1. Field of the Invention
This invention is directed generally to screws for orthopedic use in humans, and specifically to screws made of cortical bone and method of manufacture thereof.
2. Description of the Related Art
The mammalian skeleton includes dense structural bone known as cortical bone. In humans, the femur, one of the larger long bones of the body, may have a cortical thickness as great as 6-8 mm. Larger mammals, which have been used to provide bone for surgical use in humans, have bones with cortical thicknesses substantially greater than those found in humans.
Screws for orthopedic use may be used for a multitude of purposes, including to join separated bone portions, and to attach various orthopedic implants, such as skeletal plates, to bones. Such screws have commonly been made of surgical quality metals (e.g. stainless steel, surgical grade titanium, and titanium alloys), ceramics and various plastics including some that are bioresorbable.
Metal screws typically remain in the body unless explanted by a later, separate operative procedure, and can inter alia potentially irritate tissue proximate the metal screws, shed ions harmful to the body, back-out or loosen causing injury within the body. Metal screws also can interfere with optimal visualization of the affected area by various diagnostic modalities such as x-rays, CAT scans or MRIs. On the other hand, resorbable screws made of bioresorbable plastic materials which can be absorbed by screws have often been limited by insufficient strength, an inability to be formed into a sharp thread-form, an unpredictable absorption rate, an inability to maintain sufficient structural integrity for an adequate period of time, the elicitation of an undesirable inflammatory response, and the potentially toxic effects of the degradation products of the material released by the bioresorption process.
There is therefore a need for a bone screw that combines the advantages of being sufficiently strong so as to be useful for skeletal fixation and for the attachment of various implants to the human skeleton, that additionally is resorbable within the body, and which does not have all the undesirable qualities encountered with screws of the past.
In accordance with the present invention, as embodied and broadly described herein, there are provided bone screws made of cortical bone for orthopedic use in humans. In a preferred embodiment, the bone screw of the present invention is made substantially of cortical bone and comprises at least a partially threaded shaft that is substantially solid, a leading end for introduction of the screw, and an opposite trailing end. The trailing end is adapted to cooperatively engage an instrument for turning the screw. The trailing end further comprises a head configured so as not to be able to pass through the same opening and passageway of an implant, for example, that the threaded shaft portion of the screw is capable of passing through for the purpose of preventing the continuing advancement of the screw. The screw head may take the form of an enlargement having either a greater diameter or a greater maximum dimension than that of the outer diameter of the threaded shaft portion of the screw. In the alternative, the proximal shaft portion at the trailing end of the screw may have a thread pitch in which the thread crests are closer together than the thread crests proximate the leading end. In a further refinement of this alternative, it is possible for the outside diameter of the thread to remain constant over the length of the screw shaft and for the thread profile to change from a cancellous thread-form for engaging cancellous bone to a machine thread-form at the trailing end to lock the screw at or within an orthopedic implant or at the cortex of a recipient bone itself.
The present invention is directed to an orthopedic bone screw made substantially of cortical bone, which is preferably but not necessarily of human origin. The screw of the present invention is substantially solid throughout its shaft portion and has a head portion at its trailing end configured to resist the further forward advancement of the screw when the screw is threaded through an appropriately sized opening, such as an opening in an orthopedic implant.
While the present invention is not so limited, the preferred bone is human obtained from the diaphyseal region of one of the large tubular bones of the skeleton, such as the femur or from a portion of a generally intramembraneously formed substantially cortical bone, such as may be found in the skull.
The present invention is further directed to locks for locking bone screws to an implant as an element separate from the screw or as part of the screw itself. The locks preferably also are made of cortical bone for locking the screws to an implant. The present invention also includes the combination of screws and locks with an orthopedic implant which also is preferably made of cortical bone.
The accompanying drawings, which are incorporated in and constitute a part of this specification, are by way of example only and not limitation, and illustrate several embodiments of the invention, which together with the description, serve to explain the principles of the invention.
The following description is intended to be representative only and not limiting and many variations can be anticipated according to these teachings, which are included within the scope of the present invention. Reference will now be made in detail to the preferred embodiments of this invention, examples of which are illustrated in the accompanying drawings.
Screws 100-1100 are shown in use with partial segments of orthopedic implants generally referred to by the reference numerals 150-850. As used in this application, orthopedic implants 150-850 can include various types of orthopedic implants such as, but not limited to, skeletal plates and interbody spinal fusion implants. Orthopedic implants 150-850 are preferably made of resorbable (bioresorbable) materials such as, but not limited to, cortical bone, plastics, and composite plastics. Suitable plastics may include those comprising lactides, galactides, glycolide, capronlactone, trimethylene carbonate, dioxanone in various polymers and/or combinations. Implants 150-850 may also comprise any other material suitable for surgical implantation into the human body including various metals, ceramics, and non-resorbable plastics and composites.
Screws 100-1100 each have a shaft that is threaded at least in part preferably having a tip at its leading end and may have a screw head at its trailing end. The screw head may or may not be protuberant, but is adapted to prevent the forward movement of the screw once the head is fully engaged to the orthopedic implants 150-850 or an appropriate opening in a bone.
Screws 100-1100 may be further secured to the orthopedic implants 150-850 by locks that are preferably made of cortical bone and may also be made of resorbable materials.
As shown in
As shown in
As shown in
Lock 130 is preferably circumferentially threaded with threads 136 as shown in
Alternatively, by any number of structural configurations, such as for example an interference fit between screw head 120 and implant opening 140, or by way of more deeply threading opening 140, or by flattening the top of the screws and making the circumferential perimeter flush to lock 130, or by allowing lock 130 to contact screw head 120, later motion of screw 100 can be prevented. Stated differently, while the present example shows how to allow for variability in the screw's placement and provides for later movement of the screw as might occur with settling, in the alternative, the path of screw 100 through implant 150 can be rather narrowly defined, and any angular motion of screw 100 relative to implant 150 can be prevented.
As shown in
As shown in
In a preferred embodiment, when lock 330 is one-quarter turn short of being fully tightened, openings 340 are open and unobstructed at lock 330 to permit bone screws 300 to be inserted therein. After screws 300 have been installed, lock 330 can be further tightened by turning it 90 degrees until the shaft of the lock 330 reaches the lower most internal threads 318, thereby allowing the locking screw to be solidly tightened to implant 350.
While screws 300 have freedom to move closer together, screws 300 cannot back out of implant 350 with lock 330 in place. As previously discussed, while this is considered preferable, implant 350 can be so constructed to prevent any angular freedom of screw 300 relative to implant 350. Further, implant 350 and lock 330 can be configured to cooperate to prevent any backward motion of screw head 320.
As shown in
Shaft 402 has a thread 410 for engaging bone. Trailing end 408 has a screw head 420 having an enlarged portion having a diameter greater than the outer diameter of the threaded portion of shaft 402 and greater than opening 440 in implant 450 so as to prevent passage therethrough. Bone screw 400 is prevented from backing out by screw lock 430. Lock 430 is in the form of a disc with a threaded side wall 462 capable of threadably engaging threads 464 within common opening 460. When screws 400 are locked to implant 450, screws 400 can be allowed some angular motion relative to implant 450. The screw lock 430 has a tool receiving recess for engaging the end of a screw driver for installing the screw lock 430. Screw lock 430 and implant 450 are preferably made of cortical bone.
Distal to heads 420 of screws 400 is a smooth shaft portion 458 of a lesser cross sectional dimension than opening 440 which, in combination with the available space within common opening 460 between screw head 420 and lock 430, allows for bone screw 400 to operate as a lag screw, but, nevertheless, be capable of some variability in its positioning and to still further be capable of some ability to move closer to implant 450.
As shown in
Lock 530 differs from lock 430 in that extending from head portion 520 is a threaded shaft 536 for threading into internal threads 518 between opposed openings 540 within common opening 560 of implant 550. Unlike the mechanism illustrated in
As shown in
As shown in
Unlike screw 600, screw 700 does not have an additional enlarged head portion such as portion 620 of screw 600, but rather relies on flange portion 716 of opening 740 to stop the further progression of the screw head 720 through the implant and to allow for head 720 to be securely tightened to the trailing end of implant 750. Screw head 720 can preferably have a cruciate recess 722 for receiving the end of screw driver.
As can be appreciated from
The implant screw locking system of
Also shown in
Tool 956 may be manual or powered. Tool 956 preferably has a push-down inner shaft connected to engaging projection 886 so that in use, the surgeon will push down on tool 956 and rotate to insert screw 900. Alternatively, if tool 956 is electrically powered, an inner shaft connected to engaging projection 886 may be made to rotate upon the surgeon pushing down on the tool after proper positioning. Although a tool with a push down inner shaft is preferred, it is not required. For example, engaging portion 886 may be fixedly attached within tool 956.
Referring to
The method further includes forming a plate portion 692′ of the implant. Plate 692′ has a length adapted to overlap and attach to at least a portion of each of the two adjacent vertebral bodies when body portion 690′ of the implant is inserted across the disc space. Rate 692′ is connected at least in part to body portion 690′ of the implant. Rate 692′ has a lower facing surface adapted to be oriented toward the adjacent vertebral bodies and an upper facing surface opposite the lower facing surface. Rate 692′ has at least two fastener receiving openings extending from the upper facing surface through the lower facing surface. Each of the fastener receiving openings is adapted to receive a fastener 600′ to attach plate 692′ to a respective one of the two adjacent vertebral bodies V1, V2. At least a portion of plate 692′ is formed from a bioresorbable material which is at least in part cortical bone.
For the embodiments of bone screws described herein, by way of example, the bone screws of the present invention for use in the lumbar spine would have an outer diameter in the range of approximately 4 to 8.5 mm, with approximately 5 to 7.5 mm being preferred; and an overall length in the range of approximately 20 to 40 mm, with approximately 25 to 30 mm being preferred.
For use in the cervical spine, an outer diameter in the range of approximately 3 to 6 mm, with approximately 4 to 5 mm being preferred; and a length in the range of approximately 10 to 20 mm, with approximately 12 to 16 mm being preferred.
By way of example, a bone screw of the present invention for use in the lumbar spine could have a root diameter of approximately 5 mm and an outer diameter of approximately 7.5 mm; a thread pitch of approximately 3 mm distally and at the trailing end by use of a multipoint lead, a triple wound thread having a pitch of approximately 1 mm. Such a screw could be threaded through an opening in a material having a thickness less than the 3 mm of the distal screw pitch and an opening greater than the root diameter, but less than the outer diameter, until such screw was threaded into the point where the three point lead at the trailing end of the screw engaged the threaded opening in the material. At which point, the screw would be lockably engaged into the material as the wall thickness of the material into which the screw was being threaded would no longer fit between the individual threads of the machine threaded portion of the screw.
Alternatively, the pitch of the screws could progressively decrease towards the trailing end, or the threads thicken to the same effect. In a further embodiment of the present invention, the head of the screw could be slightly flared, with or without expansion/compression slots therethrough, such that when the head is tightened into the implant, the head is compressed and wedged into a high interference fit to the implant stopping the further forward motion of the screw and locking it therein.
These screws may be cut from a single thickness of cortex as distinct from cutting transversely across a long bone so as to include a significant hollow within the screw as a result of the medullary canal of that long bone.
Referring to
Referring to
As illustrated in
In a third step, a machine appropriate for machining a screw such as a lathe, a Swiss milling machine, a CNC, a thread whirling machine, or similar device is used to machine the screw out of the cortical bone to specific dimensions. The bone screw is then inspected for structural integrity and dimensional tolerances.
It should be appreciated that while screws of cortical bone may have conformations similar to prior art screws made of metal without deviating from the teachings of the present invention, in the preferred embodiments, consideration has been given to the considerable differences in the material properties of these very different materials. Cortical bone as a material, while much stronger than cancellous bone, is profoundly weaker than the metals in common use today for the fabrication of screws such as stainless steels and titanium alloys. To that end, the preferred embodiments of the present invention have generally enlarged root diameters to increase their strength overall and to withstand the torques generated on insertion which may be further mitigated by the prior use of a tap. Further stress risers are avoided by avoiding sharp corners and unradiused edges. Further, it may be desirable to have the root diameter be generally increased nearer to the head end of the screws. The root diameter may progress from tip to head, flair beneath the head, or otherwise increase. The root diameter should ideally flow into the head rather than having a sharp step off. The thread itself should be kept strong by not unduly extending the height of the thread relative to the width of the base, or thinning the profile of the thread. The valleys between the turns of the thread are again preferably rounded rather than notched. Similarly the driver engaging area in the head portion of the screw should be kept substantial and have rounded rather than square ended slots where slots are used.
In a fourth step, the screw of cortical bone may be frozen for storage until use. Measures are provided for providing for the storability of the screws such as freezing, freeze drying.
In another, the donor is tested for communicable diseases to assure the safety of the bone. Alternatively, donor testing may be performed prior to the steps of harvesting bone from the donor.
In a sixth step, cultures are taken during the above procedure, but prior to the bone being frozen, to assure the safety of the bone.
In an alternative method of manufacturing the present invention, sterility may or may not be a goal during the manufacturing of the screw and the screw is subjected to a sterilization process including, but not limited to, exposure to radiation, freeze drying, denaturing, cleaning, chemical sterilization including the use of sterilizing liquids and/or gases.
In a further step in the manufacture of the screws of the present invention, the screw may be immersed in, or coated with, biologically active chemical agents included, but not limited to, antibiotics, or substances to promote bone formation such as bone morphogenetic proteins, mineralizing proteins, or genetic material coding for the production of bone (directly or indirectly).
In a further step in the manufacturing process which may occur before or after freezing, or if not frozen then before or after sterilization the screw is packaged. In a preferred embodiment, the sterile screw is contained within a sterile container, which is itself contained within an internally sterile second container.
In a further step, each screw package comprises identifying information such as a tracking number by which the donor can be identified if need be, the identity of the manufacturer, the date of expiration by which the screw must be used, and the length and at least nominal outside diameter of the screw and if frozen the requirements for proper storage of the screw. It should be appreciated that the present invention is not limited by the specific form of the thread, and includes both machine and wood type threads. Also, the present invention does not require that the thread be fully continuous and/or of constant height. For example, where it is desirable to form a screw of the largest possible maximum outside diameter, rather than uniform outside diameter it may be desirable to then form the screw from a longitudinal diaphyseal strip selected to be wider than it is thick such that when machined the resultant screw will have a root diameter that is circular in cross section and an outside diameter that in cross section will have opposed arcuate portions, but that is incompletely circular.
It is appreciated that the present invention is not directed just to bone screws, but also to the locks themselves made of bone for locking the bone screw which may also take the form of a threaded member or even of a screw itself. The locks and bone screws of the present invention may be combined with various orthopedic and spinal plates and interbody spinal fusion implants. The implants themselves, that is the plate or the fusion implant are preferably also made of a bioresorbable material including, but not limited to, human cortical bone.
It is appreciated that bone screws of the present invention are formed along the longitudinal axis of a long bone or from a single cortex rather than being formed by cutting transversely through a long bone so as to include the opposite cortices of a long bone, that is both the near and far cortices of a tubular bone, as well as the side walls. The screws and locks of the present invention are a manufactured device that would essentially be a machined orthopedic screw, machined from a single length of cortex if of a long bone or from the thickness of an intramembraneously formed bone such as calvarium. The present invention is directed to a bone screw made substantially of cortical bone having an insertion end, a shaft at least in part threaded and a head having either a greater dimension than the outer diameter of the threaded shaft or functional means to resist the continuing forward advancement of the screw when properly utilized. By way of example, a screw made of cortical bone without a protuberant head and a thread pitch that is more tightly wound at its trailing end than at its leading end. The present invention is also specifically directed to bone screws that are not hollow through the shaft portion of the screw that are made substantially of cortical bone and which is machined and manufactured.
Moreover, the configuration of the thread of the screws is not limited to the configuration shown in the drawings but may also have any other configuration suitable for its intended purpose.
While the present invention has been described with respect to the preferred embodiments, it is appreciated that variations of the embodiments are possible without departing from the scope of the present invention.
This application is a continuation of application Ser. No. 10/933,667, filed Sep. 3, 2004, now U.S. Pat. No. 7,931,840, which is a divisional of application Ser. No. 09/566,055, filed May 5, 2000, now U.S. Pat. No. 7,094,239, which claims benefit of U.S. Provisional Application No. 60/132,671, filed May 5, 1999, incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3741205 | Markolf et al. | Jun 1973 | A |
4175555 | Herbert | Nov 1979 | A |
4537185 | Stednitz | Aug 1985 | A |
4539981 | Tunc | Sep 1985 | A |
4743256 | Brantigan | May 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4794918 | Wolter | Jan 1989 | A |
5013316 | Goble et al. | May 1991 | A |
5015247 | Michelson | May 1991 | A |
5053036 | Perren et al. | Oct 1991 | A |
5084050 | Draenert | Jan 1992 | A |
5085660 | Lin | Feb 1992 | A |
5088869 | Greenslade | Feb 1992 | A |
5108399 | Eitenmuller et al. | Apr 1992 | A |
5129906 | Ross et al. | Jul 1992 | A |
5167664 | Hodorek | Dec 1992 | A |
5169400 | Muhling et al. | Dec 1992 | A |
5201733 | Etheredge, III | Apr 1993 | A |
5217462 | Asnis et al. | Jun 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5360448 | Thramann | Nov 1994 | A |
5360450 | Giannini | Nov 1994 | A |
5364400 | Rego, Jr. et al. | Nov 1994 | A |
5405391 | Henderson et al. | Apr 1995 | A |
5417533 | Lasner | May 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5584836 | Ballintyn et al. | Dec 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5868749 | Reed | Feb 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5968047 | Reed | Oct 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
5997541 | Schenk | Dec 1999 | A |
6030162 | Huebner | Feb 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6045554 | Grooms et al. | Apr 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6048204 | Klardie et al. | Apr 2000 | A |
6048344 | Schenk | Apr 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6099529 | Gertzman et al. | Aug 2000 | A |
6120502 | Michelson | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6129730 | Bono et al. | Oct 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6162225 | Gertzman et al. | Dec 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6206923 | Boyd et al. | Mar 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6235034 | Bray | May 2001 | B1 |
6248108 | Tormala et al. | Jun 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6620163 | Michelson | Sep 2003 | B1 |
7063701 | Michelson | Jun 2006 | B2 |
7063702 | Michelson | Jun 2006 | B2 |
7094239 | Michelson | Aug 2006 | B1 |
7931840 | Michelson | Apr 2011 | B2 |
20050033433 | Michelson | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20110125267 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
60132671 | May 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09566055 | May 2000 | US |
Child | 10933667 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10933667 | Sep 2004 | US |
Child | 12931258 | US |