suitably implemented by the usual methods.
Step (2) is a step in which an extracellular matrix is caused to adsorb to the electrode surface and adsorption surfaces of the substrate prepared in step (1). As shown in step (2) in
The term “extracellular matrix” refers to a cellular adhesive protein such as collagen, proteoglycan, hyaluronic acid, fibronectin, laminin, tenascin, or entactin. The extracellular matrix is available in the form of commercial products. Adsorption of the extracellular matrix to the substrate surface can be achieved by coating an aqueous solution containing the extracellular matrix on the substrate surface, or by immersing the substrate surface in an aqueous solution containing an extracellular matrix while maintaining it facing upward, and allowing it to stand.
Step (3) is a step in which a weak potential is applied to the electrode of the substrate onto which the extracellular matrix has been adsorbed to separate the extracellular matrix from the electrode surface and obtain a substrate on which the extracellular matrix has been adsorbed onto the adsorption surfaces thereof. As shown in step (3) in
Steps (1) to (3) permit the preparation of a substrate for arranging animal cells in an array. Here, the substrate for arranging animal cells in an array that is obtained can be further subjected to step (4) to manufacture a substrate on which animal cells are arranged in an array.
Step (4) is a step in which the animal cells on the substrate surface obtained in step (3) are cultured to obtain a substrate on which the animal cells have adhered to adsorption surfaces. As shown in step (4)A of
The culturing of animal cells in step (4) can be conducted by applying a potential falling within a range of −0.4 V to −0.2 V (vs. Ag/AgCl) to the electrode while inhibiting the adhesion of animal cells to the electrode. As shown in step (4)B in
In the culturing of animal cells in step (4), it is also possible to apply a positive potential to the electrode to cause the animal cells to adhere to the electrode and obtain a substrate on which the animal cells have adhered to both the electrode and the adsorption surfaces. Since animal cells have a negative charge as set forth above, the electrostatic attraction of the surface of an electrode substrate to which a positive potential is being applied causes the animal cells to adhere. Thus, the application of a positive charge to the electrode makes it possible to cause cells to adhere well to spots that have not been coated with an extracellular matrix protein such as collagen. From the perspectives of not damaging the animal cells and inducing the adhesion of animal cells by means of electrostatic attraction, the positive potential is, for example, suitably +0.2 V to +1.0 V (vs. Ag/AgCl), desirably falling within a range of +0.2 V to +0.6 V (vs. Ag/AgCl).
The substrate on which animal cells are arranged in an array that is prepared by the method of the present invention can be used, for example, to examine the properties of animal cells and to examine the substances that are discharged by animal cells. In particular, by arranging the animal cells one by one in an array on the surface of a culture substrate, it is possible to employ physicochemical stimulation to analyze the mechanisms that are activated at the single-cell level. Further, the cells that adhere to the electrode substrate surface and the adsorption surfaces in the vicinity of the electrode substrate surface can be caused to separate by applying to the electrode a high-frequency wave potential (with, for example, a rectangular, sinusoidal, or triangular waveform) with a frequency falling within a range of 1 KHz to 10 MHz and a potential of ±1.0 V (vs. Ag/AgCl) or lower. However, the use of a phosphate buffer solution (not containing Ca2+ or Mg2+) as the culture solution during separation is desirable from the perspective of facilitating separation.
The present invention is described in greater detail through examples below.
An electrode and a three-electrode culture system were prepared by the following procedure.
1) A patterned electrode (1×1 cm) coated with indium [tin] oxide (ITO) to 6.3 to 7.5 Ω/cm2 in the center portion of a glass slide (upper left in
2) Using a diamond drill, a hole was opened in the edge portion of the glass slide and a connection was made between the wiring and the ITO electrode with an electrically conductive resin (Dotite, D-550, Fujikura Kasei (Ltd.)).
3) The chamber portion of a plastic chamber slide (Lab-tek chamber slide, 177410, NalgeNunc) was removed and silicon bond (Toshiba Silicone, TSE382-C clear), used for repairing aquariums, was employed to adhere it onto the ITO patterned electrode.
4) Holes were opened in two spots in the cover portion of the plastic chamber slide using a diamond drill, and connections were made with a platinum electrode and a silver/silver chloride electrode.
5) The cover and chamber were combined to complete a three-electrode culture system (photograph in upper right).
By the following procedure, extracellular matrix protein was caused to adsorb onto the surface of the electrode in the three-electrode culture system prepared in (1).
1) The ITO patterned electrode chamber was cleansed with ultrasound for five minutes in distilled water.
2) 1 M NaOH was charged to the ITO patterned electrode chamber and left standing for five minutes.
3) The ITO patterned electrode chamber was lightly washed with PBS(−) and then sterilized for five minutes on a clean bench under UV light.
4) Either 0.1 mg/mL of FITC-labeled poly-L-lysine (Sigma) in PBS(−) or 0.1 mg/mL of FITC-labeled collagen I (Sigma) in 0.01 M HCl aqueous solution was added to the chamber and the mixture was left standing at 37° C. for 10 minutes.
5) The interior of the chamber was lightly rinsed twice with PBS(−), after which the ITO patterned electrode chamber was stored at 4° C. or immediately employed for testing.
After causing the extracellular matrix protein to adsorb to the electrode surface in (2), the following procedure was used to apply a potential to cause the extracellular matrix protein to separate from the electrode surface.
1) A 5 mL quantity of PBS(−) was added to the ITO patterned electrode chamber.
2) The cover equipped with electrodes was put in place to prepare a three-electrode culture system.
3) A potentiostat (PS-14, Toho Technical Research) was used to apply a constant potential to cause separation of the extracellular matrix protein.
4) A light rinsing was conducted with PBS(−) following application of the constant potential. Subsequently, a confocal laser microscope (FV500, Olympus) was used to observe the distribution of the extracellular matrix protein.
A 1×105 cell/well quantity of animal cells (HeLa cells) suspended in serum-containing medium was inoculated into the chamber of the patterned electrode obtained by applying a constant potential of −0.3 V (vs. Ag/AgCl) in PBS(−) for 42 hours using FITC-labeled collagen I as the extracellular matrix protein in Example 1 and the cells were cultured for 24 hours. A −0.3 V constant potential was applied during the culture period (24 hours). Following application of the potential for 24 hours, the distribution of the cells and the extracellular matrix protein were observed by confocal laser microscopy (FV500, Olympus) and phase-contrast microscopy (CKX-41, Olympus).
Animal cells (PC12 cells) suspended in serum-containing medium were inoculated into the chamber of a patterned electrode obtained by applying a constant potential of +0.4 V (vs. Ag/AgCl) in PBS(−) for 66 hours using FITC-labeled collagen I as the extracellular matrix protein in Example 1 and the cells were cultured for 24 hours. A +0.4 V constant potential was applied during the culture period (24 hours). Following application of the potential for 24 hours, the distribution of the cells and the extracellular matrix protein were observed by confocal laser microscopy (FV500, Olympus) and phase-contrast microscopy (CKX-41, Olympus).
The water contact angle of the surface of the ITO electrode was measured when a constant voltage was being applied to the ITO electrode. The measurement was conducted by placing a water droplet on the surface of an ITO electrode in an electrolytic bath filled with cyclooctane and measuring the contact angle before and after the application of a constant potential (24 hours). The results are given in
The present invention is useful in fields relating to the cultivation of animal cells.
Number | Date | Country | Kind |
---|---|---|---|
2009-250516 | Oct 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/069271 | 10/29/2010 | WO | 00 | 7/12/2012 |