METHOD FOR PREPARING ANTIGEN-BINDING UNIT

Information

  • Patent Application
  • 20230183322
  • Publication Number
    20230183322
  • Date Filed
    May 12, 2021
    3 years ago
  • Date Published
    June 15, 2023
    11 months ago
Abstract
A method for preparing an antibody, relating to the field of immunology and the field of molecular virology, in particular to the field of diagnosis, prevention and treatment of novel coronavirus. Specifically, provided are a monoclonal antibody against novel coronavirus, and a composition (e.g., a diagnostic agent and a therapeutic agent) containing the antibody. Also provided are the preparation, screening, and use of the antibody.
Description
TECHNICAL FIELD

The present invention relates to the field of immunology and the field of molecular virology, in particular to the field of diagnosis, prevention and treatment of novel coronavirus. Specifically, the present invention relates to an anti-novel coronavirus antibody and a composition (for example, a diagnostic agent and a therapeutic agent) containing same. In addition, the present invention also relates to the screening, preparation, and use of the antibody. The antibody of the present invention can be used for diagnosing, preventing and/or treating novel coronavirus infections and/or diseases (for example, novel coronavirus pneumonia) caused by the infections.


BACKGROUND ART

As a single-stranded RNA virus, the novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is the pathogen of novel coronavirus pneumonia (coronavirus disease 2019, COVID-19), and is a member of the Coronaviridae family, alongside the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic in 2002-2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in 2012. Coronavirus is a relatively large virus with round, oval or pleomorphic particles having a diameter of 50-200 nm. Coronavirus is an enveloped virus. The capsid of the virus is enveloped with a lipid envelope, on which a wide spike protein (Spike, S protein, SEQ ID No: 1460) is arranged forming a sun halo shape. Studies have confirmed that the S protein is located on the surface of the novel coronavirus SARS-CoV-2, and can bind to a receptor, angiotensin converting enzyme 2 (ACE2) molecule of a host cell via a receptor binding domain (RBD) contained therein during the virus infection of the host, thereby initiating the fusion of the viral membrane with the host cell membrane and causing the virus to infect the host cell.


So far, a neutralizing antibody has been proved to be an effective method for treating viral diseases. In general, upon stimulated by an antigen, a B lymphocyte in a patient is activated and then transformed and differentiated into a variety of different cells, and antibodies are produced. According to existing researches and reports, there is an anti-novel coronavirus antibody in the peripheral blood of patients recovered from novel coronavirus pneumonia, which is produced and secreted by activated B cells. However, there are a variety of B cells in the plasma of the recovered patients, and the binding activities and neutralizing titers of antibodies produced by different B cells are also different. So far, there is no study reporting an anti-novel coronavirus antibody with a high binding activity and/or a high neutralizing activity.


Therefore, there is a need to develop an antibody with a high binding activity and/or a high neutralizing activity against novel coronavirus SARS-CoV-2, thereby providing effective means for diagnosing, preventing and/or treating novel coronavirus infections.


SUMMARY OF THE INVENTION

The following technical solutions provided herein meet the above-mentioned needs and provide relevant advantages.


In one aspect, provided herein is a method for providing an antigen-binding unit against a predetermined antigen, comprising (a) obtaining a blood sample from an individual who is confirmed to carry the antigen at a first time and confirmed not to carry the antigen or to carry a reduced amount of the antigen at a second time after the first time; (b) enriching B cells in the blood sample; (c) single-cell transcriptome VDJ sequencing of a sample comprising a plurality of enriched B cells of the individual to provide clonotype information of the antigen-binding unit; and (d) confirming the antigen-binding unit against the antigen based on the clonotype information.


In some embodiments, the step (b) in the method further comprises selecting memory B cells in the blood sample.


In some embodiments, the method further comprises performing one, two, three or four of the following steps before the step (c), so as to exclude at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the enriched B cells: selecting CD27+ B cells; excluding naïve B cells; excluding depleted B cells; excluding non-B cells; and selecting cells that can bind to the antigen.


In some embodiments, the method further comprises performing one, two, three, four, five or more of the following steps after the step (c), so as to exclude at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the clonotype of the antigen-binding unit: selecting a clonotype with enrichment frequency higher than 1; selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4; excluding non-B cell clonotypes by cell typing; excluding naïve B cell clonotypes by cell typing; excluding non-switched B cells by cell typing; excluding depleted B cell clonotypes by cell typing; excluding mononuclear cells by cell typing; excluding dendritic cells by cell typing; excluding T cells by cell typing; excluding natural killer cells by cell typing; and excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%.


In some embodiments, the method further comprises selecting one, two, three, four, five or more of the following steps after the step (c), so that at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the selected clonotypes are confirmed as the antigen-binding unit in the step (d): selecting a clonotype with enrichment frequency higher than 1; selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4; excluding non-B cell clonotypes by cell typing; excluding naïve B cell clonotypes by cell typing; excluding depleted B cell clonotypes by cell typing; excluding mononuclear cells by cell typing; excluding dendritic cells by cell typing; excluding T cells by cell typing; excluding natural killer cells by cell typing; and excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%.


In some embodiments, the method further comprises performing light and heavy chain matching according to the obtained sequence information.


In some embodiments, the method further comprises performing lineage analysis according to the obtained sequence information.


In some embodiments, the second time is about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days and 30 days after the first time.


In some embodiments, the individual is confirmed not to carry the antigen at the second time. In some embodiments, the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at the second time. In some embodiments, the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at a plurality of different second times.


In some embodiments, the intervals between the plurality of second times are about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days and 30 days.


In some embodiments, the individual is confirmed to carry a gradually reduced amount of the antigen at a plurality of different second times.


In some embodiments, the antigen is a viral antigen. In some embodiments, the antigen is a novel coronavirus (SARS-CoV-2). In some embodiments, the antigen is a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2). In some embodiments, the method further comprises comparing the clonotype information with one or more reference sequences. In some embodiments, the reference sequence is an antibody or a fragment thereof that specifically binds to the antigen. In some embodiments, the reference sequence specifically binds to SARS-CoV. In some embodiments, the reference sequence specifically binds to a receptor binding domain (RBD) of an S protein of SARS-CoV. In some embodiments, the reference sequence is an antibody or a fragment thereof, and the comparison comprises predicting the CDR3H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR3H structure of the antibody or the fragment thereof.


In some embodiments, the method further comprises expressing the antigen-binding unit in a host cell. In some embodiments, the method further comprises purifying the antigen-binding unit. In some embodiments, the method also comprises evaluating the ability of the antigen-binding unit to bind to the antigen.


In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the antigen-binding unit binds to the antigen at a rate higher than the rate of dissociation from the antigen.


In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the antigen-binding unit binds to the antigen at an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


In another aspect, provided herein is a method for preparing an antigen-binding unit against a predetermined antigen, comprising identifying the antigen-binding unit against the antigen according to the method of any one of the preceding claims, expressing the antigen-binding unit in a host cell, and harvesting and purifying the antigen-binding unit.


In one aspect, provided herein is an antigen-binding unit comprising a heavy chain variable region (VH) and a light chain variable region (VL), wherein the heavy chain variable region comprises VH CDR1, VH CDR2 and VH CDR3, and the light chain variable region comprises VL CDR1, VL CDR2 and VL CDR3, wherein the VH CDR3 comprises a sequence selected from SEQ ID NOs: 1-360 and 2971-3005 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1-360 and 2971-3005, and/or wherein the VL CDR3 comprises a sequence selected from SEQ ID NOs: 361-720 and 3076-3110 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 361-720 and 3076-3110.


In some embodiments, the antigen-binding unit binds to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


In some embodiments, the antigen-binding unit neutralizes the novel coronavirus (SARS-CoV-2) with an ICso of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml.


In some embodiments, the VH CDR1 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1461-1820 and 2901-2935. In some embodiments, the VH CDR1 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935. In some embodiments, the VH CDR1 of the antigen-binding unit comprises a sequence comprising 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1461-1820 and 2901-2935. In some embodiments, the VH CDR1 of the antigen-binding unit comprises the same sequence as CDR1 contained in SEQ ID NOs: 721-1080 and 3111-3145.


In some embodiments, the VH CDR2 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1821-2180 and 2936-2970. In some embodiments, the VH CDR2 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970. In some embodiments, the VH CDR2 of the antigen-binding unit comprises a sequence comprising 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1821-2180 and 2936-2970. In some embodiments, the VH CDR2 of the antigen-binding unit comprises the same sequence as CDR2 contained in SEQ ID NOs: 721-1080 and 3111-3145.


In some embodiments, the VL CDR1 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2181-2540 and 3006-3040. In some embodiments, the VL CDR1 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040. In some embodiments, the VL CDR1 of the antigen-binding unit comprises a sequence comprising 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2181-2540 and 3006-3040. In some embodiments, the VL CDR1 of the antigen-binding unit comprises the same sequence as CDR1 contained in SEQ ID NOs: 1081-1440 and 3146-3180.


In some embodiments, the VL CDR2 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2541-2900 and 3041-3075. In some embodiments, the VL CDR2 of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075. In some embodiments, the VL CDR2 of the antigen-binding unit comprises a sequence comprising 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2541-2900 and 3041-3075. In some embodiments, the VL CDR2 of the antigen-binding unit comprises the same sequence as CDR2 contained in SEQ ID NOs: 1081-1440 and 3146-3180.


In some embodiments, the VH of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145.


In some embodiments, the VL of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180.


In another aspect, provided herein is an antigen-binding unit comprising a heavy chain variable region (VH) and a light chain variable region (VL), wherein the heavy chain variable region comprises VH CDR1, VH CDR2 and VH CDR3, and the light chain variable region comprises VL CDR1, VL CDR2 and VL CDR3, wherein the VH CDR1 comprises a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1461-1820 and 2901-2935, or the same sequence as CDR1 contained in SEQ ID NOs: 721-1080 and 3111-3145, wherein the VH CDR2 comprises a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1821-2180 and 2936-2970, or the same sequence as CDR2 contained in SEQ ID NOs: 721-1080 and 3111-3145, and wherein the VH CDR3 comprises a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1-360 and 2971-3005, or the same sequence as CDR3 contained in SEQ ID NOs: 721-1080 and 3111-3145, and/or wherein the VL CDR1 comprises a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2181-2540 and 3006-3040, or the same sequence as CDR1 contained in SEQ ID NOs: 1081-1440 and 3146-3180, the VL CDR2 comprises a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2541-2900 and 3041-3075, or the same sequence as CDR2 contained in SEQ ID NOs: 1081-1440 and 3146-3180, and the VL CDR3 comprises a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 361-720 and 3076-3110, or the same sequence as CDR3 contained in SEQ ID NOs: 1081-1440 and 3146-3180.


In another aspect, provided herein is an antigen binding unit comprising a heavy chain variable region (VH) and a light chain variable region (VL), wherein the heavy chain variable region comprises VH CDR1, VH CDR2 and VH CDR3, and the light chain variable region comprises VL CDR1, VL CDR2 and VL CDR3, wherein the VH CDR1 comprises a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1461-1820 and 2901-2935, wherein the VH CDR2 comprises a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1821-2180 and 2936-2970, and wherein the VH CDR3 comprises a sequence selected from SEQ ID NOs: 1-360 and 2971-3005 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1-360 and 2971-3005, and/or wherein the VL CDR1 comprises a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2181-2540 and 3006-3040, the VL CDR2 comprises a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 2541-2900 and 3041-3075, and the VL CDR3 comprises a sequence selected from SEQ ID NOs: 361-720 and 3076-3110 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 361-720 and 3076-3110.


In some embodiments, the VH of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 721-1080 and 3111-3145. In some embodiments, the VH of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145.


In some embodiments, the VL of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NOs: 1081-1440 and 3146-3180. In some embodiments, the VL of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180.


In some embodiments, the antigen-binding unit binds to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


In some embodiments, the antigen-binding unit neutralizes the novel coronavirus (SARS-CoV-2) with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml.


In another aspect, provided herein is an antigen-binding unit comprising a heavy chain variable region (VH) and a light chain variable region (VL), wherein the VH comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145, and/or wherein the VL comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180.


In some embodiments, the antigen-binding unit binds to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


In some embodiments, the antigen-binding unit neutralizes the novel coronavirus (SARS-CoV-2) with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml.


In some embodiments, the antigen-binding unit further comprises a heavy chain constant region (CH). In some embodiments, the CH of the antigen-binding unit comprises a sequence of SEQ ID NO: 1457 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NO: 1457. In some embodiments, the CH of the antigen-binding unit comprises a sequence selected from SEQ ID NO: 1457. In some embodiments, the CH of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NO: 1457. In some embodiments, the CH of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NO: 1457.


In some embodiments, the antigen-binding unit further comprises a light chain constant region (CL). In some embodiments, the CL of the antigen-binding unit comprises a sequence of SEQ ID NO: 1458 or a sequence comprising one or more amino acid additions, deletions, or substitutions compared with SEQ ID NO: 1458. In some embodiments, the CL of the antigen-binding unit comprises a sequence selected from SEQ ID NO: 1458. In some embodiments, the CL of the antigen-binding unit comprises a sequence comprising 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid additions, deletions, or substitutions compared with SEQ ID NO: 1458. In some embodiments, the CL of the antigen-binding unit comprises a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NO: 1458.


In another aspect, provided herein is an isolated nucleic acid molecule encoding the antigen-binding unit of the present invention as defined above.


In another aspect, provided herein is a vector, comprising the isolated nucleic acid molecule as defined above. The vector of the present invention can be a cloning vector and can also be an expression vector. In some embodiments, the vector of the present invention is for example, a plasmid, a cosmid, a phage or the like.


In another aspect, further provided is a host cell comprising the isolated nucleic acid molecule or the vector of the present invention. Such host cells include, but are not limited to, a prokaryotic cell, for example an Escherichia coli cell, and a eukaryotic cell such as a yeast cell, an insect cell, a plant cell, and an animal cell (such as, a mammal cell, e.g., a mouse cell, a human cell, etc.). The cell of the present invention can also be a cell line, for example, an HEK293 cell.


In another aspect, further provided is a method for preparing the antigen-binding unit of the present invention, comprising culturing the host cell of the present invention under suitable conditions, and recovering the antigen-binding unit of the present invention from a cell culture.


In another aspect, provided herein is a composition, comprising the antigen-binding unit, the isolated nucleic acid molecule, the vector or the host cell as described above.


In another aspect, provided herein is a kit comprising the antigen-binding unit of the present invention. In some embodiments, the antigen-binding unit of the present invention further comprises a detectable label. In some embodiments, the kit further comprises a second antibody, which specifically recognizes the antigen-binding unit of the present invention. Preferably, the second antibody further comprises a detectable label. Such detectable labels are well known to a person skilled in the art and include, but are not limited to, a radioisotope, a fluorescent material, a luminescent material, a colored material, an enzyme (e.g., horseradish peroxidase), etc.


In another aspect, provided herein is a method for detecting presence of a novel coronavirus, an S protein thereof or a RBD of the S protein, or a level thereof in a sample, comprising using the antigen-binding unit of the present invention. In some embodiments, the antigen-binding unit of the present invention further comprises a detectable label. In another preferred embodiment, the method further comprises detecting the antigen-binding unit of the present invention by using a second antibody carrying a detectable label. The method can be used for a diagnostic purpose (for example, the sample is a sample from a patient), or for a non-diagnostic purpose (for example, the sample is a cell sample rather than a sample from a patient).


In another aspect, provided herein is a method for diagnosing whether a subject is infected with a novel coronavirus, comprising: using the antigen-binding unit of the present invention to detect presence of a novel coronavirus, or an S protein thereof or a RBD of the S protein in a sample from the subject. In some embodiments, the antigen-binding unit of the present invention further comprises a detectable label. In another preferred embodiment, the method further comprises detecting the antigen-binding unit of the present invention by using a second antibody carrying a detectable label.


In another aspect, provided is the use of the antigen-binding unit of the present invention in the preparation of a kit, wherein the kit is used for detecting presence of a novel coronavirus, an S protein thereof or a RBD of the S protein, or a level thereof in a sample, or for diagnosing whether a subject is infected with the novel coronavirus.


In another aspect, provided herein is a pharmaceutical composition, comprising the antigen-binding unit of the present invention, and a pharmaceutically acceptable carrier and/or excipient.


In another aspect, provided herein is a method for neutralizing virulence of a novel coronavirus in a sample, comprising contacting the sample comprising the novel coronavirus with the antigen-binding unit of the present invention. Such methods can be used for therapeutic purposes, or for non-therapeutic purposes (for example, the sample is a cell sample, rather than a sample of or from a patient).


In another aspect, provided is the use of the antigen-binding unit of the present invention for preparing a drug, wherein the drug is used for neutralizing virulence of a novel coronavirus in a sample. In another aspect, provided herein is the antigen-binding unit as described above for neutralizing virulence of a novel coronavirus in a sample.


In another aspect, provided is the use of the antigen-binding unit of the present invention in the preparation of a pharmaceutical composition, wherein the pharmaceutical composition is used for preventing or treating novel coronavirus infections or diseases related to the novel coronavirus infections (e.g., novel coronavirus pneumonia) of a subject. In another aspect, provided herein is the antigen-binding unit as described above, for preventing and treating novel coronavirus infections or diseases related to the novel coronavirus infections (e.g., novel coronavirus pneumonia) of a subject.


In another aspect, provided herein is a method for preventing and treating novel coronavirus infections or diseases related to the novel coronavirus infections (e.g., novel coronavirus pneumonia) of a subject, comprising administering to a subject in need thereof a prophylactically or therapeutically effective amount of the antigen-binding unit of the present invention, or the pharmaceutical composition of the present invention.


In some embodiments, the subject is a mammal, for example human.


The antigen-binding unit of the present invention, or the pharmaceutical composition of the present invention can be administered to a subject by any suitable route of administration. Such routes of administration include, but are not limited to, oral, buccal, sublingual, topical, parenteral, rectal, intravaginal, or nasal routes.


The drug and pharmaceutical composition provided in the present invention can be used alone or in combination, or can be used in combination with other pharmacologically active agents (e.g., an antiviral drug, such as favipiravir, remdesivir and interferon). In some embodiments, the pharmaceutical composition also contains a pharmaceutically acceptable carrier and/or excipient.


In another aspect, provided herein is a conjugate comprising the antigen-binding unit as described above, wherein the antigen-binding unit is conjugated to a chemically functional moiety. In some embodiments, the chemically functional moiety is selected from a radioisotope, an enzyme, a fluorescent compound, a chemiluminescent compound, a bioluminescent compound, a substrate, a cofactor and an inhibitor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C exemplarily show SDS-PAGE detection results of antigen-binding units ABU-174, ABU-175 and ABU190.



FIGS. 2A-2E exemplarily show measurement results regarding the affinity of antigen-binding units ABU-174 (A), ABU-175 (B), ABU190 (C), ABU297 (D) and ABU367 (E) for the S protein by using SPR technology.



FIGS. 3A-3C exemplarily show measurement results regarding the neutralizing inhibitory activity of antigen-binding units ABU-174 (A), ABU-175 (B) and ABU190 (C) against SARS-CoV-2 pseudovirus.



FIG. 4 exemplarily shows CPE measurement results regarding the neutralizing inhibitory activity of ABU-175 antibody against SARS-CoV-2 euvirus.



FIG. 5 exemplarily shows PRNT measurement results of the neutralizing inhibitory activity of antigen-binding units ABU-174, ABU-175 and ABU190 against SARS-CoV-2 euvirus.



FIG. 6 is a schematic diagram of an exemplary method of the present invention for providing an antigen-binding unit.



FIG. 7 shows a summary of results of sequencing of B cells following antigen enrichment.



FIG. 8 shows 25 clonotypes with the highest enrichment degree from the same patient (A) and the distribution of Ig classes for the clonotypes of the patient (B).



FIG. 9 shows a graph of cell typing for productive B cells with matched light and heavy chains in batch 5 as determined based on gene expression.



FIG. 10 shows clonotype analysis of B cells in batch 5 as screened by the above-mentioned standards.



FIG. 11A shows the number of antibodies meeting the above-mentioned standards and produced after S protein enrichment and RBD enrichment as described in Example 1, respectively, and ELISA results and Kd values of the antibodies binding to RBD and IC50 values of the antibodies for neutralizing pseudoviruses as determined herein. FIG. 11B shows ELISA results and Kd values of clonotypes (not meeting the following standards: not comprising IgG2, variable region mutation rate >2%, or comprising memory B cells) binding to RBD and IC50 values for neutralizing pseudoviruses.



FIG. 12 shows the crystal structure of antibody m396 Fab complexed with SARS-CoV-RBD (PDB ID: 2DD8).





DETAILED DESCRIPTION OF EMBODIMENTS

While preferred embodiments of the present invention have been shown and described herein, it would have been obvious to a person skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to a person skilled in the art without departing from the present invention. It should be understood that various alternatives to the embodiments of the present invention described herein may be employed during practicing the processes described herein. It is intended that the following claims define the scope of the present invention so as to encompass methods and structures within the scope of these claims, and equivalents thereof.


When a numerical range is provided, it should be understood that each intervening value between the upper and lower limits of that range (accurate to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise) and any other stated or intervening values within the stated range are encompassed within the present invention. The upper and lower limits of these smaller ranges may be independently included in the smaller ranges, and are also encompassed within the present invention, except for any specifically excluded limit within the stated range. Where the stated range encompasses one or both limits, ranges excluding either or both of those limits included therein are also encompassed within the present invention.


As used herein, the terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymers can be linear, cyclic or branched, can comprise modified amino acids, and can be interrupted by non-amino acids. The terms also include an amino acid polymer that has been modified; for example, by sulfation, glycosylation, lipidation, acetylation, phosphorylation, iodination, methylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenylation, transfer RNA-mediated addition of an amino acid to a protein (e.g., arginylation), ubiquitination, or any other manipulation, such as conjugation to a labeled component. As used herein, the term “amino acid” refers to natural and/or non-natural or synthetic amino acids, including glycine and a D or L optical isomer, as well as an amino acid analog and a peptidomimetic. A polypeptide or amino acid sequence “derived from” an specified protein refers to the origin of the polypeptide. Preferably, the polypeptide has an amino acid sequence that is substantially identical to the amino acid sequence of the polypeptide encoded in a sequence, or a portion thereof, wherein the portion consists of at least 10-20 amino acids or at least 20-30 amino acids or at least 30-50 amino acids, or can be identified immunologically with the polypeptide encoded in the sequence. The term also includes a polypeptide expressed by a specified nucleic acid sequence. As used herein, the term “domain” refers to a portion of a protein that is physically or functionally distinct from other portions of the protein or peptide. A physically defined domain includes an amino acid sequence which is extremely hydrophobic or hydrophilic, such as those membrane or cytoplasm-bound sequences. A domain can also be defined by internal homology that results, for example, from gene duplication. Functionally defined domains have distinct biological functions. For example, an antigen binding domain refers to the portion of an antigen-binding unit or antibody that binds to an antigen. A functionally defined domain does not need to be encoded by a contiguous amino acid sequence, and a functionally defined domain can contain one or more physically defined domains.


As used herein, the term “amino acid” refers to natural and/or non-natural or synthetic amino acids, including but not limited to a D or L optical isomer, as well as an amino acid analog and a peptidomimetic. Standard one-letter or three-letter code is used to designate an amino acid. In the present invention, an amino acid is generally represented by one-letter and three-letter abbreviations well known in the art. For example, alanine can be represented by A or Ala.


As used herein, the terms “B lymphocyte” and “B cell” are used interchangeably, referring to one of the lymphocytes in the body. Unlike T cells and natural killer cells, B cells express B cell receptors (BCRs) on their cell membranes, and the BCRs allow the B cells to bind to a specific antigen, against which an antibody response is initiated. B cells play an important role in the pathogenesis of autoimmune diseases. B cells mature within the bone marrow and then leave the bone marrow, and an antigen-binding antibody is expressed on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiates into memory B cells and ultimately differentiates into effector cells called “plasmablasts”. Plasma cells are capable of producing secreted forms of antibodies in large quantities. Secreted antibodies are the major effector molecules of humoral immunity.


As used herein, the terms “V(D)J rearrangement” and “V(D)J recombination” are used interchangeably and refer to the process by which T cells and B cells randomly assemble different gene fragments in order to generate unique receptors (called antigen receptors). During B cell growth, specific VDJ recombination events occur that allows the cell to produce a specific B cell receptor, i.e., BCR. VDJ rearrangements contribute to the diversity of BCR antigen recognition regions or sites.


As used herein, the term “antibody” refers to an immunoglobulin molecule generally consisting of two pairs of polypeptide chains, wherein each pair has one “light” (L) chain and one “heavy” (H) chain. Light chains of an antibody can be classified as a κ light chain and a λ light chain. Heavy chains can be classified as μ, δ, γ, α, and ε, and the isotypes of an antibody are defined as IgM, IgD, IgG, IgA, and IgE, respectively. In light and heavy chains, variable regions and constant regions are connected by a “J” region having about 12 or more amino acids, and a heavy chain also contains a “D” region having about 3 or more amino acids. Each heavy chain consists of a heavy chain variable region (VH) and a heavy chain constant region (CH). The heavy chain constant region consists of 3 domains (CH1, CH2 and CH3). Each light chain consists of a light chain variable region (VL) and a light chain constant region (CL). The light chain constant region consists of one domain CL. The constant region of the antibody can mediate the binding of the immunoglobulin to a host tissue or factor, comprising various cells (e.g., effector cells) of the immune system and the first component of the classical complement system (C1q). VH and VL regions can also be subdivided into regions with high variability (called complementarity determining regions (CDRs)), which are interspersed with more conserved regions called framework regions (FRs). Each VH and VL consists of three CDRs and four FRs arranged in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4 from amino terminus to carboxy terminus. The variable regions of each heavy/light chain pair (VH and VL) form an antibody binding site, respectively. Distribution of amino acids in various regions or domains follows the definitions in: Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk (1987) J. Mol. Biol. 196:901-917; Chothia et al. (1989) Nature 342:878-883, or IMGT (ImMunoGenTics)(Lefranc, M.-P., The Immunologist, 7, 132-136 (1999); Lefranc, M.-P. et al., Dev. Comp. Immunol., 27, 55-77 (2003)). Unless indicated otherwise, the CDRs in the VH and VL of the antibody in the present application are defined on the basis of the IMGT numbering system. According to the Kabat numbering system, the CDR amino acid residues in VH are numbered 31-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3); and the CDR amino acid residues in VL are numbered 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). According to Chothia, the CDR amino acids in VH are numbered 26-32 (CDR1), 52-56 (CDR2) and 95-102 (CDR3); and the amino acid residues in VL are numbered 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). According to the IMGT numbering system, the CDR amino acid residues in VH are numbered approximately 26-33 (CDR1), 51-56 (CDR2) and 93-102 (CDR3); and the CDR amino acid residues in VL are numbered approximately 27-32 (CDR1), 50-51 (CDR2) and 89-97 (CDR3) (as disclosed in https://www.novoprolabs.com/tools/cdr). The term “antibody” is not limited by any particular method for producing an antibody. For example, the antibody comprises a recombinant antibody, a monoclonal antibody and a polyclonal antibody. The antibody can be antibodies of different isotypes, for example, an IgG (e.g., an IgG1, IgG2, IgG3 or IgG4 subtype), IgA1, IgA2, IgD, IgE or IgM antibody.


As used herein, the term “antigen binding fragment” of an antibody refers to a polypeptide comprising a fragment of a full-length antibody that retains the ability to specifically bind to the same antigen to which the full-length antibody binds and/or competes with the full-length antibody for specific binding to the antigen, which is also referred to as an “antigen binding moiety”. See generally, Fundamental Immunology, Ch. 7 Paul, W., ed., 2nd Edition, Raven Press, N.Y. (1989), which is incorporated herein by reference in its entirety for all purposes. An antigen binding fragment of an antibody can be generated by recombinant DNA techniques or by enzymatic or chemical cleavage of an intact antibody. In some cases, an antigen binding fragment comprises Fab, Fab′, F(ab′)2, Fd, Fv, dAb and a complementarity determining region (CDR) fragment, a single chain antibody (e.g., scFv), a chimeric antibody, a diabody and a polypeptide comprising at least a portion of an antibody sufficient to confer a specific antigen binding ability to the polypeptide. In some cases, an antigen binding fragment of an antibody is a single chain antibody (e.g., scFv), wherein VL and VH domains are paired by a linker which enables them to be produced as a single polypeptide chain, thereby forming a monovalent molecule (see, e.g., Bird et al., Science 242:423 426 (1988) and Huston et al., Proc. Natl. Acad. Sci. USA 85:5879 5883 (1988)). Such scFv molecules can have a general structure of NH2-VL-linker-VH—COOH or NH2-VH-linker-VL-COOH. Suitable linkers in the prior art consist of a repeated GGGGS amino acid sequence or a variant thereof. For example, a linker having an amino acid sequence (GGGGS)4 can be used, and a variant thereof can also be used (Holliger et al. (1993), Proc. Natl. Acad. Sci. USA 90: 6444-6448). Other linkers which can be used in the present invention are described in Alfthan et al. (1995), Protein Eng. 8:725-731, Choi et al. (2001), Eur. J. Immunol. 31: 94-106, Hu et al. (1996), Cancer Res. 56:3055-3061, Kipriyanov et al. (1999), J. Mol. Biol. 293:41-56 and Roovers et al. (2001), Cancer Immunol.


In some cases, an antigen binding fragment of an antibody is a diabody, i.e., a bivalent antibody, wherein VH and VL domains are expressed on a single polypeptide chain; however, the linker used is too short to allow pairing between the two domains of the same chain, thereby forcing the domain to pair with the complementary domains of another chain and producing two antigen binding sites (see, e.g., Holliger P. et al., Proc. Natl. Acad. Sci. USA 90:6444 6448 (1993), and Poljak R. J. et al., Structure 2:1121 1123 (1994)).


An antigen binding fragment of an antibody (e.g., the above-mentioned antibody fragment) can be obtained from a given antibody (e.g., the antibody provided in the present invention) by using conventional techniques known to a person skilled in the art (e.g., recombinant DNA techniques or enzymatic or chemical cleavage) and the antigen binding fragment of the antibody can be screened for specificity in the same manner as for an intact antibody.


Unless the context clearly dictates, the term “antibody” when referred to herein comprises not only an intact antibody but also an antigen binding fragment of an antibody.


Unless the context clearly dictates, the term “antigen-binding unit” herein includes the antibody and the antigen binding fragment thereof as defined above.


As used herein, the term “monoclonal antibody” refers to an antibody or a fragment of an antibody from a population of highly homologous antibody molecules, i.e., a population of identical antibody molecules, except for possible naturally occurring mutations. The monoclonal antibody is highly specific for a single epitope on an antigen. Relative to a monoclonal antibody, a polyclonal antibody generally comprises at least 2 or more different antibodies, and these different antibodies generally recognize different epitopes on an antigen. A monoclonal antibody can usually be obtained by using the hybridoma technique first reported by Kohler et al. (Nature, 256:495, 1975), and can also be obtained by using recombinant DNA techniques (for example, see Journal of virological methods, 2009, 158(1-2): 171-179).


As used herein, a “neutralizing antibody” refers to an antibody or antibody fragment that can clear or significantly reduce virulence (e.g., ability to infect cells) of a target virus.


As used herein, in the case of a polypeptide, a “sequence” is the order of amino acids in the polypeptide that are arranged in the direction from the amino terminus to the carboxy terminus, wherein residues adjacent to each other in the sequence are contiguous in the primary structure of the polypeptide. The sequence can also be a linear sequence of a portion of a polypeptide known to contain additional residues in one or both directions.


As used herein, “identity”, “homology” or “sequence identity” refers to the sequence similarity or interchangeability between two or more polynucleotide sequences or between two or more polypeptide sequences. When a program, such as Emboss Needle or BestFit is used to determine sequence identity, similarity or homology between two different amino acid sequences, a default setting can be used, or an appropriate scoring matrix, such as blosum45 or blosum80, can be selected to optimize the score of identity, similarity or homology. Preferably, homologous polynucleotides are those polynucleotides that hybridize under stringent conditions as defined herein and have at least 70%, preferably at least 80%, more preferably at least 90%, more preferably 95%, more preferably 97%, more preferably 98% and even more preferably 99% sequence identity to these sequences. When sequences of comparable lengths are optimally aligned, the homologous polypeptide preferably has at least 80%, or at least 90%, or at least 95%, or at least 97%, or at least 98% sequence identity, or at least 99% sequence identity.


With respect to the antigen-binding units determined herein, “percent sequence identity (%)” is defined as the percentage of amino acid residues in the query sequence that are identical to amino acid residues of the second, reference polypeptide sequence or a portion thereof, after aligning the sequences and introducing gaps, if necessary, to achieve maximum percentage of sequence identity, and not considering any conservative replacements as a part of sequence identity. The alignment aimed at determining the percent amino acid sequence identity can be achieved in various ways within the skill in the art, for example, by using a publicly available computer software, such as BLAST, BLAST-2, ALIGN, NEEDLE or Megalign (DNASTAR) software. A person skilled in the art can determine appropriate parameters for measuring the alignment, including any algorithm needed to achieve the maximal alignment over the full length of the sequences being compared. The percent identity may be measured over the length of the entire defined polypeptide sequence, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, such as a fragment of at least 5, at least 10, at least 15, at least 20, at least 50, at least 100 or at least 200 contiguous residues. These lengths are exemplary only, and it should be understood that any fragment length supported by the sequences shown in the Tables, Figures or Sequence Listing of the present invention can be used to describe the length over which percent identity can be measured.


The antigen-binding unit described herein may have one or more modifications relative to a reference sequence. The modifications may be deletions, insertions or additions, or substitutions or replacements of amino acid residues. “Deletion” refers to a change in an amino acid sequence due to the lack of one or more amino acid residues. “Insertion” or “addition” refers to a change in an amino acid sequence due to the addition of one or more amino acid residues compared with a reference sequence. “Substitution” or “replacement” refers to that one or more amino acids are substituted with different amino acids. In the present invention, mutations of the antigen-binding unit relative to the reference sequence can be determined by comparing the antigen-binding unit with the reference sequence. Optimal alignment of sequences for comparison can be performed according to any method known in the art.


As used herein, the term “antigen” refers to a substance that is recognized and specifically bound by an antigen-binding unit. An antigen can include a peptide, a protein, a glycoprotein, a polysaccharide, and a lipid; a portion thereof, and a combination thereof. Non-limiting exemplary antigens include a protein from a coronavirus such as SARS-CoV-2, and other homologs thereof.


As used herein, the term “isolated” refers to being isolated from cellular and other ingredients with which polynucleotides, peptides, polypeptides, proteins, antibodies or fragments thereof are associated under normal circumstances in nature. It is known to a person skilled in the art that a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody or a fragment thereof does not need to be “isolated” to distinguish same from a naturally occurring counterpart thereof. In addition, the “concentrated”, “isolated” or “diluted” polynucleotide, peptide, polypeptide, protein, antibody, or the fragment thereof is distinguishable from the naturally occurring counterpart thereof, because the concentration or number of molecules per unit volume is greater than (“concentrated”) or less than the naturally occurring counterpart thereof (“isolated”). Enrichment may be measured on the basis of an absolute amount, such as the weight of a solution per unit volume, or same can be measured relative to a second, potentially interfering substance present in the source mixture.


The terms “polynucleotides”, “nucleic acids”, “nucleotides” and “oligonucleotides” are used interchangeably. They refer to polymerized nucleotides (deoxyribonucleotides or ribonucleotides) or analogs thereof of any length. A polynucleotide can have any three-dimensional structure and can perform any known or unknown function. The following are non-limiting examples of a polynucleotide: a coding region or a non-coding region of a gene or a gene fragment, a locus determined by linkage analysis, an exon, an intron, messenger RNA (mRNA), transfer RNA, ribosomal RNA, a ribozyme, cDNA, a recombinant polynucleotide, a branched polynucleotide, a plasmid, a vector, an isolated DNA of any sequence, an isolated RNA of any sequence, a nucleic acid probe, a primer, an oligonucleotide, or a synthetic DNA. A polynucleotide may contain a modified nucleotide, such as a methylated nucleotide, and a nucleotide analog. If present, a modification to a nucleotide structure can be implemented before or after the assembly of a polymer. The sequence of a nucleotide can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, for example, by conjugation with a labeled component.


When used for a polynucleotide, “recombinant” means that the polynucleotide is a product of various combinations of cloning, restriction digestion and/or ligation steps, and other procedures that produce a construct different from the polynucleotide found in nature.


The term “gene” or “gene fragment” can be used interchangeably herein. They refer to polynucleotides containing at least one open reading frame capable of encoding a specific protein following transcription and translation. The gene or gene fragment may be genomic, cDNA, or synthetic, as long as the polynucleotide contains at least one open reading frame, which may cover the entire coding region or a segment thereof.


The term “operably linked” or “effectively linked” refers to the state of being juxtaposed in which the components so described are allowed to function in a intended manner. For example, if a promoter sequence promotes the transcription of a coding sequence, the promoter sequence is operably linked to the coding sequence.


As used herein, “expression” refers to the process by which polynucleotides are transcribed into mRNA, and/or the process by which the transcribed mRNA (also called “transcript”) is subsequently translated into peptides, polypeptides or proteins. The transcript and the encoded polypeptide are collectively referred to as the gene product. If the polynucleotide is derived from genomic DNA, the expression can include splicing of mRNA in an eukaryotic cell.


As used herein, the term “vector” refers to a nucleic acid delivery vehicle into which a polynucleotide can be inserted. When the vector allows for the expression of the protein encoded by the inserted polynucleotide, the vector is called an expression vector. A vector can be introduced into a host cell by transformation, transduction or transfection, and the genetic substance elements carried thereby can be expressed in the host cell. The vector is well known to a person skilled in the art, and includes but is not limited to: a plasmid; a phagemid; an artificial chromosome such as a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC) or a P1-derived artificial chromosome (PAC); a phage such as a λ, phage or an M13 phage, and an animal virus. The animal virus that can be used as a vector includes but is not limited to a retrovirus (comprising a lentivirus), an adenovirus, an adeno-associated virus, a herpes virus (e.g., a herpes simplex virus), a poxvirus, a baculovirus, a papilloma virus and a papovavirus (such as SV40). A vector can contain a variety of elements that control expression, including, but not limited to: a promoter sequence, a transcription initiation sequence, an enhancer sequence, a selection element, and a reporter gene. In addition, the vector also can contain a replication initiation site.


As used herein, the term “host cell” refers to a cell that can be used to introduce a vector, including but not limited to a prokaryotic cell such as Escherichia coli or Bacillus subtilis, a fungal cell such as a yeast cell or Aspergillus, an insect cell such as Drosophila S2 cell or Sf9, and an animal cell such as a fibroblast, a CHO cell, a COS cell, a NSO cell, an HeLa cell, a BHK cell, an HEK293 cell or a human cell.


As used herein, the term “biological sample” includes various types of samples obtained from an organism and can be used in a diagnostic or monitoring experiment. The term includes blood and other liquid samples derived from an organism, a solid tissue sample such as a biopsy specimen or tissue culture, or a cell derived therefrom and a progeny thereof. The term includes a sample that has been treated in any way following acquisition, such as by treatment with a reagent, dissolution, or enrichment of certain components. The term includes a clinical sample, and further includes cells in a cell culture, a cell supernatant, a cell lysate, serum, plasma, a biological fluid, and a tissue sample.


As used herein, the terms “recipient”, “individual”, “subject”, “host” and “patient” are used interchangeably herein and refer to any mammalian subject, particularly human, for whom diagnosis, treatment or treating is desired.


As used herein, the terms “treating”, “treatment”, etc. are used herein to generally refer to a process of obtaining a desired pharmacological and/or physiological effect. The effect may be prophylactic in terms of completely or partially preventing a disease or a symptom thereof, and/or may be therapeutic in terms of partially or completely stabilizing or curing a disease and/or adverse effects attributable to the disease. “Treating” as used herein encompasses any treatment of a disease in a mammal, such as a mouse, a rat, a rabbit, a pig, and a primate including human and other apes, particularly human, and the term includes: (a) preventing the occurrence of a disease or symptom in a subject who may be susceptible to the disease or symptom but has not yet been diagnosed; (b) inhibiting the symptom of the disease; (c) preventing the progression of the disease; (d) alleviating the symptom of the disease; (e) causing regression of the diseases or symptom; or any combination thereof. As used herein, the term “specifically binding” refers to a non-random binding reaction between two molecules, such as a reaction between an antibody and its corresponding antigen. In certain embodiments, an antibody specifically binding to an antigen (or an antibody specific for an antigen) refers to an antibody that binds to the antigen with an affinity (KD) less than about 10−5 M, for example less than about 10−6 M, 10−7 M, 10−8 M, 10−9 M or 10−10 M or less.


As used herein, the term “KD” refers to the dissociation equilibrium constant of a particular antibody-antigen interaction, which is used to describe the binding affinity between an antibody and an antigen. In the present invention, KD is defined as the ratio of two kinetic rate constants Ka/Kd, wherein “Ka” refers to the rate constant for the binding of an antibody to an antigen and “Kd” refers to the rate constant for the dissociation of the antibody from the antibody/antigen complex. The smaller the equilibrium dissociation constant KD, the tighter the antibody-antigen binding and the higher the affinity between the antibody and the antigen. Generally, an antibody binds to an antigen with a dissociation equilibrium constant (KD) less than about 10−5 M. The property of the specific binding between two molecules can be determined using a method well known in the art, e.g. determined by surface plasmon resonance (SPR) in a BIACORE instrument.


As used herein, the term “neutralizing activity” refers to the functional activity of an antibody or antibody fragment binding to an antigen protein on a virus, thereby preventing viral infection of cells and/or maturation of viral progeny and/or release of viral progeny. The antibody or antibody fragment with a neutralizing activity can prevent the amplification of the virus, thereby inhibiting or eliminating virus infection. In some embodiments, the neutralizing activity is represented by the IC50 of an antibody or an antibody fragment in term of viral inhibition. The “half-maximal inhibitory concentration” (IC50) is a measure of a drug, such as an antibody, in terms of inhibiting biological or biochemical functions, etc., such as viral potency. The IC50 herein is calculated by a Reed-Muench method according to the neutralization inhibition rate of the antigen binding fragment against viral (e.g., pseudoviral or euviral) infection in a cell. Provided herein is an antigen-binding unit which can specifically recognize and target an S protein of a novel coronavirus, particularly a receptor binding domain (RBD) of the S protein, and shows an efficient ability to neutralize the virus. Therefore, the antigen-binding unit of the present invention is particularly suitable for diagnosing, preventing and treating novel coronavirus infections or diseases related to the novel coronavirus infections (e.g., novel coronavirus pneumonia).


As used herein, the term “antigen” refers to a substance comprising an epitope against which an immune response is generated. In some embodiments, the antigen is a protein or a peptide capable of inducing an immune response specific to the antigen in vivo. In some embodiments, the antigen may be an antigen from a microorganism such as a virus, such as a protein or fragment thereof from a virus.


As used herein, the term “epitope” refers to an antigenic determinant in a molecule (e.g., an antigen), i.e., refers to a portion or a fragment of a molecule that is recognized by an immune system (e.g., by a B cell receptor (BCR)). In some embodiments, the epitope of a protein (e.g., a viral antigen) comprises contiguous or discontinuous portions of the protein, and preferably is 5 to 100, preferably 5 to 50, more preferably 8 to 30, most preferably 10 to 25 amino acids in length, for example, the epitope may preferably be 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids in length.


As used herein, the term “clonotype” refers to a recombinant nucleic acid of a lymphocyte encoding an immune receptor or a portion thereof. In some embodiments, a “clonotype” is a T cell or B cell derived recombinant nucleic acid encoding a T cell receptor (TCR) or B cell receptor (BCR) or a portion thereof. In some embodiments, clonotypes may encode all or a portion of a VDJ rearrangement of IgH, a DJ rearrangement of IgH, a VJ rearrangement of IgK, a VJ rearrangement of IgL, a VDJ rearrangement of TCR beta, a DJ rearrangement of TCR beta, a VJ rearrangement of TCR alpha, a VJ rearrangement of TCR gamma, a VDJ rearrangement of TCR delta, a VD rearrangement of TCR delta, a kappa deleting element (KDE) rearrangement or the like. In some embodiments, clonotypes have sequences that are sufficiently long to represent or reflect the diversity of the immune molecules from which they are derived. Thus, in some embodiments, clonotypes may have 25 to 400 nucleotides in length. In some embodiments, clonotypes may have 25 to 200 nucleotides in length.


Preparation of Antigen-Binding Unit

In one aspect, provided herein is a method for providing an antigen-binding unit against a predetermined antigen, comprising (a) obtaining a blood sample from an individual who is confirmed to carry the antigen at a first time and confirmed not to carry the antigen or to carry a reduced amount of the antigen at a second time after the first time; (b) enriching B cells in the blood sample; (c) single-cell transcriptome VDJ sequencing of a sample comprising a plurality of enriched B cells of the individual to provide clonotype information of the antigen-binding unit; and (d) confirming the antigen-binding unit against the antigen based on the clonotype information.


In some embodiments, the antigen is derived from a pathogen. The pathogen includes, but is not limited to, allergens, viruses, bacteria, fungi, parasites and other infectious substances and pathogens. In some embodiments, the individual may be an individual who has been diagnosed as being infected with the virus. In some embodiments, the virus includes, but is not limited to such as adenovirus, herpes simplex type I, herpes simplex type 2, Varicella-zoster virus, Epstein-barr virus (EBV), human cytomegalovirus, human herpesvirus type 8, human papillomavirus, BK virus, JC virus, smallpox virus, hepatitis B virus, human bocavirus, parvovirus B19, human astrovirus, Norwalk virus, coxsackievirus, hepatitis A virus, poliovirus, rhinovirus, severe acute respiratory syndrome virus, hepatitis C virus, yellow fever virus, dengue virus, West Nile virus, rubella virus, hepatitis E virus, human immunodeficiency virus (HIV), influenza virus, ebola virus, measles virus, mumps virus, parainfluenza virus, respiratory syncytial virus, Nipah virus, rabies virus, hepatitis D virus, rotavirus, orbivirus and coronavirus. In some embodiments, the virus is a coronavirus. In some embodiments, the coronavirus includes SARS-CoV and SARS-CoV-2.


In some embodiments, the antigen is a viral antigen. In some embodiments, the antigen is a SARS-COV-2 antigen. In some embodiments, the antigen is an S protein of a SARS-COV-2 antigen. In some embodiments, the antigen is a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2).


In some embodiments, the individual may be an individual infected with a pathogen comprising the antigen. In some embodiments, the individual may be an individual who is infected with a pathogen comprising the antigen but does not exhibits clinical symptoms. In some embodiments, the individual may be an individual who is infected with a pathogen comprising the antigen and has exhibited clinical symptoms. In some embodiments, the individual is an individual who is infected with a pathogen comprising the antigen and in a latent period. In some embodiments, the individual is an individual who is infected with a pathogen comprising the antigen and in an infectious period. In some embodiments, the individual is an individual who is infected with a pathogen comprising the antigen and in a recovery period. In some embodiments, the individual is an individual who is infected with a pathogen comprising the antigen and has recovered.


In some embodiments, the individual is confirmed to carry the antigen at the first time. In some embodiments, the first time may be a period of time during which the individual is infected with a pathogen comprising the antigen but does not exhibit clinical symptoms. In some embodiments, the first time may be a period of time during which the individual is infected with a pathogen comprising the antigen and has exhibited clinical symptoms. In some embodiments, the first time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in a latent period. In some embodiments, the first time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in an infectious period. In some embodiments, the first time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in a recovery period.


In some embodiments, the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at a second time after the first time. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen but does not exhibit clinical symptoms. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen and has exhibited clinical symptoms. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in a latent period. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in an infectious period. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen and in a recovery period. In some embodiments, the second time may be a period of time during which the individual is infected with a pathogen comprising the antigen and has recovered.


In some embodiments, the second time is about 12 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days, 30 days, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months or 1 year after the first time.


In some embodiments, the individual is confirmed not to carry the antigen at the second time. In some embodiments, the pathogen is a virus, and the individual is confirmed not to carry the virus antigen at the second time. In some embodiments, the individual is confirmed to carry a reduced amount of the antigen at the second time. In some embodiments, the pathogen is a virus, and the individual is confirmed to carry a reduced amount of the virus antigen at the second time. In some embodiments, the individual is confirmed to carry a reduced viral load at the second time. In some embodiments, the antigen is SARS-CoV-2, and the individual is confirmed to carry a reduced SARS-CoV-2 μload at the second time. In some embodiments, the SARS-CoV-2 μload confirmed to be carried by the individual at the second time is reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% %, at least 90% or 100%.


In some embodiments, the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at a plurality of different second times after the first time. In some embodiments, the individual is confirmed not to carry the antigen at a plurality of different second times. In some embodiments, the pathogen is a virus, and the individual is confirmed not to carry the virus antigen at a plurality of different second times. In some embodiments, the individual is confirmed to carry a reduced amount of the antigen at a plurality of different second times. In some embodiments, the individual is confirmed to carry a gradually reduced amount of the antigen at a plurality of different second times. In some embodiments, the pathogen is a virus, and the individual is confirmed to carry a reduced amount of the virus antigen at a plurality of different second times. In some embodiments, the pathogen is a virus, and the individual is confirmed to carry a gradually reduced amount of the virus antigen at a plurality of different second times. In some embodiments, the individual is confirmed to carry a reduced viral load at a plurality of different second times. In some embodiments, the individual is confirmed to carry a gradually reduced viral load at a plurality of different second times. In some embodiments, the antigen is SARS-CoV-2, and the individual is confirmed to carry a reduced SARS-CoV-2 μload at a plurality of different second times. In some embodiments, the antigen is SARS-CoV-2, and the individual is confirmed to carry a gradually reduced SARS-CoV-2 μload at a plurality of different second times. In some embodiments, the SARS-CoV-2 μload confirmed to be carried by the individual at a plurality of different second times is reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% %, at least 90% or 100%. In some embodiments, the SARS-CoV-2 μload confirmed to be carried by the individual at a plurality of different second times is gradually reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% %, at least 90% or 100%.


In some embodiments, the intervals between the plurality of second times are about 12 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days, 30 days, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months or 1 year.


The presence or amount of the antigen can be determined by any method known in the art. In some embodiments, the presence or amount of the antigen can be determined by a nucleic acid amplification reaction. Examples of nucleic acid amplification reactions include, but are not limited to, reverse transcription PCR (RT-PCR), polymerase chain reaction (PCR), variations of PCR (e.g., real-time PCR, allele-specific PCR, assembly PCR, asymmetric PCR, digital PCR, emulsion PCR, dial-out PCR, helicase-dependent PCR, nested PCR, hot-start PCR, inverse PCR, methylation-specific PCR, miniprimer PCR, multiplex PCR, nested PCR, overlap extension PCR, thermal asymmetric interlaced PCR, and touch down PCR) and ligase chain reaction (LCR). In some embodiments, the presence or amount of the antigen is determined by detecting the DNA of the antigen. In some embodiments, the presence or amount of the antigen is determined by detecting the RNA of the antigen. In the case where RNA is detected, DNA can be obtained by reverse transcription of the RNA and a subsequent DNA amplification can be used to determine the amplified DNA product. In some embodiments, the antigen is a virus, and the presence or amount of the virus is determined by detecting the DNA or RNA of the virus. In some embodiments, the presence or amount of the virus is determined by detecting the DNA or RNA of the virus in a sample obtained from the individual. The sample may be cells, skin, tissue and/or tissue fluid obtained from any anatomical location of the individual. In some embodiments, the sample can be blood, body cavity fluid, sputum, pus, feces, milk, serum, saliva, urine, gastric juice and digestive juice, tears, ocular fluids, sweat, mucus, glandular secretions, spinal fluids, hair, nail, skin cells, plasma, nasal swabs, throat swabs, nasopharyngeal washing, and/or other excrements or body tissues.


In some embodiments, the step (b) in the method comprises enriching B cells from sorted peripheral blood mononuclear cells (PBMCs). In some embodiments, the step (b) in the method further comprises enriching memory B cells in the blood sample. In some embodiments, the memory B cells are enriched by a CD27 antibody. In some embodiments, the memory B cells are enriched by CD27 antibody-bearing substrates, CD27 antibody-bearing microparticles, CD27 antibody-bearing magnetic beads, and/or CD27 antibody-bearing columns.


In some embodiments, the method further comprises performing one or more of the following steps before the step (c), so as to exclude a portion of the enriched B cells: selecting CD27+ B cells; excluding naive B cells; excluding depleted B cells; excluding non-B cells; and selecting cells that can bind to the antigen. In some embodiments, for the B cells in the blood sample of the individual, a portion of the enriched B cells are excluded by the CD27 antibody. In some embodiments, for the B cells, a portion of the enriched B cells are enriched by CD27 antibody-bearing substrates, CD27 antibody-bearing microparticles, CD27 antibody-bearing magnetic beads, and/or CD27 antibody-bearing columns. In some embodiments, for the B cells in the blood sample of the individual, a portion of the enriched B cells are excluded by excluding the naive B cells. In some embodiments, for the B cells in the blood sample of the individual, a portion of the enriched B cells are excluded by excluding the depleted B cells. In some embodiments, for the B cells in the blood sample of the individual, a portion of the enriched B cells are excluded by excluding the non-B cells.


In some embodiments, peripheral blood mononuclear cells (PBMCs) are first sorted and subjected to B cell enrichment, and then a portion of the enriched B cells are excluded by the CD27 antibody. In some embodiments, peripheral blood mononuclear cells (PBMCs) are first sorted and subjected to B cell enrichment, and then a portion of the enriched B cells are excluded by excluding the naive B cells. In some embodiments, peripheral blood mononuclear cells (PBMCs) are first sorted and subjected to B cell enrichment, and then a portion of the enriched B cells are excluded by excluding the depleted B cells. In some embodiments, peripheral blood mononuclear cells (PBMCs) are first sorted and subjected to B cell enrichment, and then a portion of the enriched B cells are excluded by excluding the non-B cells. In some embodiments, peripheral blood mononuclear cells (PBMCs) are first sorted and subjected to B cell enrichment, and a portion of the enriched B cells are excluded by a CD27 antibody, followed by the exclusion of the naive B cells, the depleted B cells and the non-B cells.


In some embodiments, a portion of the excluded B cells is at least 10% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 20% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 30% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 40% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 50% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 60% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 70% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 80% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 90% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 95% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 96% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 97% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 98% of the enriched B cells. In some embodiments, a portion of the excluded B cells is at least 99% of the enriched B cells.


In some embodiments, the method further comprises performing one, two, three, four, five or more of the following steps after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit: selecting a clonotype with enrichment frequency higher than 1; selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4; excluding non-B cell clonotypes by cell typing; excluding naive B cell clonotypes by cell typing; excluding non-switched B cells by cell typing; excluding depleted B cell clonotypes by cell typing; excluding mononuclear cells by cell typing; excluding dendritic cells by cell typing; excluding T cells by cell typing; excluding natural killer cells by cell typing; and excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%. In some embodiments, the method further comprises selecting a clonotype with enrichment frequency higher than 1 after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4 after the step (c), so as to exclude a portion of the antigen-binding unit. In some embodiments, the method further comprises selecting a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4 after the step (c), so as to exclude a portion of the antigen-binding unit. In some embodiments, the method further comprises excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4 after the step (c), so as to exclude a portion of the antigen-binding unit. In some embodiments, the method further comprises excluding non-B cell clonotypes by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding naive B cell clonotypes by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding non-switched B cells by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding depleted B cell clonotypes by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding mononuclear cells by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding dendritic cells by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding T cells by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding natural killer cells by cell typing after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit. In some embodiments, the method further comprises excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2% after the step (c), so as to exclude a portion of the clonotype of the antigen-binding unit.


In some embodiments, a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4 may be selected or excluded. In some embodiments, the method comprises selecting a clonotype from B cells expressing one of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing two of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing three of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing four of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing five of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing six of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises selecting a clonotype from B cells expressing seven of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing one of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing two of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing three of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing four of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing five of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing six of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4. In some embodiments, the method comprises excluding a clonotype from B cells expressing seven of IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and IgG4.


In some embodiments, the excluded unit clonotypes are at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% of all unit clonotypes. In some embodiments, the excluded unit clonotypes are at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% of all unit clonotypes.


In some embodiments, the method further comprises selecting one, two, three, four, five or more of the following steps after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d): selecting a clonotype with enrichment frequency higher than 1; selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4; excluding non-B cell clonotypes by cell typing; excluding naive B cell clonotypes by cell typing; excluding depleted B cell clonotypes by cell typing; excluding mononuclear cells by cell typing; excluding dendritic cells by cell typing; excluding T cells by cell typing; excluding natural killer cells by cell typing; and excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%. In some embodiments, the method further comprises selecting a clonotype with enrichment frequency higher than 1 after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding units in the step (d). In some embodiments, the method further comprises selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4 after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding non-B cell clonotypes by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding naive B cell clonotypes by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding depleted B cell clonotypes by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding mononuclear cells by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding dendritic cells by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding T cells by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding natural killer cells by cell typing after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d). In some embodiments, the method further comprises excluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2% after the step (c), so that a portion of the selected clonotypes are confirmed as the antigen-binding unit in the step (d).


In some embodiments, a portion of the selected clonotypes confirmed as the antigen-binding unit in the step (d) are at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% of all clonotypes. In some embodiments, a portion of the selected clonotypes confirmed as the antigen-binding unit in the step (d) are at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% of all clonotypes.


In some embodiments, the method further comprises performing light and heavy chain matching according to the obtained sequence information. In some embodiments, the light and heavy chain matching is implemented according to a computer algorithm. In some embodiments, the method further comprises performing lineage analysis according to the obtained sequence information. In some embodiments, the lineage analysis is implemented according to a computer algorithm. In some embodiments, the method further comprises comparing the clonotype information with one or more reference sequences. In some embodiments, the method further comprises visualizing cell clusters. In some embodiments, the visualization of cell clusters is implemented according to a computer algorithm. In some embodiments, the method comprises assembly, annotation, and clonotype analysis of contigs. In some embodiments, assembly, annotation, and clonotype analysis of contigs are implemented according to a computer algorithm. In some embodiments, the method comprises annotating the structures of the light and heavy chain CDR regions. In some embodiments, the annotation of the structures of the light and heavy chain CDR regions is implemented according to a computer algorithm. In some embodiments, the method comprises predicting CDR3 structure. In some embodiments, the prediction of CDR3 structure is implemented according to a computer algorithm. In some embodiments, the method comprises mapping V(D)J sequence reads. In some embodiments, the mapping of the V(D)J sequence reads is implemented according to a computer algorithm. In some embodiments, the method comprises calculating the high-frequency mutation rates according to the following formula:







Mismatches
+
Gaps


Query


sequence


length





wherein the gap is the number of base pairs in inserted or deleted regions. In some embodiments, the method comprises comparing the predicted CDR3H structure with the CDR3H structure of a reference sequence. In some embodiments, the comparison is implemented according to a computer algorithm.


Algorithms or computer softwares that can be used in the methods of the present invention include, but are not limited to:












computer algorithms and/or softwares

















cutadapt (2.9)
Martin, 2011
https://cutadapt.readthedocs.io/en/stable/installation.html


CellRanger (3.1.0)
10× Genomics
https://support.10xgenomics.com/single-cell-gene-




expression/software/pipelines/latest/installation


SingleR (1.0.5)
Aran et al., 2019
https://bioconductor.org/packages/release/bioc/




html/SingleR.html


Seurat (3.1.3)
Satija et al., 2015
https://satijalab.org/seurat/install.html


IgBlast-1.15.0
National Center for
ftp://ftp.ncbi.nih.gov/blast/executables/igblast/



Biotechnology
release/1.15.0/



Information (NCBI)



igraph (1.2.5)
Csardi and Nepusz,
https://cran.r-



2006
project.org/web/packages/igraph/index.html


SAAB+
Kovaltsuk et al.,
https://github.com/oxpig/saab_plus



2020



SerialEM software
Mastronarde, 2005
http://bio3d.colorado.edu/SerialEM


MotionCor2
Zheng et al., 2017
https://emcore.ucsf.edu/ucsf-motioncor2


Gctfprogram
Zhang, K., 2016
https://www.mrc-lmb.cam.ac.uk/kzhang/Gctf


(v1.06)




RELION (v3.07)
Zivanov et al., 2018
http://www2.mrc-lmb.cam.ac.uk/relion


ResMap
Kucukelbir et al.,
http://resmap.sourceforge.net



2014



UCSF Chimera
Pettersen et al., 2004
https://www.cgl.ucsf.edu/chimera


PHENIX
Adams et al., 2010
https://www.phenix-online.org


Coot
Emsley et al., 2010
http://www2.mrc-lmb.cam.ac.uk/Personal/pemsley/coot


Pymol
Schrodinger, LLC.
http://www.pymol.org









In some embodiments, the reference sequence is an antibody or a fragment thereof that specifically binds to the antigen. In some embodiments, the reference sequence specifically binds to the antigen of SARS-CoV. In some embodiments, the reference sequence specifically binds to the antigen of SARS-CoV-2. In some embodiments, the reference sequence specifically binds to the S protein of SARS-CoV-2. In some embodiments, the reference sequence specifically binds to the receptor binding domain (RBD) of an S protein of SARS-CoV-2. Any antibody or fragment thereof known in the art may serve as a reference sequence of the present application. In some embodiments, the reference sequence is an antibody or a fragment thereof against SARS-CoV known in the art. In some embodiments, the reference sequence is an antibody or a fragment thereof against SARS-CoV-2 known in the art. In some embodiments, the reference sequence is an antibody or a fragment thereof against the S protein of SARS-CoV-2 known in the art. In some embodiments, the reference sequence is an antibody or a fragment thereof against the binding domain (RBD) of an S protein of SARS-CoV-2 known in the art. In some embodiments, the reference sequence is from a PDB (Protein Data Bank) database.


In some embodiments, the reference sequence is an antibody or a fragment thereof, and the comparison comprises predicting the CDR3H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR3H structure of the antibody or the fragment thereof. In some embodiments, the reference sequence is an antibody or a fragment thereof, and the comparison comprises predicting the CDR1H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR1H structure of the antibody or the fragment thereof. In some embodiments, the reference sequence is an antibody or a fragment thereof, and the comparison comprises predicting the CDR2H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR2H structure of the antibody or the fragment thereof.


In some embodiments, the reference sequence is an known antibody or a fragment thereof against the S protein of SARS-CoV-2, and the comparison comprises predicting the CDR3H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR3H structure of the antibody or the fragment thereof. In some embodiments, the reference sequence is a known antibody or a fragment thereof against the binding domain (RBD) of an S protein of SARS-CoV-2, and the comparison comprises predicting the CDR3H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR3H structure of the antibody or the fragment thereof.


In some embodiments, the method further comprises expressing the antigen-binding unit in a host cell. Any host cell known in the art can be used to express the antigen-binding unit of the present application. In some embodiments, the host cells include eukaryotic cells and prokaryotic cells. In some embodiments, the host cells include, but are not limited to, bacterial cells, fungal cells, animal cells, insect cells, plant cells or the like.


Examples of bacterial host cells useful in the present application include microorganisms of Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microorganisms, Pseudomonas or the like. For example, bacterial host cells can include, but are not limited to, Escherichia coli XL1-Blue, XL2-Blue, DH1, MC1000, KY3276, W1485, JM109, HB101, No. 49, i W3110, NY49, G1698, BL21 or TB1. Other bacterial host cells may include, but are not limited to, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Brevibacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC14066, Brevibacterium flavum ATCC 14067, Brevibacterium lactofermentum ATCC 13869, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium acetoacidophilum ATCC 13870, Microbacterium ammoniaphilum ATCC15354, Pseudomonas putida, Pseudomonas sp. D-0110 or the like.


Yeast host cells useful in the present application may include microorganisms of Kluyveromyces, Trichosporon, Saccharomyces, Schizosaccharomyces, Schwanniomyces, Pichia, Candida or the like, such as microorganisms of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius and Candida utilis.


Examples of eukaryotic cells useful in the present application include animal cells, such as mammalian cells. For example, host cells include, but are not limited to, Chinese hamster ovary cells (CHO) or monkey cells, such as COS cells, HepG2 cells, A549 cells, and any cell available through ATCC or other depositories.


In some embodiments, the method further comprises purifying the antigen-binding unit. Any purification means known in the art can be used to purify the antigen-binding unit described in the present application. In some embodiments, the purification includes, but is not limited to, ion exchange chromatography, hydrophobic chromatography, and affinity chromatography.


In some embodiments, the method also comprises evaluating the ability of the antigen-binding unit to bind to the antigen. In some embodiments, an equilibrium dissociation constant (KD) is used to evaluate the ability of the antigen-binding unit to bind to the antigen.


In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the antigen-binding unit binds to the antigen at a rate higher than the rate of dissociation from the antigen.


In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the antigen-binding unit binds to the antigen at an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the antigen-binding unit has the ability to bind to the antigen as verified by ELISA. In some embodiments, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the antigen-binding unit is capable of neutralizing the antigen. In some embodiments, at least about 10% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 20% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5p g/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 30% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 40% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 50% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 60% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 70% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 80% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5p g/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml. In some embodiments, at least about 90% of the antigen-binding unit neutralizes the antigen with an IC50 of less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, or less than 0.001 μg/ml.


In some embodiments, the antigen-binding unit can be obtained within a few days by the methods of the present invention. In some embodiments, the antigen-binding unit can be obtained within 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, two weeks, three weeks or four weeks by the methods of the present invention.


In another aspect, provided herein is a method for preparing an antigen-binding unit against a predetermined antigen, comprising identifying the antigen-binding unit against the antigen according to the method of any one of the preceding claims, expressing the antigen-binding unit in a host cell, and harvesting and purifying the antigen-binding unit.


Antigen-Binding Unit

In one aspect, the antigen-binding unit of the present invention comprises a heavy chain variable region (VH) and a light chain variable region (VL), wherein the heavy chain variable region comprises VH CDR1, VH CDR2 and VH CDR3, and the light chain variable region comprises VL CDR1, VL CDR2 and VL CDR3.


The VH of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 721-1080 and 3111-3145. When the VH of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH of the antigen-binding unit of the present invention can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 additions, deletions, or substitutions compared with the reference polypeptide. When the VH of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 additions, deletions, or substitutions compared with the reference polypeptide. When the VH of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH of the antigen-binding unit of the present invention can have less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 additions, deletions, or substitutions compared with the reference polypeptide.


The VH CDR1 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935. When the VH CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR1 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR1 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR1 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VH CDR2 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970. When the VH CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR2 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR2 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR2 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VH CDR3 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1-360 and 2971-3005. When the VH CDR3 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR3 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR3 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR3 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VH CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VH CDR3 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VL of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1081-1440 and 3146-3180. When the VL of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL of the antigen-binding unit of the present invention can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 additions, deletions, or substitutions compared with the reference polypeptide. When the VL of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acid additions, deletions, or substitutions compared with the reference polypeptide. When the VL of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL of the antigen-binding unit of the present invention can have less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 additions, deletions, or substitutions compared with the reference polypeptide.


The VL CDR1 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040. When the VL CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR1 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR1 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR1 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR1 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VL CDR2 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075. When the VL CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR2 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR2 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR2 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR2 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VL CDR3 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 361-720 and 3076-3110. When the VL CDR3 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR3 of the antigen-binding unit of the present invention can have 1, 2, 3, 4 or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR3 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR3 of the antigen-binding unit of the present invention can have more than 1, 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide. When the VL CDR3 of the antigen-binding unit of the present invention has amino acid additions, deletions, or substitutions compared with the reference polypeptide sequence, the VL CDR3 of the antigen-binding unit of the present invention can have less than 2, 3, 4, or 5 additions, deletions, or substitutions compared with the reference polypeptide.


The VH CDR1 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935; and the VL CDR1 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040.


The VH CDR2 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970; and the VL CDR2 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075.


The VH CDR3 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1-360 and 2971-3005; and the VL CDR3 of the antigen-binding unit of the present invention can comprise a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 361-720 and 3076-3110.


The VH of the antigen-binding unit of the present invention can comprise VH CDR1, VH CDR2 and VH CDR3, wherein the VH CDR1 is a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1461-1820 and 2901-2935; wherein the VH CDR2 is a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1821-2180 and 2936-2970; and wherein the VH CDR3 is a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 1-360 and 2971-3005, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 1-360 and 2971-3005.


The VL of the antigen-binding unit of the present invention can comprise VL CDR1, VL CDR2 and VL CDR3, wherein the VL CDR1 is a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2181-2540 and 3006-3040; wherein the VL CDR2 is a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 2541-2900 and 3041-3075; and wherein the VL CDR3 is a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, a sequence comprising one or more amino acid additions, deletions, or substitutions compared with a sequence selected from SEQ ID NOs: 361-720 and 3076-3110, or a sequence having at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99% identity to a sequence selected from SEQ ID NOs: 361-720 and 3076-3110.


The VH of the antigen-binding unit described herein can comprise a sequence selected from combinations of CDR1, CDR2, and CDR3 as following:

















HCDR1
HCDR2
HCDR3
ABU No.




















1461
1821
1
ABU-1  



1462
1822
2
ABU-2  



1463
1823
3
ABU-3  



1464
1824
4
ABU-4  



1465
1825
5
ABU-5  



1466
1826
6
ABU-6  



1467
1827
7
ABU-7  



1468
1828
8
ABU-8  



1469
1829
9
ABU-9  



1470
1830
10
ABU-10 



1471
1831
11
ABU-11 



1472
1832
12
ABU-12 



1473
1833
13
ABU-13 



1474
1834
14
ABU-14 



1475
1835
15
ABU-15 



1476
1836
16
ABU-16 



1477
1837
17
ABU-17 



1478
1838
18
ABU-18 



1479
1839
19
ABU-19 



1480
1840
20
ABU-20 



1481
1841
21
ABU-21 



1482
1842
22
ABU-22 



1483
1843
23
ABU-23 



1484
1844
24
ABU-24 



1485
1845
25
ABU-25 



1486
1846
26
ABU-26 



1487
1847
27
ABU-27 



1488
1848
28
ABU-28 



1489
1849
29
ABU-29 



1490
1850
30
ABU-30 



1491
1851
31
ABU-31 



1492
1852
32
ABU-32 



1493
1853
33
ABU-33 



1494
1854
34
ABU-34 



1495
1855
35
ABU-35 



1496
1856
36
ABU-36 



1497
1857
37
ABU-37 



1498
1858
38
ABU-38 



1499
1859
39
ABU-39 



1500
1860
40
ABU-40 



1501
1861
41
ABU-41 



1502
1862
42
ABU-42 



1503
1863
43
ABU-43 



1504
1864
44
ABU-44 



1505
1865
45
ABU-45 



1506
1866
46
ABU-46 



1507
1867
47
ABU-47 



1508
1868
48
ABU-48 



1509
1869
49
ABU-49 



1510
1870
50
ABU-50 



1511
1871
51
ABU-51 



1512
1872
52
ABU-52 



1513
1873
53
ABU-53 



1514
1874
54
ABU-54 



1515
1875
55
ABU-55 



1516
1876
56
ABU-56 



1517
1877
57
ABU-57 



1518
1878
58
ABU-58 



1519
1879
59
ABU-59 



1520
1880
60
ABU-60 



1521
1881
61
ABU-61 



1522
1882
62
ABU-62 



1523
1883
63
ABU-63 



1524
1884
64
ABU-64 



1525
1885
65
ABU-65 



1526
1886
66
ABU-66 



1527
1887
67
ABU-67 



1528
1888
68
ABU-68 



1529
1889
69
ABU-69 



1530
1890
70
ABU-70 



1531
1891
71
ABU-71 



1532
1892
72
ABU-72 



1533
1893
73
ABU-73 



1534
1894
74
ABU-74 



1535
1895
75
ABU-75 



1536
1896
76
ABU-76 



1537
1897
77
ABU-77 



1538
1898
78
ABU-78 



1539
1899
79
ABU-79 



1540
1900
80
ABU-80 



1541
1901
81
ABU-81 



1542
1902
82
ABU-82 



1543
1903
83
ABU-83 



1544
1904
84
ABU-84 



1545
1905
85
ABU-85 



1546
1906
86
ABU-86 



1547
1907
87
ABU-87 



1548
1908
88
ABU-88 



1549
1909
89
ABU-89 



1550
1910
90
ABU-90 



1551
1911
91
ABU-91 



1552
1912
92
ABU-92 



1553
1913
93
ABU-93 



1554
1914
94
ABU-94 



1555
1915
95
ABU-95 



1556
1916
96
ABU-96 



1557
1917
97
ABU-97 



1558
1918
98
ABU-98 



1559
1919
99
ABU-99 



1560
1920
100
ABU-100



1561
1921
101
ABU-101



1562
1922
102
ABU-102



1563
1923
103
ABU-103



1564
1924
104
ABU-104



1565
1925
105
ABU-105



1566
1926
106
ABU-106



1567
1927
107
ABU-107



1568
1928
108
ABU-108



1569
1929
109
ABU-109



1570
1930
110
ABU-110



1571
1931
111
ABU-111



1572
1932
112
ABU-112



1573
1933
113
ABU-113



1574
1934
114
ABU-114



1575
1935
115
ABU-115



1576
1936
116
ABU-116



1577
1937
117
ABU-117



1578
1938
118
ABU-118



1579
1939
119
ABU-119



1580
1940
120
ABU-120



1581
1941
121
ABU-121



1582
1942
122
ABU-122



1583
1943
123
ABU-123



1584
1944
124
ABU-124



1585
1945
125
ABU-125



1586
1946
126
ABU-126



1587
1947
127
ABU-127



1588
1948
128
ABU-128



1589
1949
129
ABU-129



1590
1950
130
ABU-130



1591
1951
131
ABU-131



1592
1952
132
ABU-132



1593
1953
133
ABU-133



1594
1954
134
ABU-134



1595
1955
135
ABU-135



1596
1956
136
ABU-136



1597
1957
137
ABU-137



1598
1958
138
ABU-138



1599
1959
139
ABU-139



1600
1960
140
ABU-140



1601
1961
141
ABU-141



1602
1962
142
ABU-142



1603
1963
143
ABU-143



1604
1964
144
ABU-144



1605
1965
145
ABU-145



1606
1966
146
ABU-146



1607
1967
147
ABU-147



1608
1968
148
ABU-148



1609
1969
149
ABU-149



1610
1970
150
ABU-150



1611
1971
151
ABU-151



1612
1972
152
ABU-152



1613
1973
153
ABU-153



1614
1974
154
ABU-154



1615
1975
155
ABU-155



1616
1976
156
ABU-156



1617
1977
157
ABU-157



1618
1978
158
ABU-158



1619
1979
159
ABU-159



1620
1980
160
ABU-160



1621
1981
161
ABU-161



1622
1982
162
ABU-162



1623
1983
163
ABU-163



1624
1984
164
ABU-164



1625
1985
165
ABU-165



1626
1986
166
ABU-166



1627
1987
167
ABU-167



1628
1988
168
ABU-168



1629
1989
169
ABU-169



1630
1990
170
ABU-170



1631
1991
171
ABU-171



1632
1992
172
ABU-172



1633
1993
173
ABU-173



1634
1994
174
ABU-174



1635
1995
175
ABU-175



1636
1996
176
ABU-176



1637
1997
177
ABU-177



1638
1998
178
ABU-178



1639
1999
179
ABU-179



1640
2000
180
ABU-180



1641
2001
181
ABU-181



1642
2002
182
ABU-182



1643
2003
183
ABU-183



1644
2004
184
ABU-184



1645
2005
185
ABU-185



1646
2006
186
ABU-186



1647
2007
187
ABU-187



1648
2008
188
ABU-188



1649
2009
189
ABU-189



1650
2010
190
ABU-190



1651
2011
191
ABU-191



1652
2012
192
ABU-192



1653
2013
193
ABU-193



1654
2014
194
ABU-194



1655
2015
195
ABU-195



1656
2016
196
ABU-196



1657
2017
197
ABU-197



1658
2018
198
ABU-198



1659
2019
199
ABU-199



1660
2020
200
ABU-200



1661
2021
201
ABU-201



1662
2022
202
ABU-202



1663
2023
203
ABU-203



1664
2024
204
ABU-204



1665
2025
205
ABU-205



1666
2026
206
ABU-206



1667
2027
207
ABU-207



1668
2028
208
ABU-208



1669
2029
209
ABU-209



1670
2030
210
ABU-210



1671
2031
211
ABU-211



1672
2032
212
ABU-212



1673
2033
213
ABU-213



1674
2034
214
ABU-214



1675
2035
215
ABU-215



1676
2036
216
ABU-216



1677
2037
217
ABU-217



1678
2038
218
ABU-218



1679
2039
219
ABU-219



1680
2040
220
ABU-220



1681
2041
221
ABU-221



1682
2042
222
ABU-222



1683
2043
223
ABU-223



1684
2044
224
ABU-224



1685
2045
225
ABU-225



1686
2046
226
ABU-226



1687
2047
227
ABU-227



1688
2048
228
ABU-228



1689
2049
229
ABU-229



1690
2050
230
ABU-230



1691
2051
231
ABU-231



1692
2052
232
ABU-232



1693
2053
233
ABU-233



1694
2054
234
ABU-234



1695
2055
235
ABU-235



1696
2056
236
ABU-236



1697
2057
237
ABU-237



1698
2058
238
ABU-238



1699
2059
239
ABU-239



1700
2060
240
ABU-240



1701
2061
241
ABU-241



1702
2062
242
ABU-242



1703
2063
243
ABU-243



1704
2064
244
ABU-244



1705
2065
245
ABU-245



1706
2066
246
ABU-246



1707
2067
247
ABU-247



1708
2068
248
ABU-248



1709
2069
249
ABU-249



1710
2070
250
ABU-250



1711
2071
251
ABU-251



1712
2072
252
ABU-252



1713
2073
253
ABU-253



1714
2074
254
ABU-254



1715
2075
255
ABU-255



1716
2076
256
ABU-256



1717
2077
257
ABU-257



1718
2078
258
ABU-258



1719
2079
259
ABU-259



1720
2080
260
ABU-260



1721
2081
261
ABU-261



1722
2082
262
ABU-262



1723
2083
263
ABU-263



1724
2084
264
ABU-264



1725
2085
265
ABU-265



1726
2086
266
ABU-266



1727
2087
267
ABU-267



1728
2088
268
ABU-268



1729
2089
269
ABU-269



1730
2090
270
ABU-270



1731
2091
271
ABU-271



1732
2092
272
ABU-272



1733
2093
273
ABU-273



1734
2094
274
ABU-274



1735
2095
275
ABU-275



1736
2096
276
ABU-276



1737
2097
277
ABU-277



1738
2098
278
ABU-278



1739
2099
279
ABU-279



1740
2100
280
ABU-280



1741
2101
281
ABU-281



1742
2102
282
ABU-282



1743
2103
283
ABU-283



1744
2104
284
ABU-284



1745
2105
285
ABU-285



1746
2106
286
ABU-286



1747
2107
287
ABU-287



1748
2108
288
ABU-288



1749
2109
289
ABU-289



1750
2110
290
ABU-290



1751
2111
291
ABU-291



1752
2112
292
ABU-292



1753
2113
293
ABU-293



1754
2114
294
ABU-294



1755
2115
295
ABU-295



1756
2116
296
ABU-296



1757
2117
297
ABU-297



1758
2118
298
ABU-298



1759
2119
299
ABU-299



1760
2120
300
ABU-300



1761
2121
301
ABU-301



1762
2122
302
ABU-302



1763
2123
303
ABU-303



1764
2124
304
ABU-304



1765
2125
305
ABU-305



1766
2126
306
ABU-306



1767
2127
307
ABU-307



1768
2128
308
ABU-308



1769
2129
309
ABU-309



1770
2130
310
ABU-310



1771
2131
311
ABU-311



1772
2132
312
ABU-312



1773
2133
313
ABU-313



1774
2134
314
ABU-314



1775
2135
315
ABU-315



1776
2136
316
ABU-316



1777
2137
317
ABU-317



1778
2138
318
ABU-318



1779
2139
319
ABU-319



1780
2140
320
ABU-320



1781
2141
321
ABU-321



1782
2142
322
ABU-322



1783
2143
323
ABU-323



1784
2144
324
ABU-324



1785
2145
325
ABU-325



1786
2146
326
ABU-326



1787
2147
327
ABU-327



1788
2148
328
ABU-328



1789
2149
329
ABU-329



1790
2150
330
ABU-330



1791
2151
331
ABU-331



1792
2152
332
ABU-332



1793
2153
333
ABU-333



1794
2154
334
ABU-334



1795
2155
335
ABU-335



1796
2156
336
ABU-336



1797
2157
337
ABU-337



1798
2158
338
ABU-338



1799
2159
339
ABU-339



1800
2160
340
ABU-340



1801
2161
341
ABU-341



1802
2162
342
ABU-342



1803
2163
343
ABU-343



1804
2164
344
ABU-344



1805
2165
345
ABU-345



1806
2166
346
ABU-346



1807
2167
347
ABU-347



1808
2168
348
ABU-348



1809
2169
349
ABU-349



1810
2170
350
ABU-350



1811
2171
351
ABU-351



1812
2172
352
ABU-352



1813
2173
353
ABU-353



1814
2174
354
ABU-354



1815
2175
355
ABU-355



1816
2176
356
ABU-356



1817
2177
357
ABU-357



1818
2178
358
ABU-358



1819
2179
359
ABU-359



1820
2180
360
ABU-360



2901
2936
2971
ABU-361



2902
2937
2972
ABU-362



2903
2938
2973
ABU-363



2904
2939
2974
ABU-364



2905
2940
2975
ABU-365



2906
2941
2976
ABU-366



2907
2942
2977
ABU-367



2908
2943
2978
ABU-368



2909
2944
2979
ABU-369



2910
2945
2980
ABU-370



2911
2946
2981
ABU-371



2912
2947
2982
ABU-372



2913
2948
2983
ABU-373



2914
2949
2984
ABU-374



2915
2950
2985
ABU-375



2916
2951
2986
ABU-376



2917
2952
2987
ABU-377



2918
2953
2988
ABU-378



2919
2954
2989
ABU-379



2920
2955
2990
ABU-380



2921
2956
2991
ABU-381



2922
2957
2992
ABU-382



2923
2958
2993
ABU-383



2924
2959
2994
ABU-384



2925
2960
2995
ABU-385



2926
2961
2996
ABU-386



2927
2962
2997
ABU-387



2928
2963
2998
ABU-388



2929
2964
2999
ABU-389



2930
2965
3000
ABU-390



2931
2966
3001
ABU-391



2932
2967
3002
ABU-392



2933
2968
3003
ABU-393



2934
2969
3004
ABU-394



2935
2970
3005
ABU-395






















LCDR1
LCDR2
LCDR3
ABU No.


















2181
2541
361
ABU-1


2182
2542
362
ABU-2


2183
2543
363
ABU-3


2184
2544
364
ABU-4


2185
2545
365
ABU-5


2186
2546
366
ABU-6


2187
2547
367
ABU-7


2188
2548
368
ABU-8


2189
2549
369
ABU-9


2190
2550
370
ABU-10


2191
2551
371
ABU-11


2192
2552
372
ABU-12


2193
2553
373
ABU-13


2194
2554
374
ABU-14


2195
2555
375
ABU-15


2196
2556
376
ABU-16


2197
2557
377
ABU-17


2198
2558
378
ABU-18


2199
2559
379
ABU-19


2200
2560
380
ABU-20


2201
2561
381
ABU-21


2202
2562
382
ABU-22


2203
2563
383
ABU-23


2204
2564
384
ABU-24


2205
2565
385
ABU-25


2206
2566
386
ABU-26


2207
2567
387
ABU-27


2208
2568
388
ABU-28


2209
2569
389
ABU-29


2210
2570
390
ABU-30


2211
2571
391
ABU-31


2212
2572
392
ABU-32


2213
2573
393
ABU-33


2214
2574
394
ABU-34


2215
2575
395
ABU-35


2216
2576
396
ABU-36


2217
2577
397
ABU-37


2218
2578
398
ABU-38


2219
2579
399
ABU-39


2220
2580
400
ABU-40


2221
2581
401
ABU-41


2222
2582
402
ABU-42


2223
2583
403
ABU-43


2224
2584
404
ABU-44


2225
2585
405
ABU-45


2226
2586
406
ABU-46


2227
2587
407
ABU-47


2228
2588
408
ABU-48


2229
2589
409
ABU-49


2230
2590
410
ABU-50


2231
2591
411
ABU-51


2232
2592
412
ABU-52


2233
2593
413
ABU-53


2234
2594
414
ABU-54


2235
2595
415
ABU-55


2236
2596
416
ABU-56


2237
2597
417
ABU-57


2238
2598
418
ABU-58


2239
2599
419
ABU-59


2240
2600
420
ABU-60


2241
2601
421
ABU-61


2242
2602
422
ABU-62


2243
2603
423
ABU-63


2244
2604
424
ABU-64


2245
2605
425
ABU-65


2246
2606
426
ABU-66


2247
2607
427
ABU-67


2248
2608
428
ABU-68


2249
2609
429
ABU-69


2250
2610
430
ABU-70


2251
2611
431
ABU-71


2252
2612
432
ABU-72


2253
2613
433
ABU-73


2254
2614
434
ABU-74


2055
2615
435
ABU-75


2256
2616
436
ABU-76


2257
2617
437
ABU-77


2258
2618
438
ABU-78


2259
2619
439
ABU-79


2260
2620
440
ABU-80


2261
2621
441
ABU-81


2262
2622
442
ABU-82


2263
2623
443
ABU-83


2264
2624
444
ABU-84


2265
2625
445
ABU-85


2266
2626
446
ABU-86


2267
2627
447
ABU-87


2268
2628
448
ABU-88


2269
2629
449
ABU-89


2270
2630
450
ABU-90


2271
2631
451
ABU-91


2272
2632
452
ABU-92


2213
2633
453
ABU-93


2274
2634
454
ABU-94


2275
2635
455
ABU-95


2276
2636
456
ABU-96


2077
2637
457
ABU-97


2278
2638
458
ABU-98


2279
2639
459
ABU-99


2280
2640
460
ABU-100


2281
2641
461
ABU-101


2282
2642
462
ABU-102


2283
2643
463
ABU-103


2284
2644
464
ABU-104


2285
2645
465
ABU-105


2286
2646
466
ABU-106


2287
2647
467
ABU-107


2288
2648
468
ABU-108


2289
2649
469
ABU-109


2290
2650
470
ABU-110


2291
2651
471
ABU-111


2292
2652
472
ABU-112


2293
2653
473
ABU-113


2294
2654
474
ABU-114


2295
2655
475
ABU-115


2296
2656
476
ABU-116


2297
2657
477
ABU-117


2298
2658
478
ABU-118


2299
2659
479
ABU-119


2300
2660
480
ABU-120


3006
3041
3076
ABU-361


3007
3042
3077
ABU-362


3008
3043
3078
ABU-363


3009
3044
3079
ABU-364


3010
3045
3080
ABU-365


3011
3046
3081
ABU-366


3012
3047
3082
ABU-367


3013
3048
3083
ABU-368


3014
3049
3084
ABU-369


3015
3050
3085
ABU-370


3016
3051
3086
ABU-371


3017
3052
3087
ABU-372


2301
2661
481
ABU-121


2302
2662
482
ABU-122


2303
2663
483
ABU-123


2304
2664
484
ABU-124


2305
2665
485
ABU-125


2306
2666
486
ABU-126


2307
2667
487
ABU-127


2308
2668
488
ABU-128


2309
2669
489
ABU-129


2310
2670
490
ABU-130


2311
2671
491
ABU-131


2312
2672
492
ABU-132


2313
2673
493
ABU-133


2314
2674
494
ABU-134


2315
2675
495
ABU-135


2316
2676
496
ABU-136


2317
2677
497
ABU-137


2318
2678
498
ABU-138


2319
2679
499
ABU-139


2320
2680
500
ABU-140


2321
2681
501
ABU-141


2322
2682
502
ABU-142


2323
2683
503
ABU-143


2324
2684
504
ABU-144


2325
2685
505
ABU-145


2326
2686
506
ABU-146


2327
2687
507
ABU-147


2328
2688
508
ABU-148


2329
2689
509
ABU-149


2330
2690
510
ABU-150


2331
2691
511
ABU-151


2332
2692
512
ABU-152


2333
2693
513
ABU-153


2334
2694
514
ABU-154


2335
2695
515
ABU-155


2336
2696
516
ABU-156


2337
2697
517
ABU-157


2338
2698
518
ABU-158


2339
2699
519
ABU-159


2340
2700
520
ABU-160


2341
2701
521
ABU-161


2342
2702
522
ABU-162


2343
2703
523
ABU-163


2344
2704
524
ABU-164


2345
2705
525
ABU-165


2346
2706
526
ABU-166


2347
2707
527
ABU-167


2348
2708
528
ABU-168


2349
2709
529
ABU-169


2350
2710
530
ABU-170


2351
2711
531
ABU-171


2352
2712
532
ABU-172


2353
2713
533
ABU-173


2354
2714
534
ABU-174


2355
2715
535
ABU-175


2356
2716
536
ABU-176


2357
2717
537
ABU-177


2358
2718
538
ABU-178


2359
2719
539
ABU-179


2360
2720
540
ABU-180


2361
2721
541
ABU-181


2362
2722
542
ABU-182


2363
2723
543
ABU-183


2364
2724
544
ABU-184


2365
2725
545
ABU-185


2366
2726
546
ABU-186


2367
2727
547
ABU-187


2368
2728
548
ABU-188


2369
2729
549
ABU-189


2370
2730
550
ABU-190


2371
2731
551
ABU-191


2372
2732
552
ABU-192


2373
2733
553
ABU-193


2374
2734
554
ABU-194


2375
2735
555
ABU-195


2376
2736
556
ABU-196


2377
2737
557
ABU-197


2378
2738
558
ABU-198


2379
2739
559
ABU-199


2380
2740
560
ABU-200


2381
2741
561
ABU-201


2382
2742
562
ABU-202


2383
2743
563
ABU-203


2384
2744
564
ABU-204


2385
2745
565
ABU-205


2386
2746
566
ABU-206


2387
2747
567
ABU-207


2388
2748
568
ABU-208


2389
2749
569
ABU-209


2390
2750
570
ABU-210


2391
2751
571
ABU-211


2392
2752
572
ABU-212


2393
2753
573
ABU-213


2394
2754
574
ABU-214


2395
2755
575
ABU-215


2396
2756
576
ABU-216


2397
2757
577
ABU-217


2398
2758
578
ABU-218


2399
2759
579
ABU-219


2400
2760
580
ABU-220


2401
2761
581
ABU-221


2402
2762
582
ABU-222


2403
2763
583
ABU-223


2404
2764
584
ABU-224


2405
2765
585
ABU-225


2406
2766
586
ABU-226


2407
2767
587
ABU-227


2408
2768
588
ABU-22 8


2409
2769
589
ABU-229


2410
2770
590
ABU-230


2411
2771
591
ABU-231


2412
2772
592
ABU-232


2413
2773
593
ABU-233


2414
2774
594
ABU-234


2415
2775
595
ABU-235


2416
2776
596
ABU-236


2417
2777
597
ABU-237


2418
2778
598
ABU-238


2419
2779
599
ABU-239


2420
2780
600
ABU-240


2421
2781
601
ABU-241


2422
2782
602
ABU-242


2423
2783
603
ABU-243


2424
2784
604
ABU-244


2425
2785
605
ABU-245


2426
2786
606
ABU-246


2427
2787
607
ABU-247


2428
2788
608
ABU-248


2429
2789
609
ABU-249


2430
2790
610
ABU-250


2431
2791
611
ABU-251


2432
2792
612
ABU-252


2433
2793
613
ABU-253


2434
2794
614
ABU-254


2435
2795
615
ABU-255


2436
2796
616
ABU-256


2437
2797
617
ABU-257


2438
2798
618
ABU-258


2439
2799
619
ABU-259


2440
2800
620
ABU-260


2441
2801
621
ABU-261


2442
2802
622
ABU-262


2443
2803
623
ABU-263


2444
2804
624
ABU-264


2445
2805
625
ABU-265


2446
2806
626
ABU-266


2447
2807
627
ABU-267


2448
2808
628
ABU-268


2449
2809
629
ABU-269


2450
2810
630
ABU-270


2451
2811
631
ABU-271


2452
2812
632
ABU-272


2453
2813
633
ABU-273


2454
2814
634
ABU-274


2455
2815
635
ABU-275


2456
2816
636
ABU-276


2457
2817
637
ABU-277


2458
2818
638
ABU-278


2459
2819
639
ABU-279


2460
2820
640
ABU-280


2461
2821
641
ABU-281


2462
2822
642
ABU-282


2463
2823
643
ABU-283


2464
2824
644
ABU-284


2465
2825
645
ABU-285


2466
2826
646
ABU-286


2467
2827
647
ABU-287


2468
2828
648
ABU-288


2469
2829
649
ABU-289


2470
2830
650
ABU-290


2471
2831
651
ABU-291


2472
2832
652
ABU-292


2473
2833
653
ABU-293


2474
2834
654
ABU-294


2475
2835
655
ABU-295


2476
2836
656
ABU-296


2477
2837
657
ABU-297


2478
2838
658
ABU-298


2479
2839
659
ABU-299


2480
2840
660
ABU-300


2481
2841
661
ABU-301


2482
2842
662
ABU-302


2483
2843
663
ABU-303


2484
2844
664
ABU-304


2485
2845
665
ABU-305


2486
2846
666
ABU-306


2487
2847
667
ABU-307


2488
2848
668
ABU-308


2489
2849
669
ABU-309


2490
2850
670
ABU-310


2491
2851
671
ABU-311


2492
2852
672
ABU-312


2493
2853
673
ABU-313


2494
2854
674
ABU-314


2495
2855
675
ABU-315


2496
2856
676
ABU-316


2497
2857
677
ABU-317


2498
2858
678
ABU-318


2499
2859
679
ABU-319


2500
2860
680
ABU-320


2501
2861
681
ABU-321


2502
2862
682
ABU-322


2503
2863
683
ABU-323


2504
2864
684
ABU-324


2505
2865
685
ABU-325


2506
2866
686
ABU-326


2507
2867
687
ABU-327


2508
2868
688
ABU-328


2509
2869
689
ABU-329


2510
2870
690
ABU-330


2511
2871
691
ABU-331


2512
2872
692
ABU-332


2513
2873
693
ABU-333


2514
2874
694
ABU-334


2515
2875
695
ABU-335


2516
2876
696
ABU-336


2517
2877
697
ABU-337


2518
2878
698
ABU-338


2519
2879
699
ABU-339


2520
2880
700
ABU-340


2521
2881
701
ABU-341


2522
2882
702
ABU-342


2523
2883
703
ABU-343


2524
2884
704
ABU-344


2525
2885
705
ABU-345


2526
2886
706
ABU-346


2527
2887
707
ABU-347


2528
2888
708
ABU-348


2529
2889
709
ABU-349


2530
2890
710
ABU-350


2531
2891
711
ABU-351


2532
2892
712
ABU-352


2533
2893
713
ABU-353


2534
2894
714
ABU-354


2535
2895
715
ABU-355


2536
2896
716
ABU-356


2537
2897
717
ABU-357


2538
2898
718
ABU-358


2539
2899
719
ABU-359


2540
2900
720
ABU-360


3018
3053
3088
ABU-373


3019
3054
3089
ABU-374


3020
3055
3090
ABU-375


3021
3056
3091
ABU-376


3022
3057
3092
ABU-377


3023
3058
3093
ABU-378


3024
3059
3094
ABU-379


3025
3060
3095
ABU-380


3026
3061
3096
ABU-381


3027
3062
3097
ABU-382


3028
3063
3098
ABU-383


3029
3064
3099
ABU-384


3030
3065
3100
ABU-385


3031
3066
3101
ABU-386


3032
3067
3102
ABU-387


3033
3068
3103
ABU-388


3034
3069
3104
ABU-389


3035
3070
3105
ABU-390


3036
3071
3106
ABU-391


3037
3072
3107
ABU-392


3038
3073
3108
ABU-393


3039
3074
3109
ABU-394


3040
3075
3110
ABU-395









In the antigen-binding unit of the present invention, the VH can compromise a sequence selected from combinations of CDR1, CDR2, and CDR3 as following:















HCDR1
HCDR2
HCDR3
ABU No.


















1461
1821
1
ABU-1


1462
1822
2
ABU-2


1463
1823
3
ABU-3


1464
1824
4
ABU-4


1465
1825
5
ABU-5


1466
1826
6
ABU-6


1467
1827
7
ABU-7


1468
1828
8
ABU-8


1469
1829
9
ABU-9


1470
1830
10
ABU-10


1471
1831
11
ABU-11


1472
1832
12
ABU-12


1473
1833
13
ABU-13


1474
1834
14
ABU-14


1475
1835
15
ABU-15


1476
1836
16
ABU-16


1477
1837
17
ABU-17


1478
1838
18
ABU-18


1479
1839
19
ABU-19


1480
1840
20
ABU-20


1481
1841
21
ABU-21


1482
1842
22
ABU-22


1483
1843
23
ABU-23


1484
1844
24
ABU-24


1485
1845
25
ABU-25


1486
1846
26
ABU-26


1487
1847
27
ABU-27


1488
1848
28
ABU-28


1489
1849
29
ABU-29


1490
1850
30
ABU-30


1491
1851
31
ABU-31


1492
1852
32
ABU-32


1493
1853
33
ABU-33


1494
1854
34
ABU-34


1495
1855
35
ABU-35


1496
1856
36
ABU-36


1497
1857
37
ABU-37


1498
1858
38
ABU-38


1499
1859
39
ABU-39


1500
1860
40
ABU-40


1501
1861
41
ABU-41


1502
1862
42
ABU-42


1503
1863
43
ABU-43


1504
1864
44
ABU-44


1505
1865
45
ABU-45


1506
1866
46
ABU-46


1507
1867
47
ABU-47


1508
1868
48
ABU-48


1509
1869
49
ABU-49


1510
1870
50
ABU-50


1511
1871
51
ABU-51


1512
1872
52
ABU-52


1513
1873
53
ABU-53


1514
1874
54
ABU-54


1515
1875
55
ABU-55


1516
1876
56
ABU-56


1517
1877
57
ABU-57


1518
1878
58
ABU-58


1519
1879
59
ABU-59


1520
1880
60
ABU-60


1521
1881
61
ABU-61


1522
1882
62
ABU-62


1523
1883
63
ABU-63


1524
1884
64
ABU-64


1525
1885
65
ABU-65


1526
1886
66
ABU-66


1527
1887
67
ABU-67


1528
1888
68
ABU-68


1529
1889
69
ABU-69


1530
1890
70
ABU-70


1531
1891
71
ABU-71


1532
1892
72
ABU-72


1533
1893
73
ABU-73


1534
1894
74
ABU-74


1535
1895
75
ABU-75


1536
1896
76
ABU-76


1537
1897
77
ABU-77


1538
1898
78
ABU-78


1539
1899
79
ABU-79


1540
1900
80
ABU-80


1541
1901
81
ABU-81


1542
1902
82
ABU-82


1543
1903
83
ABU-83


1544
1904
84
ABU-84


1545
1905
85
ABU-85


1546
1906
86
ABU-86


1547
1907
87
ABU-87


1548
1908
88
ABU-88


1549
1909
89
ABU-89


1550
1910
90
ABU-90


1551
1911
91
ABU-91


1552
1912
92
ABU-92


1553
1913
93
ABU-93


1554
1914
94
ABU-94


1555
1915
95
ABU-95


1556
1916
96
ABU-96


1557
1917
97
ABU-97


1558
1918
98
ABU-98


1559
1919
99
ABU-99


1560
1920
100
ABU-100


1561
1921
101
ABU-101


1562
1922
102
ABU-102


1563
1923
103
ABU-103


1564
1924
104
ABU-104


1565
1925
105
ABU-105


1566
1926
106
ABU-106


1567
1927
107
ABU-107


1568
1928
108
ABU-108


1569
1929
109
ABU-109


1570
1930
110
ABU-110


1571
1931
111
ABU-111


1572
1932
112
ABU-112


1573
1933
113
ABU-113


1574
1934
114
ABU-114


1575
1935
115
ABU-115


1576
1936
116
ABU-116


1577
1937
117
ABU-117


1578
1938
118
ABU-118


1579
1939
119
ABU-119


1580
1940
120
ABU-120


1581
1941
121
ABU-121


1582
1942
122
ABU-122


1583
1943
123
ABU-123


1584
1944
124
ABU-124


1585
1945
125
ABU-125


1586
1946
126
ABU-126


1587
1947
127
ABU-127


1588
1948
128
ABU-128


1589
1949
129
ABU-129


1590
1950
130
ABU-130


1591
1951
131
ABU-131


1592
1952
132
ABU-132


1593
1953
133
ABU-133


1594
1954
134
ABU-134


1595
1955
135
ABU-135


1596
1956
136
ABU-136


1597
1957
137
ABU-137


1598
1958
138
ABU-138


1599
1959
139
ABU-139


1600
1960
140
ABU-140


1601
1961
141
ABU-141


1602
1962
142
ABU-142


1603
1963
143
ABU-143


1604
1964
144
ABU-144


1605
1965
145
ABU-145


1606
1966
146
ABU-146


1607
1967
147
ABU-147


1608
1968
148
ABU-148


1609
1969
149
ABU-149


1610
1970
150
ABU-150


1611
1971
151
ABU-151


1612
1972
152
ABU-152


1613
1973
153
ABU-153


1614
1974
154
ABU-154


1615
1975
155
ABU-155


1616
1976
156
ABU-156


1617
1977
157
ABU-157


1618
1978
158
ABU-158


1619
1979
159
ABU-159


1620
1980
160
ABU-160


1621
1981
161
ABU-161


1622
1982
162
ABU-162


1623
1983
163
ABU-163


1624
1984
164
ABU-164


1625
1985
165
ABU-165


1626
1986
166
ABU-166


1627
1987
167
ABU-167


1628
1988
168
ABU-168


1629
1989
169
ABU-169


1630
1990
170
ABU-170


1631
1991
171
ABU-171


1632
1992
172
ABU-172


1633
1993
173
ABU-173


1634
1994
174
ABU-174


1635
1995
175
ABU-175


1636
1996
176
ABU-176


1637
1997
177
ABU-177


1638
1998
178
ABU-178


1639
1999
179
ABU-179


1640
2000
180
ABU-180


1641
2001
181
ABU-181


1642
2002
182
ABU-182


1643
2003
183
ABU-183


1644
2004
184
ABU-184


1645
2005
185
ABU-185


1646
2006
186
ABU-186


1647
2007
187
ABU-187


1648
2008
188
ABU-188


1649
2009
189
ABU-189


1650
2010
190
ABU-190


1651
2011
191
ABU-191


1652
2012
192
ABU-192


1653
2013
193
ABU-193


1654
2014
194
ABU-194


1655
2015
195
ABU-195


1656
2016
196
ABU-196


1657
2017
197
ABU-197


1658
2018
198
ABU-198


1659
2019
199
ABU-199


1660
2020
200
ABU-200


1661
2021
201
ABU-201


1662
2022
202
ABU-202


1663
2023
203
ABU-203


1664
2024
204
ABU-204


1665
2025
205
ABU-205


1666
2026
206
ABU-206


1667
2027
207
ABU-207


1668
2028
208
ABU-208


1669
2029
209
ABU-209


1670
2030
210
ABU-210


1671
2031
211
ABU-211


1672
2032
212
ABU-212


1673
2033
213
ABU-213


1674
2034
214
ABU-214


1675
2035
215
ABU-215


1676
2036
216
ABU-216


1677
2037
217
ABU-217


1678
2038
218
ABU-218


1679
2039
219
ABU-219


1680
2040
220
ABU-220


1681
2041
221
ABU-221


1682
2042
222
ABU-222


1683
2043
223
ABU-223


1684
2044
224
ABU-224


1685
2045
225
ABU-225


1686
2046
226
ABU-226


1687
2047
227
ABU-227


1688
2048
228
ABU-228


1689
2049
229
ABU-229


1690
2050
230
ABU-230


1691
2051
231
ABU-231


1692
2052
232
ABU-232


1693
2053
233
ABU-233


1694
2054
234
ABU-234


1695
2055
235
ABU-235


1696
2056
236
ABU-236


1697
2057
237
ABU-237


1698
2058
238
ABU-238


1699
2059
239
ABU-239


1700
2060
240
ABU-240


1701
2061
241
ABU-241


1702
2062
242
ABU-242


1703
2063
243
ABU-243


1704
2064
244
ABU-244


1705
2065
245
ABU-245


1706
2066
246
ABU-246


1707
2067
247
ABU-247


1708
2068
248
ABU-248


1709
2069
249
ABU-249


1710
2070
250
ABU-250


1711
2071
251
ABU-251


1712
2072
252
ABU-252


1713
2073
253
ABU-253


1714
2074
254
ABU-254


1715
2075
255
ABU-255


1716
2076
256
ABU-256


1717
2077
257
ABU-257


1718
2078
258
ABU-258


1719
2079
259
ABU-259


1720
2080
260
ABU-260


1721
2081
261
ABU-261


1722
2082
262
ABU-262


1723
2083
263
ABU-263


1724
2084
264
ABU-264


1725
2085
265
ABU-265


1726
2086
266
ABU-266


1727
2087
267
ABU-267


1728
2088
268
ABU-268


1729
2089
269
ABU-269


1730
2090
270
ABU-270


1731
2091
271
ABU-271.


1732
2092
272
ABU-272


1733
2093
273
ABU-273


1734
2094
274
ABU-274


1735
2095
275
ABU-275


1736
2096
276
ABU-276


1737
2097
277
ABU-277


1738
2098
278
ABU-278


1739
2099
279
ABU-279


1740
2100
280
ABU-280


1741
2101
281
ABU-281


1742
2102
282
ABU-282


1743
2103
283
ABU-283


1744
2104
284
ABU-284


1745
2105
285
ABU-285


1746
2106
286
ABU-286


1747
2107
287
ABU-287


1748
2108
288
ABU-288


1749
2109
289
ABU-289


1750
2110
290
ABU-290


1751
2111
291
ABU-291


1752
2112
292
ABU-292


1753
2113
293
ABU-293


1754
2114
294
ABU-294


1755
2115
295
ABU-295


1756
2116
296
ABU-296


1757
2117
297
ABU-297


1758
2118
298
ABU-298


1759
2119
299
ABU-299


1760
2120
300
ABU-300


1761
2121
301
ABU-301


1762
2122
302
ABU-302


1763
2123
303
ABU-303


1764
2124
304
ABU-304


1765
2125
305
ABU-305


1766
2126
306
ABU-306


1767
2127
307
ABU-307


1768
2128
308
ABU-308


1769
2129
309
ABU-309


1770
2130
310
ABU-310


1771
2131
311
ABU-311


1772
2132
312
ABU-312


1773
2133
313
ABU-313


1774
2134
314
ABU-314


1775
2135
315
ABU-315


1776
2136
316
ABU-316


1777
2137
317
ABU-317


1778
2138
318
ABU-318


1779
2139
319
ABU-319


1780
2140
320
ABU-320


1781
2141
321
ABU-321


1782
2142
322
ABU-322


1783
2143
323
ABU-323


1784
2144
324
ABU-324


1785
2145
325
ABU-325


1786
2146
326
ABU-326


1787
2147
327
ABU-327


1788
2148
328
ABU-328


1789
2149
329
ABU-329


1790
2150
330
ABU-330


1791
2151
331
ABU-331


1792
2152
332
ABU-332


1793
2153
333
ABU-333


1794
2154
334
ABU-334


1795
2155
335
ABU-335


1796
2156
336
ABU-336


1797
2157
337
ABU-337


1798
2158
338
ABU-338


1799
2159
339
ABU-339


1800
2160
340
ABU-340


1801
2161
341
ABU-341


1802
2162
342
ABU-342


1803
2163
343
ABU-343


1804
2164
344
ABU-344


1805
2165
345
ABU-345


1806
2166
346
ABU-346


1807
2167
347
ABU-347


1808
2168
348
ABU-348


1809
2169
349
ABU-349


1810
2170
350
ABU-350


1811
2171
351
ABU-351


1812
2172
352
ABU-352


1813
2173
353
ABU-353


1814
2174
354
ABU-354


1815
2175
355
ABU-355


1816
2176
356
ABU-356


1817
2177
357
ABU-357


1818
2178
358
ABU-358


1819
2179
359
ABU-359


1820
2180
360
ABU-360


2901
2936
2971
ABU-361


2902
2937
2972
ABU-362


2903
2938
2973
ABU-363


2904
2939
2974
ABU-364


2905
2940
2975
ABU-365


2906
2941
2976
ABU-366


2907
2942
2977
ABU-367


2908
2943
2978
ABU-368


2909
2944
2979
ABU-369


2910
2945
2980
ABU-370


2911
2946
2981
ABU-371


2912
2947
2982
ABU-372


2913
2948
2983
ABU-373


2914
2949
2984
ABU-374


2915
2950
2985
ABU-375


2916
2951
2986
ABU-376


2917
2952
2987
ABU-377


2918
2953
2988
ABU-378


2919
2954
2989
ABU-379


2920
2955
2990
ABU-380


2921
2956
2991
ABU-381


2922
2957
2992
ABU-382


2923
2958
2993
ABU-383


2924
2959
2994
ABU-384


2925
2960
2995
ABU-385


2926
2961
2996
ABU-386


2927
2962
2997
ABU-387


2928
2963
2998
ABU-388


2929
2964
2999
ABU-389


2930
2965
3000
ABU-390


2931
2966
3001
ABU-391


2932
2967
3002
ABU-392


2933
2968
3003
ABU-393


2934
2969
3004
ABU-394


2935
2970
3005
ABU-395






















LCDR1
LCDR2
LCDR3
ABU No.


















2181
2541
361
ABU-1


2182
2542
362
ABU-2


2183
2543
363
ABU-3


2184
2544
364
ABU-4


2185
2545
365
ABU-5


2186
2546
366
ABU-6


2187
2547
367
ABU-7


2188
2548
368
ABU-8


2189
2549
369
ABU-9


2190
2550
370
ABU-10


2191
2551
371
ABU-11


2192
2552
372
ABU-12


2193
2553
373
ABU-13


2194
2554
374
ABU-14


2195
2555
375
ABU-15


2196
2556
376
ABU-16


2197
2557
377
ABU -17


2198
2558
378
ABU-18


2199
2559
379
ABU-19


2200
2560
380
ABU-20


2201
2561
381
ABU-21


2202
2562
382
ABU-22


2203
2563
383
ABU-23


2204
2564
384
ABU-24


2205
2565
385
ABU-25


2206
2566
386
ABU-26


2207
2567
387
ABU-27


2208
2568
388
ABU-28


2209
2569
389
ABU-29


2210
2570
390
ABU-30


2211
2571
391
ABU-31


2212
2572
392
ABU-32


2213
2573
393
ABU-33


2214
2574
394
ABU-34


2215
2575
395
ABU-35


2216
2576
396
ABU-36


2217
2577
397
ABU-37


2218
2578
398
ABU-38


2219
2579
399
ABU-39


2220
2580
400
ABU-40


2221
2581
401
ABU-41


2222
2582
402
ABU-42


2223
2583
403
ABU-43


2224
2584
404
ABU-44


2225
2585
405
ABU-45


2226
2586
406
ABU-46


2227
2587
407
ABU-47


2228
2588
408
ABU-48


2229
2589
409
ABU-49


2230
2590
410
ABU-50


2231
2591.
411
ABU-51


2232
2592
412
ABU-52


2233
2593
413
ABU-53


2234
2594
414
ABU-54


2235
2595
415
ABU-55


2236
2596
416
ABU-56


2237
2597
417
ABU-57


2238
2598
418
ABU-58


2239
2599
419
ABU-59


2240
2600
420
ABU-60


2241
2601
421
ABU-61


2242
2602
422
ABU-62


2243
2603
423
ABU-63


2244
2604
424
ABU-64


2245
2605
425
ABU-65


2246
2606
426
ABU-66


2247
2607
427
ABU-67


2248
2608
428
ABU-68


2249
2609
429
ABU-69


2250
2610
430
ABU-70


2251
2611
431
ABU-71


2252
2612
432
ABU-72


2253
2613
433
ABU-73


2254
2614
434
ABU-74


2255
2615
435
ABU-75


2256
2616
436
ABU-76


2257
2617
437
ABU-77


2258
2618
438
ABU-78


2259
2619
439
ABU-79


2260
2620
440
ABU-80


2261
2621
441
ABU-81


2262
2622
442
ABU-82


2263
2623
443
ABU-83


2264
2624
444
ABU-84


2265
2625
445
ABU-85


2266
2626
446
ABU-86


2267
2627
447
ABU-87


2268
2628
448
ABU-88


2269
2629
449
ABU-89


2270
2630
450
ABU-90


2271
2631
451
ABU-91


2272
2632
452
ABU-92


2273
2633
453
ABU-93


2274
2634
454
ABU-94


2275
2635
455
ABU-95


2276
2636
456
ABU-96


2277
2637
457
ABU-97


2278
2638
458
ABU-98


2279
2639
459
ABU-99


2280
2640
460
ABU-100


2281
2641
461
ABU-101


2282
2642
462
ABU-102


2283
2643
463
ABU-103


2284
2644
464
ABU-104


2285
2645
465
ABU-105


2286
2646
466
ABU-106


2287
2647
467
ABU-107


2288
2648
468
ABU-108


2289
2649
469
ABU-109


2290
2650
470
ABU-110


2291
2651
471
ABU-111


2292
2652
472
ABU-112


2293
2653
473
ABU-113


2294
2654
474
ABU-114


2295
2655
475
ABU-115


2296
2656
476
ABU-116


2297
2657
477
ABU-117


2298
2658
478
ABU-118


2299
2659
479
ABU-119


2300
2660
480
ABU-120


2301
2661
481
ABU-121


2302
2662
482
ABU-122


2303
2663
483
ABU-123


2304
2664
484
ABU-124


2305
2665
485
ABU-125


2306
2666
486
ABU-126


2307
2667
487
ABU-127


2308
2668
488
ABU-128


2309
2669
489
ABU-129


2310
2670
490
ABU-130


2311
2671
491
ABU-131


2312
2672
492
ABU-132


2313
2673
493
ABU-133


2314
2674
494
ABU-134


2315
2675
495
ABU-135


2316
2676
496
ABU-136


2317
2677
497
ABU-137


2318
2678
498
ABU-138


2319
2679
499
ABU-139


2320
2680
500
ABU-140


2321
2681
501
ABU-141


2322
2682
502
ABU-142


2323
2683
503
ABU-143


2324
2684
504
ABU-144


2325
2685
505
ABU-145


2326
2686
506
ABU-146


2327
2687
507
ABU-147


2328
2688
508
ABU-148


2329
2689
509
ABU-149


2330
2690
510
ABU-150


2331
2691
511
ABU-151


2332
2692
512
ABU-152


2333
2693
513
ABU-153


2334
2694
514
ABU-154


2335
2695
515
ABU-155


2336
2696
516
ABU-156


2337
2697
517
ABU-157


2338
2698
518
ABU-158


2339
2699
519
ABU-159


2340
2700
520
ABU-160


2341
2701
521.
ABU-161


2342
2702
522
ABU-162


2343
2703
523
ABU-163


2344
2704
524
ABU-164


2345
2705
525
ABU-165


2346
2706
526
ABU-166


.2347
2707
527
ABU-167


2348
2708
528
ABU-168


2349
2709
529
ABU-169


2350
2710
530
ABU-170


2351
2711
531
ABU-171


2352
2712
532
ABU-172


2353
2713
533
ABU-173


2354
2714
534
ABU-174


2355
2715
535
ABU-175


2356
2716
536
ABU-176


2357
2717
537
ABU-177


2358
2718
538
ABU-178


2359
2719
539
ABU-179


2360
2720
540
ABU-180


2361
2721
541
ABU-181


2362
2722
542
ABU-182


2363
2723
543
ABU-183


2364
2724
544
ABU-184


2365
2725
545
ABU-185


2366
2726
546
ABU-186


2367
2727
547
ABU-187


2368
2728
548
ABU-188


2369
2729
549
ABU-189


2370
2730
550
ABU-190


2371
2731
551
ABU-191


2372
2732
552
ABU-192


2373
2733
553
ABU-193


2374
2734
554
ABU-194


2375
2735
555
ABU-195


2376
2736
556
ABU-196


2377
2737
557
ABU-197


2378
2738
558
ABU-198


2379
2739
559
ABU-199


2380
2740
560
ABU-200


2381
2741
561
ABU-201


2382
2742
562
ABU-202


2383
2743
563
ABU-203


2384
2744
564
ABU-204


2385
2745
565
ABU-205


2386
2746
566
ABU-206


2387
2747
567
ABU-207


2388
2748
568
ABU-208


2389
2749
569
ABU-209


2390
2750
570
ABU-210


2391
2751
571
ABU-211


2392
2752
572
ABU-212


2393
2753
573
ABU-213


2394
2754
574
ABU-214


2395
2755
575
ABU-215


2396
2756
576
ABU-216


2397
2757
577
ABU-217


2398
2758
578
ABU-218


2399
2759
579
ABU-219


2400
2760
580
ABU-220


2401
2761
581
ABU-221


2402
2762
582
ABU-222


2403
2763
583
ABU-223


2404
2764
584
ABU-224


2405
2765
585
ABU-225


2406
2766
586
ABU-226


2407
2767
587
ABU-227


2408
2768
588
ABU-228


2409
2769
589
ABU-229


2410
2770
590
ABU-230


2411
2771
591
ABU-231


2412
2772
592
ABU-232


2413
2773
593
ABU-233


2414
2774
594
ABU-234


2415
2775
595
ABU-235


2416
2776
596
ABU-236


2417
2777
597
ABU-237


2418
2778
598
ABU-238


2419
2779
599
ABU-239


2420
2780
600
ABU-240


2421
2781
601
ABU-241


2422
2782
602
ABU-242


2423
2783
603
ABU-243


2424
2784
604
ABU-244


2425
2785
605
ABU-245


2426
2786
606
ABU-246


2427
2787
607
ABU-247


2428
2788
608
ABU-248


2429
2789
609
ABU-249


2430
2790
610
ABU-250


2431
2791
611
ABU-251


2432
2792
612
ABU-252


2433
2793
613
ABU-253


2434
2794
614
ABU-254


2435
2795
615
ABU-255


2436
2796
616
ABU-256


2437
2797
617
ABU-257


2438
2798
618
ABU-258


2439
2799
619
ABU-259


2440
2800
620
ABU-260


2441
2801
621
ABU-261


2442
2802
622
ABU-262


2443
2803
623
ABU-263


2444
2804
624
ABU-264


2445
2805
625
ABU-265


2446
2806
626
ABU-266


2447
2807
627
ABU-267


2448
2808
628
ABU-268


2449
2809
629
ABU-269


2450
2810
630
ABU-270


2451
2811
631
ABU-271


2452
2812
632
ABU-272


2453
2813
633
ABU-273


2454
2814
634
ABU-274


2455
2815
635
ABU-275


2456
2816
636
ABU-276


2457
2817
637
ABU-277


2458
2818
638
ABU-278


2459
2819
639
ABU-279


2460
2820
640
ABU-280


2461.
2821
641
ABU-281


2462
2822
642
ABU-282


2463
2823
643
ABU-283


2464
2824
644
ABU-284


2465
2825
645
ABU-285


2466
2826
646
ABU-286


2467
2827
647
ABU-287


2468
2828
648
ABU-288


2469
2829
649
ABU-289


2470
2830
650
ABU-290


2471
2831
651
ABU-291


2472
2832
652
ABU-292


2473
2833
653
ABU-293


2474
2834
654
ABU-294


2475
2835
655
ABU-295


2476
2836
656
ABU-296


2477
2837
657
ABU-297


2478
2838
658
ABU-298


2479
2839
659
ABU-299


2480
2840
660
ABU-300


2481
2841
661
ABU-301


2482
2842
662
ABU-302


2483
2843
663
ABU-303


2484
2844
664
ABU-304


2485
2845
665
ABU-305


2486
2846
666
ABU-306


2487
2847
667
ABU-307


2488
2848
668
ABU-308


2489
2849
669
ABU-309


2490
2850
670
ABU-310


2491
2851
671
ABU-311


2492
2852
672
ABU-312


2493
2853
673
ABU-313


2494
2854
674
ABU-314


2495
2855
675
ABU-315


2496
2856
676
ABU-316


2497
2857
677
ABU-317


2498
2858
678
ABU-318


2499
2859
679
ABU-319


2500
2860
680
ABU-320


2501
2861
681
ABU-321


2502
2862
682
ABU-322


2503
2863
683
ABU-323


2504
2864
684
ABU-324


2505
2865
685
ABU-325


2506
2866
686
ABU-326


2507
2867
687
ABU-327


2508
2868
688
ABU-328


2509
2869
689
ABU-329


2510
2870
690
ABU-330


2511
2871
691
ABU-331


2512
2872
692
ABU-332


2513
2873
693
ABU-333


2514
2874
694
ABU-334


2515
2875
695
ABU-335


2516
2876
696
ABU-336


2517
2877
697
ABU-337


2518
2878
698
ABU-338


2519
2879
699
ABU-339


2520
2880
700
ABU-340


2521
2881
701
ABU-341


2522
2882
702
ABU-342


2523
2883
703
ABU-343


2524
2884
704
ABU-344


2525
2885
705
ABU-345


2526
2886
706
ABU-346


2527
2887
707
ABU-347


2528
2888
708
ABU-348


2529
2889
709
ABU-349


2530
2890
710
ABU-350


2531
2891
711
ABU-351


2532
2892
712
ABU-352


2533
2893
713
ABU-353


2534
2894
714
ABU-354


2535
2895
715
ABU-355


2536
2896
716
ABU-356


2537
2897
717
ABU-357


2538
2898
718
ABU-358


2539
2899
719
ABU-359


2540
2900
720
ABU-360


3006
3041
3076
ABU-361


3007
3042
3077
ABU-362


3008
3043
3078
ABU-363


3009
3044
3079
ABU-364


3010
3045
3080
ABU-365


3011
3046
3081
ABU-366


3012
3047
3082
ABU-367


3013
3048
3083
ABU-368


3014
3049
3084
ABU-369


3015
3050
3085
ABU-370


3016
3051
3086
ABU-371


3017
3052
3087
ABU-372


3018
3053
3088
ABU-373


3019
3054
3089
ABU-374


3020
3055
3090
ABU-375


3021
3056
3091
ABU-376


3022
3057
3092
ABU-377


3023
3058
3093
ABU-378


3024
3059
3094
ABU-379


3025
3060
3095
ABU-380


3026
3061
3096
ABU-381


3027
3062
3097
ABU-382


3028
3063
3098
ABU-383


3029
3064
3099
ABU-384


3030
3065
3100
ABU-385


3031
3066
3101
ABU-386


3032
3067
3102
ABU-387


3033
3068
3103
ABU-388


3034
3069
3104
ABU-389


3035
3070
3105
ABU-390


3036
3071
3106
ABU-391


3037
3072
3107
ABU-392


3038
3073
3108
ABU-393


3039
3074
3109
ABU-394


3040
3075
3110
ABU-395









The VH CDR1 of the antigen-binding unit of the present invention can comprise the same sequence as CDR1 contained in SEQ ID NOs: 721-1080 and 3111-3145; The VH CDR2 of the antigen-binding unit of the present invention can comprise the same sequence as CDR2 contained in SEQ ID NOs: 721-1080 and 3111-3145; The VH CDR3 of the antigen-binding unit of the present invention can comprise the same sequence as CDR3 contained in SEQ ID NOs: 721-1080 and 3111-3145; the VL CDR1 of the antigen-binding unit can comprise the same sequence as CDR1 contained in SEQ ID NOs: 1081-1440 and 3146-3180; the VL CDR2 of the antigen-binding unit can comprise the same sequence as CDR2 contained in SEQ ID NOs: 1081-1440 and 3146-3180; and/or the VL CDR3 of the antigen-binding unit can comprise the same sequence as CDR3 contained in SEQ ID NOs: 1081-1440 and 3146-3180.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 2354, SEQ ID NO: 2355, SEQ ID NO: 2370, SEQ ID NO: 2477, and SEQ ID NO: 3012;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 2714, SEQ ID NO: 2715, SEQ ID NO: 2730, SEQ ID NO: 2837, and SEQ ID NO: 3047;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 534, SEQ ID NO: 535, SEQ ID NO: 550, SEQ ID NO: 657, and SEQ ID NO: 3082;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 1634, SEQ ID NO: 1635, SEQ ID NO: 1650, SEQ ID NO: 1757, and SEQ ID NO: 2907;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 1994, SEQ ID NO: 1995, SEQ ID NO: 2010, SEQ ID NO: 2117, and SEQ ID NO: 2942; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 190, SEQ ID NO: 297, and SEQ ID NO: 2977.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 2354;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 2714;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 534;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 1634;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 1994; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 174.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 2355;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 2715;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 535;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 1635;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 1995; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 175.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 2370;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 2730;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 550;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 1650;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 2010; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 190.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 2477;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 2837;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 657;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 1757;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 2117; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 297.


In one embodiment, the antibody provided in the present invention comprises one, two, three, four, five or six amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of light chain variable region CDR1: SEQ ID NO: 3012;


b. amino acid sequences of light chain variable region CDR2: SEQ ID NO: 3047;


c. amino acid sequences of light chain variable region CDR3: SEQ ID NO: 3082;


d. amino acid sequences of heavy chain variable region CDR1: SEQ ID NO: 2907;


e. amino acid sequences of heavy chain variable region CDR2: SEQ ID NO: 2942; and


f. amino acid sequences of heavy chain variable region CDR3: SEQ ID NO: 2977.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 1377, and SEQ ID NO: 3152; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 1017, and SEQ ID NO: 3117.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 1254; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 894.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 1255; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 895.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 1270; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 910.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 1377; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 1017.


In one embodiment, the antibody provided in the present invention comprises one or two amino acid sequences, wherein each amino acid sequence is independently selected from the amino acid sequences listed below:


a. amino acid sequences of a light chain variable region: SEQ ID NO: 3152; and


b. amino acid sequences of a heavy chain variable region: SEQ ID NO: 3117.


The antigen-binding unit of the present invention can bind to the S protein of a novel coronavirus (SARS-CoV-2). The antigen-binding unit of the present invention can bind to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2). Binding of the antigen-binding unit to the RBD can be characterized or represented by any method known in the art. For example, binding can be characterized by binding affinity, which can be the strength of the interaction between the antigen-binding unit and the antigen. Binding affinity can be determined by any method known in the art, such as in vitro binding experiment. The binding affinity of the antigen-binding unit of the present invention can be represented by KD, which is defined as the ratio of two kinetic rate constants Ka/Kd, wherein “Ka” refers to the rate constant for the binding of an antibody to an antigen and “Kd” refers to the rate constant for the dissociation of the antibody from the antibody/antigen complex. The antigen-binding unit as disclosed herein specifically binds to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with a KD in the range of about 10 μM to about 1 fM. For example, the antigen-binding unit can specifically bind to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with a KD of less than about 10 μM, 1 μM, 0.1 μM, 50 nM, 20 nM, 15 nM, 10 nM, 5 nM, 4 nM, 3 nM, 2 nM, 1 nM, 0.5 nM, 0.1 nM, 50 μM, 10 μM, 1 μM, 0.1 μM, 10 fM, 1 fM, 0.1 fM or less than 0.1 fM. The antigen-binding unit disclosed herein can bind to a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2) with an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.


The antigen-binding unit of the present invention has a neutralizing activity against a novel coronavirus (SARS-CoV-2). The neutralizing activity of the antigen-binding unit of the present invention against the novel coronavirus (SARS-CoV-2) can be analyzed using pseudovirus. The pseudovirus has similar cell infection characteristics to the euvirus, can be used to simulate the early process of euvirus infection in a cell, and can be safely and quickly detected and analyzed. The neutralizing activity of the antigen-binding unit of the present invention against the novel coronavirus (SARS-CoV-2) can be detected by a method known in the art, such as using cell microneutralization assay, which is performed with reference to the description of Temperton N.J. et al., Emerg Infect Dis, 2005, 11(3), 411-416.


The neutralizing activity of the antigen-binding unit of the present invention against the novel coronavirus (SARS-CoV-2) can be detected by using an experimental cell, such as Huh-7 cell and pseudovirus SARS-CoV-2. The antigen-binding unit of the present invention can neutralize the novel coronavirus (SARS-CoV-2) pseudovirus with an IC50 of less than 100 μg/ml, less than 50 μg/ml, less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, less than 1 ng/ml, less than 0.5 ng/ml, less than 0.25 ng/ml, less than 0.2 ng/ml, less than 0.1 ng/ml, less than 50 pg/ml, less than 25 pg/ml, less than 20 pg/ml, less than 10 pg/ml, less than 5 pg/ml, less than 2.5 pg/ml, less than 2 pg/ml, or less than 1 pg/ml.


The neutralizing activity of the antigen-binding unit of the present invention against the novel coronavirus (SARS-CoV-2) can be detected by Plaque Reduction Neutralization Test (PRNT) using a SARS-CoV-2 euvirus, wherein the IC50 of the antigen-binding unit of the present invention for neutralization of the SARS-CoV-2 euvirus is calculated according to the reduction of plaques after incubation. The antigen-binding unit of the present invention can neutralize the novel coronavirus (SARS-CoV-2) euvirus with an IC50 of less than 100 μg/ml, less than 50 μg/ml, less than 20 μg/ml, less than 10 μg/ml, less than 9 μg/ml, less than 8 μg/ml, less than 7 μg/ml, less than 6 μg/ml, less than 5 μg/ml, less than 4 μg/ml, less than 3 μg/ml, less than 2 μg/ml, less than 1 μg/ml, less than 0.5 μg/ml, less than 0.25 μg/ml, less than 0.2 μg/ml, less than 0.1 μg/ml, less than 0.05 μg/ml, less than 1 ng/ml, less than 0.5 ng/ml, less than 0.25 ng/ml, less than 0.2 ng/ml, less than 0.1 ng/ml, less than 50 pg/ml, less than 25 pg/ml, less than 20 pg/ml, less than 10 pg/ml, less than 5 pg/ml, less than 2.5 pg/ml, less than 2 pg/ml, or less than 1 pg/ml.


Preparation of Antigen-Binding Unit

Provided herein is a method for producing any of the antigen-binding units disclosed herein, wherein the method comprises culturing a host cell expressing the antigen-binding unit under conditions suitable for the expression of the antigen-binding unit and isolating the antigen-binding unit expressed by the host cell.


The expressed antigen-binding unit can be isolated using various protein purification techniques known in the art. Generally, the antigen-binding units are isolated from media as secreted polypeptides, although they can also be recovered from a host cell lysate or bacterial periplasm when produced directly in the absence of a signal peptide. If the antigen-binding units are membrane-bound, they can be dissolved in a suitable detergent solution commonly used by a person skilled in the art. The recovered antigen-binding units can be further purified by salt precipitation (e.g., with ammonium sulfate), ion exchange chromatography (e.g., running on a cation or anion exchange column at neutral pH and eluting with a step gradient of increasing ionic strength), gel filtration chromatography (including gel filtration HPLC) and tag affinity column chromatography, or affinity resin, such as protein A, protein G, hydroxyapatite and anti-immunoglobulins.


The derived immunoglobulins to which the following moieties are added can be used in the methods and compositions of the present invention: a chemical linker, a detectable moiety such as a fluorescent dye, an enzyme, a substrate, a chemiluminescent moiety, a specific binding moiety such as streptavidin, avidin or biotin, or a drug conjugate.


The present invention further provides an antigen-binding unit conjugated to a chemically functional moiety. Generally, the moiety is a label capable of producing a detectable signal. These conjugated antigen-binding units can be used, for example, in a detection system, such as for detecting the severity of viral infection, imaging of infection focus, etc. Such labels are known in the art and include but are not limited to a radioisotope, an enzyme, a fluorescent compound, a chemiluminescent compound, a bioluminescent compound, a substrate, a cofactor and an inhibitor. For examples of patents with teachings regarding the use of such labels, see U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. The moiety can be covalently linked or recombinantly linked to the antigen-binding unit, or conjugated to the antigen-binding unit via a second reagent such as a second antibody, protein A or a biotin-avidin complex.


Other functional moieties include a signal peptide, a reagent enhancing immunoreactivity, a reagent facilitating coupling to a solid support, a vaccine carrier, a biological response modifier, a paramagnetic label, and a drug. The signal peptide is a short amino acid sequence that guides a newly synthesized protein through the cell membrane (usually the endoplasmic reticulum in an eukaryotic cell) and the inner membrane or both inner and outer membranes of a bacterium. The signal peptide can be located at the N-terminal portion of a polypeptide or the C-terminal portion of a polypeptide, and can be enzymatically removed from the cell between the biosynthesis and secretion of the polypeptide. Such peptides can be introduced into the antigen-binding unit to allow secretion of a synthetic molecule.


The reagent enhancing immunoreactivity includes but is not limited to a bacterial superantigen. The reagent facilitating coupling to a solid support includes but is not limited to biotin or avidin. The immunogen carrier includes but is not limited to, any physiologically acceptable buffers. The biological response modifier includes a cytokine, particularly tumor necrosis factor (TNF), interleukin-2, interleukin-4, granulocyte macrophage colony stimulating factor and y-interferon.


The chemically functional moiety can be prepared recombinantly, for example by generating a fusion gene encoding the antigen-binding unit and the functional moiety. Alternatively, the antigen-binding unit can be chemically bonded to the moiety by any of various well-known chemical procedures. For example, when the moiety is a protein, the linkage can be achieved by a heterobifunctional crosslinking agent, e.g., SPDP, carbodiimide glutaraldehyde, etc. The moiety can be covalently linked or conjugated via a second reagent, such as a second antibody, protein A or a biotin-avidin complex. The paramagnetic moiety and the conjugation thereof to an antibody are well known in the art. See, for example, Miltenyi et al. (1990) Cytometry 11:231-238.


Nucleic Acids

In one aspect, provided herein is an isolated polynucleotide encoding the antigen-binding unit of the present invention. Nucleotide sequences corresponding to various regions of the L or H chain of an existing antibody can be readily obtained and sequenced using conventional techniques including, but not limited to, hybridization, PCR, and DNA sequencing. The hybridoma cell producing a monoclonal antibody is used as a preferred source of an antibody nucleotide sequence. Large numbers of hybridoma cells producing a series of monoclonal antibodies may be obtained from a public or private repositories. The largest storage institution is the American Type Culture Collection, which provides a variety of well-characterized hybridoma cell lines. Alternatively, the antibody nucleotide can be obtained from an immunized or non-immunized rodent or human, and from an organ such as spleen and peripheral blood lymphocyte. Specific techniques suitable for extraction and synthesis of antibody nucleotides are described in Orlandi et al. (1989) Proc. Natl. Acad. Sci. U.S.A 86: 3833-3837; Larrick et al. (1989) biochem. Biophys. Res. Commun. 160: 1250-1255; Sastry et al. (1989) Proc. Natl. Acad. Sci., U.S.A. 86: 5728-5732; and U.S. Pat. No. 5,969,108.


The antibody nucleotide sequence can also be modified, for example, by substituting human heavy and light chain constant regions with coding sequences, to replace homologous non-human sequences. The chimeric antibody prepared in this manner retains the binding specificity of the original antibody.


In addition, the polynucleotide encoding the heavy chain and/or light chain of the antigen-binding unit can be subjected to codon optimization to achieve optimized expression of the antigen-binding unit of the subject in a desired host cell. For example, in one codon optimization method, a natural codon is substituted by the most common codon from the reference genome, wherein the translation rate of the codon for each amino acid is designed to be relatively high. Additional exemplary methods for generating a codon-optimized polynucleotide for expressing the desired protein are described in Kanaya et al., Gene, 238:143-155 (1999), Wang et al., Mol. Biol. Evol., 18(5):792-800 (2001), U.S. Pat. No. 5,795,737, US Publication No. 2008/0076161 and WO 2008/000632, and the methods can be applied to the heavy chain and/or light chain of the antigen-binding unit.


The polynucleotides of the present invention includes polynucleotides encoding a functional equivalent of the exemplary polypeptide and a fragment thereof.


Due to the degeneracy of the genetic code, there can be considerable variation in the nucleotides of the L and H sequences and a heterodimerization sequence suitable for construction of the polynucleotide and vector of the present invention. These variations are included in the present invention.


Method of Treatment

Provided herein is a method for preventing or treating a novel coronavirus (SARS-CoV-2) infection in a subject by using the antigen-binding unit of the present invention, comprising administering to the subject the antigen-binding unit of the present invention.


Provided herein is a method for treating a disease, condition or disorder in a mammal using the antigen-binding unit of the present invention in combination with a second agent. The second agent can be administered with, before or after an antibody. The second agent may be an antiviral agent. The antiviral agent includes but is not limited to telaprevir, boceprevir, semiprevir, sofosbuvir, daclastavir, asunaprevir, lamivudine, adefovir, entecavir, tenofovir, telbivudine, interferon α and PEGylated interferon α. The second agent can be selected from hydroxychloroquine, chloroquine, favipiravir, Gimsilumab, AdCOVID (University of Alabama at Birmingham), AT-100 (Airway Therapeutics), TZLS-501 (Tiziana Life Sciences), OYA1 (OyaGen), BPI-002 (BeyondSpring), INO-4800 (Inovio Pharmaceutical), NP-120 (ifenprodil), remdesivir (GS-5734), Actemra (Roche), Galidesivir (BCX4430), SNG001 (Synairgen Research), or a combination thereof.


The second agent may be an agent for alleviating symptoms of a concurrent inflammatory condition in a subject. The anti-inflammatory agent includes non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. NSAID includes but is not limited to salicylate, such as acetylsalicylic acid; diflunisal, salicylic acid and salsalate; propionic acid derivative, such as ibuprofen; naproxen; dexibuprofen, dexketoprofen, flurbiprofen, oxaprozin, fenoprofen, loxoprofen, and ketoprofen; acetic acid derivative such as indomethacin, diclofenac, tolmetin, aceclofenac, sulindac, nabumetone, etodolac and ketorolac; enolic acid derivative such as piroxicam, lornoxicam, meloxicam, isoxicam, tenoxicam, phenylbutazone and droxicam; anthranilic acid derivative such as mefenamic acid, flufenamic acid, meclofenamic acid and tolfenamic acid; selective COX-2 inhibitor, such as celecoxib, lumiracoxib, rofecoxib, etoricoxib, valdecoxib, firocoxib, and parecoxib; sulfonanilide, such as nimesulide; and other non-steroidal anti-inflammatory drugs such as clonixin and licofelone. The corticosteroids include but are not limited to cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prednisolone.


The second agent may be an immunosuppressive agent. The immunosuppressive agent that can be used in combination with the antigen-binding unit includes but is not limited to hydroxychloroquine, sulfasalazine, leflunomide, etanercept, infliximab, adalimumab, D-penicillamine, oral gold compound, injectable gold compound (by intramuscular injection), minocycline, gold sodium thiomalate, auranofin, D-penicillamine, lobenzarit, bucillamine, actarit, cyclophosphamide, azathioprine, methotrexate, mizoribine, cyclosporin and tacrolimus.


The specific dose will vary depending on the specific antigen-binding unit selected, the dosing regimen to be followed, whether it is administered in combination with other agents, the time of administration, the tissue to which it is administered, and the physical delivery system carrying the specific antigen-binding unit. In some embodiments, during the treatment cycle, the antigen-binding unit is administered to the subject at a dose of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70 mg per week on average. For example, the antigen-binding unit is administered to the subject at a dose of about 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55 mg per week. In some embodiments, the antigen-binding unit is administered to the subject at a dose of about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55 mg per week.


During the treatment cycle, the antigen-binding unit can be administered to the subject at a dose of greater than 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 mg per day on average. For example, during the treatment cycle, the antigen-binding unit is administered to the subject at a dose of about 6 to 10 mg, about 6.5 to 9.5 mg, about 6.5 to 8.5 mg, about 6.5 to 8 mg, or about 7 to 9 mg per day on average.


The dose of the antigen-binding unit can be about, at least about, or at most about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000 mg or mg/kg, or any range derived therefrom. It is contemplated that the dose in mg/kg refers to the amount of the antigen-binding unit in mg per kilogram of the total body weight of the subject. It is contemplated that when multiple doses are administered to a patient, the doses can vary in amount or can be the same.


Pharmaceutical Composition

Provided herein is a pharmaceutical composition comprising a subject antibody or a functional fragment thereof and a pharmaceutically acceptable carrier, excipient or stabilizer, including, but not limited to, an inert solid diluent and a filler, a diluent, a sterile aqueous solution and various organic solvents, a penetration enhancer, a solubilizer and an adjuvant. (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)).


The pharmaceutical composition can be in a unit dosage form suitable for single administration at a precise dose. The pharmaceutical composition can further comprise an antigen-binding unit as an active ingredient, and may include a conventional pharmaceutical carrier or excipient. In addition, it may include other drugs or agents, carriers, adjuvants, etc. An exemplary parenteral administration form includes a solution or suspension of an active polypeptide and/or PEG-modified polypeptide in a sterile aqueous solution, such as aqueous propylene glycol or dextrose solution. If desired, such dosage forms can be suitably buffered with a salt such as histidine and/or phosphate.


The composition can further include one or more pharmaceutically acceptable additives and excipients. These additives and excipients include but are not limited to an anti-adhesive agent, an anti-foaming agent, a buffer, a polymer, an antioxidant, a preservative, a chelating agent, a viscomodulator, a tension regulator, a flavoring agent, a colorant, a flavor enhancer, an opacifier, a suspending agent, a binder, a filler, a plasticizer, a lubricant and a mixture thereof.


Kit

The kit of the present invention comprises the antigen-binding unit of the present invention or a conjugate thereof of the present invention. Further provided is the use of the antigen-binding unit of the present invention in the preparation of a kit, wherein the kit is used for detecting presence of a novel coronavirus, an S protein thereof or a RBD of the S protein, or a level thereof in a sample, or for diagnosing whether a subject is infected with the novel coronavirus.


In some embodiments, the sample includes, but is not limited to, an excrement, an oral or nasal secretion, an alveolar lavage fluid, etc. from a subject (e.g., mammal, preferably human).


General methods for detecting presence of a target virus or antigen (e.g., a novel coronavirus, or an S protein thereof or a RBD of the S protein) or a level thereof in a sample by using an antibody or an antigen binding fragment thereof is well known to a person skilled in the art. In some embodiments, the detection method may involve enzyme linked immunosorbent assay (ELISA), enzyme immunodetection, chemiluminescence immunodetection, radioimmunodetection, fluorescence immunodetection, immunochromatography, a competition method, and a similar detection method.


EXAMPLES

The present invention is described with reference to the following examples, which are meant to illustrate the present invention (but not limit the present invention).


Unless specifically stated, the molecular biology experimental methods and immunodetection methods used in the present invention were basically carried out with reference to J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989 and F. M. Ausubel et al., Short Protocols in Molecular Biology, 3rd Edition, John Wiley & Sons, Inc., 1995; and restriction enzymes were used under the conditions as recommended by the product manufacturer. If no specific conditions are indicated in the examples, conventional conditions or the conditions suggested by the manufacturer shall be followed. The reagents or instruments used without indicating the manufacturers are commercially available conventional products. It is known to a person skilled in the art that the examples illustrate the present invention by way of example and are not intended to limit the claimed scope of the present invention.


Example 1: Isolation and Enrichment of B Cells

Blood was collected from individuals once infected with SARS-CoV-2 virus but had recovered and discharged (provided by Beijing Youan Hospital). Discharge standards: (1) body temperature returned to normal for more than three days; (2) respiratory symptoms relieved; and (3) the results for the two consecutive SARS-CoV-2 RT-PCR tests of sputum with one-day sampling intervals were negative.


PBMC cell collection and B cell enrichment: PBMCs were extracted using STEMCELL SepMate™-15 (Stemcell Technologies, Cat #86415) in a Biosafety Physical Containment Level-2+ Laboratory. Then, memory B cells were enriched from the extracted PBMCs using STEMCELL EasySep Human Memory B Cell Isolation Kit (Stemcell Technologies, Cat #17864) according to the manufacturer's instructions.


CD27+ memory B cell enrichment: CD27+ B cells bound to CD27 antibodies were isolated using the STEMCELL EasySep Human Memory B Cell Isolation Kit (Stemcell Technologies) with the EasySep magnet, and counted (Countess Automated Cell Counter) according to the manufacturer's instructions.


Antigen-binding B cell enrichment: A biotinylated Spike/RBD recombinant protein purchased from Sino Biology was used. Fresh antigen/streptavidin M-280 Dynabeads (Thermofisher) complexes were prepared before each B cell enrichment. 100 μl of M-280 beads containing 6.5×107 beads were vortexed for 30 seconds and allowed to stand to room temperature. The beads were then washed twice with 1 ml of 1× PBS on a magnetic stand and eluted in 100 μl of 1× PBS. 100 μl of magnetic beads were mixed with 20 μg of biotinylated Spike/RBD protein and incubated for 30 minutes at room temperature. After incubation, the complexes were washed 3 times with 500 μl of 1× PBS on a magnetic stand. The washed complexes were eluted in 100 μl of 1× PBS and placed on ice for use. The complexes were equilibrated to room temperature prior to antigen enrichment. The Spike/RBD magnetic bead complexes were added directly to the B cell mixture, mixed and incubated on a thermomixer for 30 minutes at 4° C. The mixture was placed on a magnetic stand and the supernatant was removed. The mixture was mixed for a total of four times, the beads were washed and then the B cells enriched with the antigen were eluted in 1× fetal bovine serum (FBS) containing 2% FBS and 1 mM EDTA and counted (Countess Automated Cell Counter).


Example 2: Acquisition and Identification of Sequence of Antigen-Binding Unit

Single-cell transcriptome VDJ sequencing of the above-mentioned enriched memory B cells was performed using Chromium Single Cell V(D)J Reagent Kits (purchased from 10× genomics, Cat #100006) according to the manufacturer's instructions. Enriched B cells from 10 patients were used as one batch, and a total of six batches of sequencing analysis were performed.


Data were processed using 10× Genomics CellRanger (3.1.0). The reads generated from the 5′ gene expression profile were aligned with the GRCh38 genome to generate a feature-barcode matrix. Genes expressed in more than 10 cells were selected and cells were filtered according to the number of genes and the percentage of mitochondrial genes to remove possible doublets. Cell types were identified using SingleR (Aran et al., 2019) according to a human immune reference dataset (see Monaco et al., 2019). FIG. 7 shows a summary of results of sequencing of B cells following antigen enrichment.


Cell clusters were visualized using T-distributed stochastic neighbor embedding (t-SNE) in Seurat (see Satija et al., 2015). FIG. 8 shows 25 clonotypes with the highest enrichment degree from the same patient (A) and the distribution of Ig classes for the clonotypes of the patient (B). According to the method, a total of more than 8,400 antigen-binding IgG+ clonotypes were identified from the enriched B cells of the 60 patients described above.


Cutadapt (Martin, 2011) was used to remove bases with a quality score of less than 30 at the 3′ end. Assembly, annotation, and clonotype analysis of contigs were performed using “cellranger vdj”. The structures of the light and heavy chain CDR regions were annotated using the SAAB+ pipeline (Kovaltsuk et al., 2020), and CDR3 structures were predicted using the embedded FREAD (Choi and Deane, 2009). V(D)J sequence reads were mapped using IgBlast-1.15.0 (Ye et al., 2013).


The lineage of each clonotype was determined according to DNA mutation patterns and Ig classes. Lineages were graphed by igraph (Csardi and Nepusz, 2006).


Clonotypes were selected according to the following standards: (1) enrichment frequency >1; (2) comprising IgG1-expressing B cells; (3) not comprising IgG2-expressing B cells; (4) variable region mutation rate >2% and (5) comprising memory B cells. According to the standards, 169 antibodies that met the standards and 47 antibodies that did not meet the above-mentioned standards were selected.



FIG. 9 shows a graph of cell typing for productive B cells with matched light and heavy chains in batch 5 as determined based on gene expression. FIG. 10 shows clonotype analysis of B cells in batch 5 as screened by the above-mentioned standards. The clonotypes that meet the above-mentioned standards are located at the right of the dashed line in the figure. FIG. 11A shows the number of antibodies meeting the above-mentioned standards and produced after S protein enrichment and RBD enrichment as described in Example 1, respectively, and ELISA results and Kd values of the antibodies binding to RBD and IC50 values of the antibodies for neutralizing pseudoviruses as determined herein, wherein 46% of the antibodies that meet the standards bind to RBD with a Kd value of less than 20 nM, and 25% of the antibodies neutralize pseudovirus with an IC50 of less than 3 μg/ml. In contrast, FIG. 11B shows ELISA results and Kd values of clonotypes (not meeting the following standards: not comprising IgG2, variable region mutation rate >2%, or comprising memory B cells) binding to RBD and IC50 values for neutralizing pseudoviruses.


The anti-SARS-CoV neutralizing antibodies m396 and 80R in the PDB (Protein Data Bank) database (see Prabakaran et al., 2006 and Hwang et al., 2006) were selected and the crystal structures thereof were compared with the CDR3 structures predicted by FREAD. Twelve IgG1 clonotypes with structural similarity to these two antibodies were identified, and ten of the clonotypes have strong RBD binding affinity and strong ability to neutralize pseudovirus SARS-CoV-2 (seven of which have an IC50 of lower than 0.05 μg/ml). FIG. 12 shows the crystal structure of antibody m396 Fab complexed with SARS-CoV-RBD (PDB ID: 2DD8). The bottom is RBD, the upper left is m396-H domain, and the upper right is m396-L domain.


The sequencing results were analyzed, and 395 antigen-binding units were obtained and named as ABU 1-395. The sequence information of the obtained antigen-binding units is as shown in Table 1 below.









TABLE 1







Exemplary antigen-binding units obtained herein











ABU No.
VH SEQ ID No.
VL SEQ ID NO.















ABU-1
721
1081



ABU-2
722
1082



ABU-3
723
1083



ABU-4
724
1084



ABU-5
725
1085



ABU-6
726
1086



ABU-7
727
1087



ABU-8
728
1088



ABU-9
729
1089



ABU-10
730
1090



ABU-11
731
1091



ABU-12
732
1092



ABU-13
733
1093



ABU-14
734
1094



ABU-15
735
1095



ABU-16
736
1096



ABU-17
737
1097



ABU-18
738
1098



ABU-19
739
1099



ABU-20
740
1100



ABU-21
741
1101



ABU-22
742
1102



ABU-23
743
1103



ABU-24
744
1104



ABU-25
745
1105



ABU-26
746
1106



ABU-27
747
1107



ABU-28
748
1108



ABU-29
749
1109



ABU-30
750
1110



ABU-31
751
1111



ABU-32
752
1112



ABU-33
753
1113



ABU-34
754
1114



ABU-35
755
1115



ABU-36
756
1116



ABU-37
757
1117



ABU-38
758
1118



ABU-39
759
1119



ABU-40
760
1120



ABU-41
761
1121



ABU-42
762
1122



ABU-43
763
1123



ABU-44
764
1124



ABU-45
765
1125



ABU-46
766
1126



ABU-47
767
1127



ABU-48
768
1128



ABU-49
769
1129



ABU-50
770
1130



ABU-51
771
1131



ABU-52
772
1132



ABU-53
773
1133



ABU-54
774
1134



ABU-55
775
1135



ABU-56
776
1136



ABU-57
777
1137



ABU-58
778
1138



ABU-59
779
1139



ABU-60
780
1140



ABU-61
781
1141



ABU-62
782
1142



ABU-63
783
1143



ABU-64
784
1144



ABU-65
785
1145



ABU-66
786
1146



ABU-67
787
1147



ABU-68
788
1148



ABU-69
789
1149



ABU-70
790
1150



ABU-71
791
1151



ABU-72
792
1152



ABU-73
793
1153



ABU-74
794
1154



ABU-75
795
1155



ABU-76
796
1156



ABU-77
797
1157



ABU-78
798
1158



ABU-79
799
1159



ABU-80
800
1160



ABU-81
801
1161



ABU-82
802
1162



ABU-83
803
1163



ABU-84
804
1164



ABU-85
805
1165



ABU-86
806
1166



ABU-87
807
1167



ABU-88
808
1168



ABU-89
809
1169



ABU-90
810
1170



ABU-91
811
1171



ABU-92
812
1172



ABU-93
813
1173



ABU-94
814
1174



ABU-95
815
1175



ABU-96
816
1176



ABU-97
817
1177



ABU-98
818
1178



ABU-99
819
1179



ABU-100
820
1180



ABU-101
821
1181



ABU-102
822
1182



ABU-103
823
1183



ABU-104
824
1184



ABU-105
825
1185



ABU-106
826
1186



ABU-107
827
1187



ABU-108
828
1188



ABU-109
829
1189



ABU-110
830
1190



ABU-111
831
1191



ABU-112
832
1192



ABU-113
833
1193



ABU-114
834
1194



ABU-115
835
1195



ABU-116
836
1196



ABU-117
837
1197



ABU-118
838
1198



ABU-119
839
1199



ABU-120
840
1200



ABU-121
841
1201



ABU-122
842
1202



ABU-123
843
1203



ABU-124
844
1204



ABU-125
845
1205



ABU-126
846
1206



ABU-127
847
1207



ABU-128
848
1208



ABU-129
849
1209



ABU-130
850
1210



ABU-131
851
1211



ABU-132
852
1212



ABU-133
853
1213



ABU-134
854
1214



ABU-135
855
1215



ABU-136
856
1216



ABU-137
857
1217



ABU-138
858
1218



ABU-139
859
1219



ABU-140
860
1220



ABU-141
861
1221



ABU-142
862
1222



ABU-143
863
1223



ABU-144
864
1224



ABU-145
865
1225



ABU-146
866
1226



ABU-147
867
1227



ABU-148
868
1228



ABU-149
869
1229



ABU-150
870
1230



ABU-151
871
1231



ABU-152
872
1232



ABU-153
873
1233



ABU-154
874
1234



ABU-155
875
1235



ABU-156
876
1236



ABU-157
877
1237



ABU-158
878
1238



ABU-159
879
1239



ABU-160
880
1240



ABU-161
881
1241



ABU-162
882
1242



ABU-163
883
1243



ABU-164
884
1244



ABU-165
885
1245



ABU-166
886
1246



ABU-167
887
1247



ABU-168
888
1248



ABU-169
889
1249



ABU-170
890
1250



ABU-171
891
1251



ABU-172
892
1252



ABU-173
893
1253



ABU-174
894
1254



ABU-175
895
1255



ABU-176
896
1256



ABU-177
897
1257



ABU-178
898
1258



ABU-179
899
1259



ABU-180
900
1260



ABU-181
901
1261



ABU-182
902
1262



ABU-183
903
1263



ABU-184
904
1264



ABU-185
905
1265



ABU-186
906
1266



ABU-187
907
1267



ABU-188
908
1268



ABU-189
909
1269



ABU-190
910
1270



ABU-191
911
1271



ABU-192
912
1272



ABU-193
913
1273



ABU-194
914
1274



ABU-195
915
1275



ABU-196
916
1276



ABU-197
917
1277



ABU-198
918
1278



ABU-199
919
1279



ABU-200
920
1280



ABU-201
921
1281



ABU-202
922
1282



ABU-203
923
1283



ABU-204
924
1284



ABU-205
925
1285



ABU-206
926
1286



ABU-207
927
1287



ABU-208
928
1288



ABU-209
929
1289



ABU-210
930
1290



ABU-211
931
1291



ABU-212
932
1292



ABU-213
933
1293



ABU-214
934
1294



ABU-215
935
1295



ABU-216
936
1296



ABU-217
937
1297



ABU-218
938
1298



ABU-219
939
1299



ABU-220
940
1300



ABU-221
941
1301



ABU-222
942
1302



ABU-223
943
1303



ABU-224
944
1304



ABU-225
945
1305



ABU-226
946
1306



ABU-227
947
1307



ABU-228
948
1308



ABU-229
949
1309



ABU-230
950
1310



ABU-231
951
1311



ABU-232
952
1312



ABU-233
953
1313



ABU-234
954
1314



ABU-235
955
1315



ABU-236
956
1316



ABU-237
957
1317



ABU-238
958
1318



ABU-239
959
1319



ABU-240
960
1320



ABU-241
961
1321



ABU-242
962
1322



ABU-243
963
1323



ABU-244
964
1324



ABU-245
965
1325



ABU-246
966
1326



ABU-247
967
1327



ABU-248
968
1328



ABU-249
969
1329



ABU-250
970
1330



ABU-251
971
1331



ABU-252
972
1332



ABU-253
973
1333



ABU-254
974
1334



ABU-255
975
1335



ABU-256
976
1336



ABU-257
977
1337



ABU-258
978
1338



ABU-259
979
1339



ABU-260
980
1340



ABU-261
981
1341



ABU-262
982
1342



ABU-263
983
1343



ABU-264
984
1344



ABU-265
985
1345



ABU-266
986
1346



ABU-267
987
1347



ABU-268
988
1348



ABU-269
989
1349



ABU-270
990
1350



ABU-271
991
1351



ABU-272
992
1352



ABU-273
993
1353



ABU-274
994
1354



ABU-275
995
1355



ABU-276
996
1356



ABU-277
997
1357



ABU-278
998
1358



ABU-279
999
1359



ABU-280
1000
1360



ABU-281
1001
1361



ABU-282
1002
1362



ABU-283
1003
1363



ABU-284
1004
1364



ABU-285
1005
1365



ABU-286
1006
1366



ABU-287
1007
1367



ABU-288
1008
1368



ABU-289
1009
1369



ABU-290
1010
1370



ABU-291
1011
1371



ABU-292
1012
1372



ABU-293
1013
1373



ABU-294
1014
1374



ABU-295
1015
1375



ABU-296
1016
1376



ABU-297
1017
1377



ABU-298
1018
1378



ABU-299
1019
1379



ABU-300
1020
1380



ABU-301
1021
1381



ABU-302
1022
1382



ABU-303
1023
1383



ABU-304
1024
1384



ABU-305
1025
1385



ABU-306
1026
1386



ABU-307
1027
1387



ABU-308
1028
1388



ABU-309
1029
1389



ABU-310
1030
1390



ABU-311
1031
1391



ABU-312
1032
1392



ABU-313
1033
1393



ABU-314
1034
1394



ABU-315
1035
1395



ABU-316
1036
1396



ABU-317
1037
1397



ABU-318
1038
1398



ABU-319
1039
1399



ABU-320
1040
1400



ABU-321
1041
1401



ABU-322
1042
1402



ABU-323
1043
1403



ABU-324
1044
1404



ABU-325
1045
1405



ABU-326
1046
1406



ABU-327
1047
1407



ABU-328
1048
1408



ABU-329
1049
1409



ABU-330
1050
1410



ABU-331
1051
1411



ABU-332
1052
1412



ABU-333
1053
1413



ABU-334
1054
1414



ABU-335
1055
1415



ABU-336
1056
1416



ABU-337
1057
1417



ABU-338
1058
1418



ABU-339
1059
1419



ABU-340
1060
1420



ABU-341
1061
1421



ABU-342
1062
1422



ABU-343
1063
1423



ABU-344
1064
1424



ABU-345
1065
1425



ABU-346
1066
1426



ABU-347
1067
1427



ABU-348
1068
1428



ABU-349
1069
1429



ABU-350
1070
1430



ABU-351
1071
1431



ABU-352
1072
1432



ABU-353
1073
1433



ABU-354
1074
1434



ABU-355
1075
1435



ABU-356
1076
1436



ABU-357
1077
1437



ABU-358
1078
1438



ABU-359
1079
1439



ABU-360
1080
1440



ABU-361
3111
3146



ABU-362
3112
3147



ABU-363
3113
3148



ABU-364
3114
3149



ABU-365
3115
3150



ABU-366
3116
3151



ABU-367
3117
3152



ABU-368
3118
3153



ABU-369
3119
3154



ABU-370
3120
3155



ABU-371
3121
3156



ABU-372
3122
3157



ABU-373
3123
3158



ABU-374
3124
3159



ABU-375
3125
3160



ABU-376
3126
3161



ABU-377
3127
3162



ABU-378
3128
3163



ABU-379
3129
3164



ABU-380
3130
3165



ABU-381
3131
3166



ABU-382
3132
3167



ABU-383
3133
3168



ABU-384
3134
3169



ABU-385
3135
3170



ABU-386
3136
3171



ABU-387
3137
3172



ABU-388
3138
3173



ABU-389
3139
3174



ABU-390
3140
3175



ABU-391
3141
3176



ABU-392
3142
3177



ABU-393
3143
3178



ABU-394
3144
3179



ABU-395
3145
3180










Example 3: Preparation and Purification of Antigen-Binding Unit of the Present Invention

According to the sequence information of the antigen-binding units obtained in example 2, Sino Biological Inc. was entrusted to express and purify the obtained antigen-binding units, and the antigenic reactivity thereof was detected.


In short, nucleic acid molecules encoding the heavy and light chains of the antibody were synthesized in vitro and then cloned into expression vectors, respectively, thereby obtaining recombinant expression vectors encoding the heavy and light chains of the antibody, respectively. HEK293 cells were co-transfected with the above-mentioned recombinant expression vectors encoding the heavy and light chains of the antibody, respectively. 4-6 hours after the transfection, the cell culture solution was changed to a serum-free medium, which was cultured at 37° C. for another 6 days. After cultivation, the antibody protein expressed by the cells was purified from the culture by an affinity purification column. Then, the purified protein of interest was detected by reducing and non-reducing SDS-PAGE. By taking ABU-174, ABU-175 and ABU190 as examples, the electrophoresis results thereof after preparation are shown in FIGS. 1A-1C, respectively. The results show that the purities of purified ABU-174, ABU-175 and ABU190 are 95.9%, 96.4% and 98.2%, respectively.


Then, the antigenic reactivity of the purified antibody to be detected was detected by ELISA experiments using the RBD of the recombinantly expressed S protein as a coating antigen and using Goat anti-human IgG Fc labeled with horseradish peroxidase (HRP) as a secondary antibody. In short, a 96-well plate was coated with the RBD of the recombinantly expressed S protein (with an amino acid sequence as shown in SEQ ID NO: 1459 and at a concentration of 0.01 μg/ml or 1 μg/ml), and then the 96-well plate was blocked with a blocking solution. Then, the monoclonal antibodies to be detected (a control antibody, ABU-174, ABU-175 and ABU190; each at a concentration of 0.1 μg/ml) were added and incubated, respectively. After the plate was washed with an ELISA washing liquid, Goat anti-human IgG Fc labeled with horseradish peroxidase (RP) was added as a secondary antibody (diluted at 1:500); and the plate was again incubated. Then, the ELISA plate was washed with PBST, and a color developing agent was added to develop the color. Then, the absorbance at OD450 nm was read on a microplate reader. The results are as shown in Table 2. It can be seen from Table 2 that ABU-174, ABU-175 and ABU190 can specifically recognize and bind to RBD of S protein.









TABLE 2







Reactivity of antigen-binding units of ABU-174,


ABU-175 and ABU190 with RBD of S protein


as detected by ELISA (OD450 reading)











Concentration of RBD protein











Sample to be detected
0.01 μg/ml
1 μg/ml







Irrelevant antibody
0.006
0.025



(1 ug/ml)





ABU-174 (1 ug/ml)
1.261
2.909



ABU-175 (1 ug/ml)
2.274
2.963



ABU190 (1 ug/ml)
0.288
3.057










Example 4: Evaluation of Binding Ability of Antigen-Binding Unit of the Present Invention to S Protein

In the example, surface plasmon resonance (SPR) was used to detect the affinity of the antibody to the RBD region of the Spike protein. Biacore T200 was used for measurement. The biotin-labeled SARS-COV-2 RBD domain was first coupled to the SA chip (GE), and the RU value of the signal resonance unit was increased by 100 units. The running buffer was PBS at PH 7.4 μlus 0.005% P20, ensuring that the buffer in the analyte (such as antibody) was the same as the running buffer. The purified antibody was subjected to 3-fold gradient dilution to a concentration between 50-0.78125 nM. The measurement results were analyzed using Biacore Evaluation software, all the curves were fitted to a 1:1 model to obtain the rate constant Ka for the binding of the antibody to the antigen and the rate constant Kd for the dissociation of the antibody from the antibody/antigen complex, and the dissociation equilibrium constant KD was calculated, wherein KD=Kd/Ka. The results are shown in Table 3 below.


The binding affinity of the exemplary antigen-binding unit of the present invention for the RBD region of the Spike protein is listed in Table 3, wherein the KD value of each antigen-binding unit is less than 20 nM.









TABLE 3







KD value of the binding affinity of the exemplary


antigen-binding unit of the present invention


for the RBD region of Spike protein










AUB No.
KD (Kd/Ka, nM)














ABU-145
<10



ABU-149
<10



ABU-174
<1



ABU-175
<1



ABU-181
<10



ABU-190
<10



ABU-205
<10



ABU-207
<10



ABU-208
<1



ABU-210
<10



ABU-211
<20



ABU-254
<10



ABU-257
<10



ABU-258
<1



ABU-288
<1



ABU-289
<10



ABU-290
<1



ABU-291
<1



ABU-296
<1



ABU-297
<1



ABU-298
<20



ABU-305
<20



ABU-308
<10



ABU-312
<20



ABU-316
<10



ABU-317
<20



ABU-319
<10



ABU-320
<10



ABU-322
<1



ABU-323
<20



ABU-325
<10



ABU-327
<20



ABU-328
<10



ABU-329
<10



ABU-330
<10



ABU-337
<20



ABU-339
<20



ABU-340
<10



ABU-341
<10



ABU-343
<20



ABU-344
<1



ABU-346
<10



ABU-348
<10



ABU-349
<1



ABU-351
<10



ABU-352
<10



ABU-354
<1



ABU-355
<1



ABU-356
<10



ABU-357
<10



ABU-358
<10



ABU-359
<10



ABU-360
<1



ABU-361
<20



ABU-362
<20



ABU-365
<10



ABU-367
<1



ABU-368
<20



ABU-369
<10



ABU-371
<20



ABU-372
<20



ABU-373
<10



ABU-375
<10



ABU-376
<10



ABU-377
<10



ABU-379
<10



ABU-380
<1



ABU-381
<1



ABU-382
<10



ABU-383
<20



ABU-384
<20



ABU-385
<20



ABU-386
<10



ABU-390
<10



ABU-391
<20



ABU-392
<10



ABU-393
<20



ABU-394
<20



ABU-395
<10











FIGS. 2A-2 further exemplarily show the binding affinity of ABU-174, ABU-175, ABU190, ABU297 and ABU367 for the RBD region of the Spike protein. It can be seen from FIGS. 2A-2C that ABU-174 has a KD value of 0.29 nM, ABU-175 has a KD value of 0.039 nM, ABU190 has a KD value of 2.8 nM, ABU297 has a KD value of 0.824 nM, and ABU has a KD value of 0.18 nM. FIGS. 2A-2E show that ABU-174, ABU-175, ABU190, ABU297 and ABU367 all have good affinity for the S protein of the novel coronavirus.


Example 5: Evaluation of Ability of Antigen-Binding Unit of the Present Invention to Neutralize SARS-CoV-2 Pseudovirus

In this example, the cell microneutralization assay was used to detect the neutralizing activity of the antigen-binding unit of the present invention against SARS-CoV-2 pseudovirus with reference to the description of Temperton N J et al., Emerg Infect Dis, 2005, 11(3), 411-416. The SARS-CoV-2 pseudovirus used in this example was provided by China National Institutes for Food and Drug Control, has similar cell infection characteristics to the euvirus, can be used to simulate the early process of euvirus infection of a cell, and carries reporter gene luciferase, which can be quickly and easily detected and analyzed. The safety for operating the pseudovirus is high, and the neutralization experiment can be completed in Biosafety Physical Containment Level-2 Laboratory to detect the neutralization activity (Neutralization titer) of the antibody. The specific steps of the experiment method are as follows:


1. Reagent for Equilibration

The reagent (0.25% trypsin-EDTA, DMEM complete medium) stored at 2° C.−8° C. was taken out and equilibrated at room temperature for more than 30 minutes.


2. Experimental Operation

(1) A 96-well plate was taken, and the arrangement of the samples was set up as shown in Table 4; A2-H2 wells were set as cell control wells (CC), which only contain experimental cells; A3-H3 wells were set as virus control wells (VV), which contain experimental cells and pseudovirus; A4-A11, B4-B11, C4-C11, D4-D11, E4-E11, F4-F11, G4-G11 and H4-H11 wells were set as experimental wells, which contain experimental cells, pseudovirus and different concentrations of antibody to be detected; and other wells were set as blank. The experimental cells and pseudovirus used in this example were Huh-7 cells and SARS-CoV-2 virus (both provided by China National Institutes for Food and Drug Control), respectively.









TABLE 4







Arrangement of samples in 96-well plate















1
2
3
4
5-10
11
12





A

CC
VV
Dilution 1
Dilution 1
Dilution 1



B

CC
vv
Dilution 2
Dilution 2
Dilution 2



C

CC
VV
Dilution 3
Dilution 3
Dilution 3



D

CC
vv
Dilution 4
Dilution 4
Dilution 4



E

CC
vv
Dilution 5
Dilution 5
Dilution 5



F

CC
vv
Dilution 6
Dilution 6
Dilution 6



G

CC
vv
Dilution 7
Dilution 7
Dilution 7



H

CC
vv
Dilution 8
Dilution 8
Dilution 8











(2) DMEM complete mediums (containing 1% antibiotic, 25 mM HEPES, 10% FBS) were added at 100 μl/well to the cell control wells; DMEM complete mediums were added at 100 l/well to the virus control wells; and the indicated concentration of the antibody to be detected diluted in DMEM complete mediums was added to the experimental wells at 50 l/well. The antibody concentrations of dilutions 1-8 used in Table 4 were 1/30 μg/l, 1/90 g/l, 1/270 μg/l, 1/810 μg/l, 1/2430 μg/l, 1/7290 μg/l, 1/21870 μg/l, and 1/65610 g/l, respectively.


(3) The SARS-CoV-2 pseudovirus was diluted to about 1.3×104/ml (TCID50) with DMEM complete mediums; and then, the SARS-CoV-2 pseudovirus was added at 50 μl/well to the virus control wells and the experimental wells.


(4) The 96-well plate was placed in a cell incubator (37° C., 5% CO2) and incubated for 1 hour.


(5) The pre-cultured Huh-7 cells were diluted to 2×105 cells/ml with DMEM complete mediums. After the incubation in the previous step, cells were added at 100 μl/well to the cell control wells, virus control wells and experimental wells.


(6) The 96-well plate was placed in a cell incubator (37° C., 5% CO2) and cultured for 20-28 hours.


(7) The 96-well plate was taken out from the cell incubator; 150 μl of the supernatant was aspirated from each well and discarded; and then 100 μl of luciferase detection reagents were added, and reacted at room temperature for 2 minutes in the dark.


(8) After the reaction was completed, the liquid in each well was pipetted 6 to 8 times repeatedly using a pipette until the cells were fully lysed. Then, 150 μl of liquid was aspirated from each well and transferred to the corresponding 96-well chemiluminescence detection plate, and the luminescence value was read with a chemiluminescence detector (Perkinelmer EnSight multimode microplate reader).


(9) Calculation of neutralization inhibition rate:





Inhibition rate=[1−(mean luminescence intensity of experimental wells−mean luminescence intensity of CC wells)/(mean luminescence intensity of VV wells−mean luminescence intensity of CC wells)]×100%.


(10) IC50 of the antibody to be detected was calculated by Reed-Muench method according to the result of the neutralization inhibition rate.


Table 5 μlists IC50 of the exemplary antigen-binding unit of the present invention for neutralizing SARS-CoV-2 pseudovirus, wherein the IC50 value of each antigen-binding unit is less than 1 μg/ml.









TABLE 5







IC50 of exemplary antigen-binding unit


of the present invention for neutralizing


SARS-CoV-2 pseudovirus











IC50



ABU No.
(μg/ml)














ABU-174
<0.1



ABU-175
<0.1



ABU-190
<0.1



ABU-207
<0.5



ABU-208
<0.5



ABU-257
<0.5



ABU-290
<0.1



ABU-291
<0.5



ABU-296
<0.1



ABU-297
<0.1



ABU-308
<0.5



ABU-322
<0.1



ABU-340
<0.5



ABU-341
<0.1



ABU-344
<1



ABU-349
<0.1



ABU-351
<0.1



ABU-352
<0.1



ABU-354
<0.1



ABU-355
<0.1



ABU-356
<0.1



ABU-357
<1



ABU-358
<0.1



ABU-359
<0.1



ABU-360
<0.1



ABU-361
<0.5



ABU-362
<0.5



ABU-365
<0.1



ABU-367
<0.1



ABU-368
<0.5



ABU-369
<0.1



ABU-371
<1



ABU-372
<0.5



ABU-373
<0.5



ABU-375
<0.1



ABU-376
<0.1



ABU-377
<0.5



ABU-379
<0.5



ABU-380
<0.1



ABU-381
<0.1



ABU-382
<0.1



ABU-386
<0.1



ABU-391
<1



ABU-392
<0.1



ABU-395
<0.1











FIGS. 3A-3C further exemplarily show the neutralizing activity of ABU-174, ABU-175 and ABU190 against the SARS-CoV-2 pseudovirus. It can be seen from FIGS. 3A-3C that ABU-174, ABU-175 and ABU190 all have a good neutralizing activity, and the IC50 thereof are 0.026 μg/ml (ABU-174), 0.0086 μg/ml (ABU-175), and 0.039 μg/ml (ABU190), respectively.


Example 6: Evaluation of Ability of Antigen-Binding Unit of the Present Invention to Neutralize SARS-CoV-2 Euvirus

In this example, neutralizing activities of the antibodies to be detected were evaluated by cytopathic effect (CPE) assay and Plaque Reduction Neutralization Test (PRNT), respectively. The SARS-CoV-2 virus used was provided by Academy of Military Medical Sciences, the titer thereof (TCID50) was 105/ml, and all experimental operations were completed in a BSL-3 μlaboratory.


6.1 Cytopathic Effect (CPE) Assay

(1) 100 μl of Vero E6 cells were added to each well of a 96-well culture plate at a concentration of 5×104/ml, and cultured at 37° C., 5% CO2 for 24 hours.


(2) The antibody to be detected was diluted to 10 concentrations: 1/10 μg/l, 1/30 μg/l, 1/90 μg/l, 1/270 μg/l, 1/810 μg/l, 1/2430 μg/l, 1/7290 μg/l, 1/21870 μg/l, 1/65610 g/l, and 1/196830 μg/l. 100 μl of the antibody to be detected at a specified concentration was taken out; an equal volume of SARS-CoV-2 euvirus (100 TCID50) was added; and the mixture was incubated at 37° C., 5% CO2 for 1 h.


(3) After cultivation in step (1), the cell culture solution in the 96-well culture plate was discarded, and the mixture solution (200 μl) containing the antibody to be detected and the euvirus prepared in step (2) was added as an experimental group. After the mixture was incubated for 1 h, the supernatant was aspirated from the wells, and 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well.


During the experiment, the cell control group and the virus control group were set in parallel. In the cell control group (4 replicate wells), after the cell culture solution in the wells was discarded; 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well. In the virus control group (3 replicate wells), after the cell culture solution in the wells was discarded; 100 TCID50 of euvirus (100 μl) was added to each well, and the mixture was incubated at 37° C. for 1 h; after the incubation, the supernatant was aspirated from the wells, and 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well.


(4) The cells were cultured for 4-5 days at 37° C., 5% C02.


(5) The cytopathic effect (CPE) was observed under the optical microscope, and the inhibitory activities of different concentrations of a monoclonal antibody against CPE were evaluated according to conditions of the cytopathic effect.


The detection results of the antigen-binding unit ABU-174 are shown in Table 6 below. The results show that the antigen-binding unit ABU-174 has an inhibitory effect on the virus at a cellular level, and the neutralizing antibody titer is 1.6 ng/μl.









TABLE 6







Neutralizing activity effect of antigen-binding unit


ABU-174 on SARS-CoV-2









Antibody to

Results


be detected
Dilution
(3 replicate wells)














antigen-binding
1:10





unit ABU-174
1:30






1:90






1:270






1:810

+
+



1:2430
+
+
+



1:7290
+
+
+



1:21870
+
+
+



1:65610
+
+
+



1:196830
+
+
+


Cell control
200 μl DMEM





Negative control
100TCID50
+
+
+





“+” means that the cell has CPE change, and “−” means that the cell does not have CPE change or has a normal cell morphology






The detection results of the antigen-binding unit ABU-175 are shown in Table 7 and FIG. 4 below. The results show that the antigen-binding unit ABU-175 has an inhibitory effect on the virus at a cellular level, and the neutralizing antibody titer is 0.7 ng/μl.









TABLE 7







Neutralizing activity effect of antigen-binding unit


ABU-175 on SARS-CoV-2









Antibody to

Results


be detected
Dilution
(3 replicate wells)














antigen-binding
1:10





unit ABU-175
1:30






1:90






1:270






1:810






1:2430
+
+
+



1:7290
+
+
+



1:21870
+
+
+



1:65610
+
+
+



1:196830
+
+
+


Cell control
200 μl DMEM





Negative control
100TCID50
+
+
+





“+” means that the cell has CPE change, and “−” means that the cell does not have CPE change or has a normal cell morphology






6.2 Plaque Reduction Neutralization Test (PRNT):

(1) 100 μl of Vero E6 cells were added to each well of a 96-well culture plate at a concentration of 5×104/ml, and cultured at 37° C., 5% CO2 for 24 hours.


(2) The antibody to be detected was diluted to 5 concentrations: 50 μg/ml, 10 μg/ml, 2 μg/ml, 0.4 μg/ml, and 0.08 μg/ml.


(3) After cultivation in step (1), the cell culture solution in the 96-well culture plate was discarded, and the mixture solution (200 μl) containing the antibody to be detected and the euvirus prepared in step (2) was added as an experimental group. After the mixture was incubated for 1 h, the supernatant was aspirated from the wells, and 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well.


During the experiment, the cell control group and the virus control group were set in parallel. In the cell control group, after the cell culture solution in the wells was discarded; 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well. In the virus control group (4 replicate wells), after the cell culture solution in the wells was discarded; 100 TCID50 of euvirus (100 μl) was added to each well, and the mixture was incubated at 37° C. for 1 h; after the incubation, the supernatant was aspirated from the wells, and 200 μl of DMEM mediums (containing 2% antibiotic and 16 μg/ml of trypsin) were added to each well.


(4) The cells were cultured for 4 days at 37° C., 5% C02.


(5) After fixed with formaldehyde, the cells were labeled with rabbit anti-SARS-COV serum (Sino Biological) and peroxidase-labeled goat anti-rabbit IgG (Dako). The plaques were observed after the cells were developed with TMB (True Blue, KPL), the inhibition rate was calculated and the dose-response curve was drawn.



FIG. 5 shows dose-response curves for the exemplary antigen-binding units ABU-174, ABU-175 and ABU190 of the present invention. It can be seen from FIG. 5 that the antigen-binding units ABU-174, ABU-175 and ABU190 all have good neutralizing activities against SARS-CoV-2 euvirus, and can effectively inhibit virus infection and cell invasion, and the IC50 are 0.5 μg/ml (ABU-174), 0.3 μg/ml (ABU-175) and 0.8 μg/ml (ABU-190), respectively.


Example 7. In Vivo Potency of the Antigen-Binding Unit of the Present Invention

SARS-CoV-2 infects a cell by interaction with the hACE2 receptor. The neutralizing potency of the antigen-binding unit of the present invention against SARS-CoV-2 in vivo was evaluated in two different animal models. 7.1 Potency of the antigen-binding unit in hACE2 transgenic mice


In the first model, hACE2 transgenic mice were used as a animal model and treated with 2 different modes, i.e., pre-exposure prophylaxis and post-exposure prophylaxis. Specifically, hACE2 transgenic mice were intranasally infected with SARS-CoV-2 viruses (2019-nCoV Beta CoV/Wuhan/AMMSO 1/2020) at a dose of 105 TCID50.


In the pre-exposure prophylaxis treatment mode, the antigen-binding unit of the present invention was injected intraperitoneally at a dose of 20 mg/kg into hACE2 transgenic mice 24 hours prior to viral infection and the potency of the antigen-binding unit as a pre-exposure prophylactic intervention was detected.


In the post-exposure prophylaxis mode, 2 hours after viral infection, mice were injected with the antigen-binding unit at a dose of 20 mg/kg. HG1K (IgG1 antibody against H7N9 virus) was used as a negative control, and 2 hours after virus infection, same was injected at 20 mg/kg. Body weights that reflect the health condition of the infected mice were recorded daily for 5 consecutive days.


7.2 In Vivo Potency of Antigen-Binding Unit in Hamster

In the second model, hamsters (Mesocricetus auratus) were used as a animal model and treated with 2 different modes, i.e., pre-exposure prophylaxis and post-exposure prophylaxis. Specifically, hamsters were intranasally infected with SARS-CoV-2 proviruses (SARS-COV-2/WH-09/human/020/CHN) at a dose of 105 TCID50, which is similar to hACE2 transgenic mice.


In the pre-exposure prophylaxis treatment mode of hamsters, the antigen-binding units of the present invention were injected at a dose of 20 mg/kg into hamsters 1 day prior to viral infection. In the control group, 2 hours after infection, animals were injected with PBS.


In the post-exposure prophylaxis treatment mode of hamsters, 2 hours after infection, the antigen-binding units of the present invention were injected intraperitoneally into hamsters at different doses (including 20, 10, 5 and 2 mg/kg) according to body weights. In addition, the hamster injected with phosphate buffered saline (PBS) was used as a control. Body weights of the infected hamsters were recorded daily for 7 consecutive days. Hamsters were sacrificed 7 days after infection and lungs were collected for viral load analysis.


Sequence Information

The information of partial sequences involved herein is as shown in Table 8 below.









TABLE 8







Sequence Listing








SEQ



ID
Sequence











1
ARDVTLVRGTASPRFDY





2
ARDVTLVRGTASPRFDY





3
ARSTRRWLQFVFPFDY





4
ARSTRRWLQFVFPFDY





5
ARSTRRWLQFVFPFDY





6
ARSTRRWLQFVFPFDY





7
ARSTRRWLQFVFPFDY





8
ARQAPGGGLLGYYHGLDV





9
ARQAPGGGLLGYYHGLDV





10
ARDRYCGGDCSGPHYYYYGMDV





11
ARWDCSGGSCNYYYYYNMDV





12
ARWDCSGGSCNYYYYYNMDV





13
AREDILLVPAASNFYYFGMDV





14
ARGDYYDPDDRYNAYYSLGA





15
TKGSMLLEVY





16
ARAPSDSSGINGAFDI





17
ARPKAPGYSYLSLDY





18
CGFGVVTTDAYGMDV





19
VKDKACTTTSCYEGTFFDY





20
VRGDDSILTPTFDH





21
ARAGKGFMVITHFDY





22
ARPHTNSWDQFDY





23
ARPQGGSSWYRDYYYGMDV





24
ATSTAVLRYFAPTGGWFDP





25
AKDNGHSYGYSWFDP





26
ATDGATIPINYYGMDV





27
ARSPITMIVVVNAFDI





28
ARARITMIVVVNHFDY





29
ARVQSTGYKYWYFDI





30
ARGFDY





31
ARARDYGSGSPMDV





32
ARDGVYYGSVIYHHYDLHV





33
ARGGGELLRYPFDY





34
AKAGLGLETSGGNYFES





35
AKDRVTMNYFDY





36
ARVREGYTSGWYADY





37
ARDRSYYHSSGYHYYFDY





38
VRDRIVGGYSYGGDY





39
AKGRLSPRL





40
ARVKVDNVVFDL





41
ARDRGLAARPAGWVDL





42
ARENFHFSGTPPLY





43
ARKYTYDTSGFFLSSSRNAFDV





44
ARLGSNGYGL





45
ARTYSYDSSGFFLTSSREAFDI





46
VRKYSFDVSGFFLSSSRHAFDV





47
ARKYSYDTSGFFLTSSRDAFDV





48
VRKFSYDISGFFLTSSRDAFDV





49
ATEGV





50
LLIEGMGATSGD





51
ATTNDGYYYGMDV





52
ATNPHNTAMVLDYYGMDV





53
AGAYIAAAGWGWELFQYYFDY





54
AHQAPFEWFGVDY





55
TTDGLYCSGGSCYYHSYYYYYGMDV





56
ARDGLGNYDILTGYTERAFDI





57
ARVKPILRVVVVAATPCDY





58
ARHARGYQLLSPRLGELSLYRSFDY





59
ARATTTKMIVVVINAFDI





60
ARHWITMIVVVIKGGWFDP





61
ARIRGQWLVGKYYYGMDV





62
AHRGWGFSSSFFDY





63
ARMSSSLQHYYGMDV





64
ARMSSSLQHYYGMDV





65
ARDVTLVRGTASPRFDY





66
ARDVTLVRGTASPRFDY





67
AQEGRNYDRNWFDP





68
ARLIPIDGRDV





69
TTYWDQYTSTWT





70
ASIVKYDSSGYNFDY





71
TRDPWHESEHRFDP





72
AKDNKVSSWYSFDI





73
ARGLGYYVAL





74
VRGGQEVSLRRLDWFVGY





75
AKERGGSGKMYDY





76
ARRGAAVAGTTGGSAFDI





77
TKTSDLLYYGSGSYLPY





78
TRDGGAWD





79
ARGIPREYTTRWENAFDI





80
ARDRGADKDSNSGDVFDI





81
VGPQGAY





82
ARDPRGSSTSCSYDY





83
TGQERITIFGVVIISSDY





84
ARRLNDGANHS





85
SWDATVYYDMAV





86
ARPSSGSYADPFDI





87
VASRSSSLDY





88
ARSRGYGGLAGVDY





89
ARAYFDDSSGGFDY





90
AGSTYGDYVPHFYF





91
ARGLSSFTTIVVVFVGASFYFDS





92
ARGTTSTTMIVIVITAVSTWFDP





93
ARHPLKVDTIFGVVIIDPAPFDY





94
ARIASYYYDSSGYYQTRPIGHAFDI





95
AKDRAQLLWFGQSRGMDV





96
TSTSDW





97
TRLRSGLVGFDWLPLYGMDV





98
ARRGVGILKDLPVYAMDV





99
AREARQIFITMMTTKTSWFDP





100
ARVSSTAVVTGLDYYYGMDV





101
TTISVGLLWFGLAVRDHYYFDY





102
ARSYYDSSTGYYPDALDL





103
AKSGSVWGSYHKTYYFDY





104
AKEILKGYSSGWKYYYYGMDV





105
ARATTTMVRGVIYHYYYYGMDV





106
ARERLGRMVRGVNWFDP





107
ASWTMVRGVIRWFDP





108
ARQFHYVGIVVVVAPHYYYGMDV





109
ASPRGYSYGPFDY





110
ARVLYYDILTGYWWYYYGMDV





ill
ARGAPITIFGVVISTWFDP





112
ARAHTDSLELGI





113
VRKYTYDTSGFFLTSTRSAFDV





114
ARKHVYDTSGFFLSSSRNAFDV





115
ARKYSFDISGFFLSSSRYALDV





116
ARDEGVTFHDHWANEIRYGMDV





117
ARARTTMIVVVSQFDY





118
ARDRGGWLLGSYYYYGMDV





119
ARGQISHYGFGESH





120
AHSGIAVVGNQLFHYYAMDV





121
AKERSSGSQWGWTYYYYGMDV





122
ARDPYGGNRRFHGWVYYYYGMDV





123
ARESTPDVRGVMNY





124
AKDAVASAGSPDY





125
ARDKLLWFGEPVVGYYYYYYMDV





126
ARDGGGDYAQIYFDY





127
ARDRLMTTYNYYSSMDV





128
AREPGDCSGGSCYYYGMDV





129
ARATRGYSYDDAFDI





130
ASPSYTDLLTGYYVPVDY





131
AKDPRVNELLWFGSLTQFYFDD





132
AKSGGPFHLSLYYYMDV





133
ARAFYGHAFDF





134
AKGLTIPFDK





135
AKGLTIPFDK





136
ARRGKYCSGGRCYSWWFDP





137
ARVASLIGDDY





138
ARVASLIGDDY





139
AHKPSGWSLRFDS





140
ARESLFNWFDS





141
AKGLTIPFDN





142
ARVDYDSSRNY





143
ARVERWLVLGYYYYGMDV





144
GSIDY





145
AKMYSDYDDNYYGLDV





146
ARDRYCSSTSCGGYYYYMDV





147
ARAPNDFWSGYPYYFDY





148
TRDGSTAAIFGNIDY





149
ARGVVRNDYGDPGFDY





150
ATAPAYCSGGSCPENNWFDP





151
AILWFGEFYFYDLFYNAVDV





152
AILWFGEFYFYDLFYNAVDV





153
ASRREQWLGDLGYYYYGMDV





154
ARGGAHSEDY





155
ARHQDPLDIVATVDWGGLDY





156
ARVASLIGDDY





157
ATTGTDNYYYYMDV





158
ARKNCSGGICYFHDY





159
AHKPSGWSLRFDS





160
AKGQTIQLWLFGAL





161
ALTVSSWYPGIFEN





162
AKAFSGSYWDAFDI





163
AKAASGARGYYGMDV





164
ARSSSGHYVSDLGY





165
ARALNGYRYNDY





166
AREEGGGSSTHFDC





167
ARTREGSYYYGMDV





168
VRGGLQFVVAVGPYGVDV





169
VRGGLQFVVAVGPYGVDV





170
ARDIGGGAPDY





171
AIKPSIPGYFDP





172
ARVGGWQRSPRPN





173
ARVGGWQRSPRPN





174
ARGQGYGRVLLWFGE





175
ARGQGYGRVLLWFGE





176
ARPSSGSRFDY





177
ARGFDY





178
AKARGVVLFDY





179
ARHSYGSGTYLDPFDY





180
ARQPHLAYYYDSSGYNDAFDI





181
ARGAVVTPFGLDS





182
ASEDYYDSSGYYWY





183
ARLSAIAVVGYYYYAMDV





184
ARDFIAASPFYYYYYMDV





185
ATSPGGYGVRRTVLEDFRH





186
WTMEYDDYSFVYDY





187
ARGGKQQLVRNYYLDS





188
ATGFGGVIVRGFDY





189
ARVYGDYSYYMDV





190
ARDLGEAGGMDV





191
VREIESGVDFWSGHYY





192
ARDSAYYDTIGYYSGDY





193
GRSFRGSCFDYL





194
ALGTGSYYGVNY





195
AKDMGGRYSSGLYYYYYGMDV





196
ARELRGYFDY





197
ARDPNDFWSGFPRGAFDI





198
ASHARYEEETFDY





199
VRDSYTSAWTPAGYFDL





200
AKDHYGSIDY





201
ARPYTSRWFWSN





202
ALLPPNAYDYGDGLLDH





203
ARHRAAGGNYYYGMDV





204
ARERVGPAAGYMDV





205
ARAAYYYDSSGYGWFDP





206
ARGDYTEYSYYYMDV





207
ALPTGASSSYSGPNY





208
ARDEVIAVATGEGMDV





209
AKDMGYDILTGSGLGDY





210
AKEPLFGETYGMDV





211
ARDKGSGSYYSGAYYYYMDV





212
ATFNSGNDNAYEY





213
AREYPDFWSGHYYYYMDV





214
ARLPYGMDV





215
ARGLYDKSGYRSDGFDS





216
ARGFEGYCSGGRCYSYFDY





217
ARVKNWDYGLY





218
ARDGQSDWHFDL





219
ARVYGDYLDH





220
AHRSFLYNIFNGYSYAPFDY





221
AKDLFSGDRDF





222
AKDSGAVLLWFGADF





223
AREGAYDIWRGSYMRAYDH





224
ARYIEMFDP





225
ARQAYGDYGWDYYYGMDV





226
LKDWDWEYEDSRPTLRGSVY





227
ARGSVFWFGEGKNWFDP





228
ARGSVFWFGEGKNWFDP





229
AREDSSGWSRGDY





230
ARRFVVREVEYNWFDP





231
ARDGYCNSMRCYRYYHGMDV





232
ATGPTAKPNKQWGYWFDP





233
ASPVSVEQDFDI





234
TTPVGDF





235
STSHPPFFDY





236
ARGLWQLVSPVFDY





237
AKVTNRGVRGLYFDY





238
ASPVSVEQDFDI





239
AINTLLVTA





240
VHRSFLYDIFSGYSYAPFDY





241
AHRSFLYNIFDGYSYAPFDY





242
AGGADCRRTSCHYLVSNREEYMGV





243
ARGLVLSGTRYSYFYGMDV





244
VKDWDWEYEDNRPTLRGSVY





245
VKDWDWEYEESRPTLRGSVY





246
AKGGPIFWLGEGKNWFDA





247
ARDKGGILMLRGADF





248
ARTLIAAAGSAFDI





249
ARGPTSITMIVVVDDAFDI





250
ARVMNSSWYTRYYYNYMDV





251
ARRGGGCSEGVCYNFDR





252
ARGDPRDY





253
ARGSYYYDSSGYYLDY





254
ARAAYYYDSSGYGWFDP





255
TTDLGATGIYYYYYMDV





256
ARFPRDYYDSSGYLIQEGNFDY





257
ARVTRAGAAGDGGAFDI





258
ARSVVPVAGTDY





259
ARDQHPGYPALVYYYYYMDV





260
ARDNIQTFDY





261
ATSSPVAGYNSWFDP





262
ATGPAVIPLRWFDP





263
ATAPAAAGPTDWFDP





264
AISPSVHSLWWFDP





265
ARDEIHYDILTGYYNRFWFHP





266
ARDAETGYYDSSGYPINWFDP





267
ARHYYDTGAYYVPFDH





268
AHFQGFGESEYFQH





269
AHRHPLTGFDS





270
ATPRGYSYGPLDY





271
ASPRGYSYGPFDY





272
ARDRVDKGYDFWSSWYFDL





273
ASGGGSYFDAFDI





274
ARDRSGSYYGGFDY





275
AKAVYGGNSVYFDY





276
ARIYGGNYENYFDY





277
ARESEAGTTPSFDY





278
ARSLVRGVITYFDY





279
ARGLSMEV





280
ARGGYSSSWYGTKYYFDY





281
ARGPTVTTFFRRNAWFDP





282
ARGRYSSGWYGSRNWFDP





283
ARLSMGAARQSGFDP





284
ARDGGRDGYNELGARVYYYYGMDV





285
ARIGSYGI





286
AKLGCSGGSCYYYYGMDV





287
ARGDHYYDRSGPHKFDY





288
ARDSPLKFDSFGYPLYGMDV





289
ARGIVGATPGYFDY





290
AKAVSGWPIYFDA





291
AKAVSGWPIYFDA





292
AHTIHSGYDRTFDS





293
AREESYSSSSPLDY





294
AAGSDFWSGYYVNYYMDV





295
ARLTAAGVYFDY





296
AKTRGRGLYDYVWGSKDY





297
AKTRGRGLYDYVWGSKDY





298
ARDESGSYYGDQAFDI





299
ARDRRARAYEIPFGSDHYYFGMDV





300
ARDYYGSGSYPIGYMDV





301
TTSYCSTKVCFDYWFDP





302
ASNLYATSPYGGVKN





303
AKDIGSGSPDAFDI





304
VKDLEFRGGTGGFDL





305
ARDGHSAWGAFDI





306
ARDHPTLRRAFDY





307
ARDRGSSSWWGWLDP





308
ATRRGYSGYGAAYYFDY





309
AREVYVGGEDDYSYYYGLDV





310
TTDLGEAGPTEWLRSSLFDY





311
TTSYCNPKVCFDYWFDP





312
AKEYYYDSSGYYYREDAFDI





313
AKDGGLTAYLEY





314
ATEKWEVVDVCFDY





315
AKDIGWDVVVVAATHGVFDY





316
AKDPYYYGSGSSNFFDY





317
ARGPDYYDTGGYFDL





318
ARDGYKQIYWYLDL





319
AKGEGVYGSGSRYFLDY





320
AREWSRGAVAGTGYFDY





321
AKVAKLPGDYYGMDV





322
ARELRGAFDI





323
ARDWGEYYFDY





324
ARDYGDLYFDY





325
ARDRRVGSPYYYYYMDV





326
ARDLGDNAFDI





327
ARDRYSGYDF





328
ARLSGTGYGGDGGWFDP





329
AGKKIYYGSSFDP





330
ARGGSGSGWYGGRFDY





331
ARVWRETYYYDSSGDSFDY





332
ARGRSITGIRDVDF





333
ARGRGNYMFRWFDP





334
ARGGLWYDSINYYGMDV





335
ARLILRWPTTWDYFDY





336
ARVDGPFDY





337
ARCPFWNYGHCYLDN





338
ARPSVRWYYHAMDV





339
AKERRPVLRYFDWLPIEAPDY





340
ARGQYDILTGYQYGAFDI





341
AAHYYSRTDAFHI





342
ARDSVSGSGSYYKGLWFDP





343
VVGIGYCSSPSCPPLRWFDY





344
ARERGYSGSGSLYYFDY





345
AHYSSSRPPLFDY





346
AKGHWST





347
ANGAYYYGSGSYYNGAAY





348
AKGGYYDILTGYFPFDY





349
ARDLVVYGMDV





350
ARDPIRNGMDV





351
ARDLVVYGMDV





352
ARDAMSYGMDV





353
ARDRVVYGMDV





354
ARDAAVYGIDV





355
ARDLISRGMDV





356
ARDRVVYGMDV





357
ARDLVSYGMDV





358
ARDLVVYGMDV





359
ARDAQNYGMDV





360
ARDRGLVSDY





361
QQTYIIPYS





362
QQYYSYPYT





363
SSYAGSNNLV





364
QRYDSYRT





365
QQSYSTPYT





366
QQYDNLPLT





367
QQYATSPWT





368
AAWDDSLSSWG





369
QTWGTGTVV





370
QSADSSGTWV





371
QQRSDWTPT





372
QQFNSYPRT





373
CSYAGNTTF





374
STWDASLKEVL





375
MQGTHWPLT





376
QQYDSYPWT





377
QQLTTYPRT





378
QSADSSGTWV





379
QQFYSTPVT





380
QSYDGSNVV





381
QQYYSTPLT





382
QQYYDTPMYT





383
QQYNSYPYT





384
SSYTSSSTFV





385
QSADSSGTYSNWV





386
SSYTSSSTVV





387
QQYGSSPLT





388
QQYGSSPLT





389
QQYGA





390
QQYGSSPWT





391
AVWDDSLNGVV





392
SSFAGSNNPYV





393
QQYYSTPYT





394
HQYDSWPPT





395
QNRDDWPPLFT





396
QQYYSTPRT





397
QQAHSFLSLT





398
QSADTSGTYLWV





399
QQYDSLPIT





400
QQYYGIPT





401
QKCDNFPWT





402
AAWDDSLSVVV





403
QQSYSSPPT





404
QSYDDTLTI





405
QQSYGAPPT





406
QQSYSTPPT





407
QQSFSTPPT





408
QQSYSSPPT





409
YSTDSSGNHWV





410
LLSYSGVRI





411
QSYDSSLSKV





412
QAWDSSTFYV





413
GTWDSSLSAVV





414
QQYNNWPWT





415
LLSYSGARPV





416
QQSYSTPPYT





417
SSYTSSSTRVV





418
QQYYSTPIT





419
QQYGSSPLT





420
GTWDSSLSVVV





421
SSYTSSSTFAV





422
MQALQTPLT





423
MQALQTVFT





424
MQALQTVFT





425
QQTYIIPYS





426
QQYYSYPYT





427
QVWDSSSDHVV





428
QAWDSSTSYVV





429
GTWDSSLSVGV





430
NSYTSNSTAV





431
QQSYNWPRT





432
LQHNSYPYT





433
QQYNGYPHT





434
QQYSYYSA





435
QQYGT





436
SAWDSSLSAWV





437
QQYYSTPIT





438
QSFDDNDQV





439
LLYVGGGIWV





440
QQYNIWLT





441
MQGTLLLT





442
ETWDSSLDAVI





443
AAWDDSLSGRV





444
MQGTHWPHPT





445
MQGTPWPT





446
QQSGSSYT





447
MQSLPSGFT





448
MQSLDLPPT





449
QQGSSFPLT





450
QQYDSSPIT





451
NSRDSSGQLHVVV





452
NSRDNNDDLPL





453
SSYAGSNNLGV





454
QSYDSSLSGVV





455
QQYYSTPFT





456
MQGTHWPIT





457
SSYTSSSTLVV





458
QQSYSTPYT





459
CSYAGSYVV





460
QQSYSTLHT





461
NSRDSSGNHLV





462
QAWDTITHEEV





463
QQYNYYPVA





464
TQATQFPLT





465
QQSYSTPPYT





466
QSYDSSLSSPVV





467
AAWDDSLSGPV





468
NSRDSSGNHLV





469
QQYDNLPYT





470
GTWDSSLSAGV





471
QQYNNWPPWT





472
QAWDSSTYVV





473
QQSYSSPPT





474
QQSYSSPPT





475
QQSYSSPPT





476
HHYGTSPPFT





477
QQYGSSPLT





478
QSADSSGTYYV





479
QQSYSTPRT





480
QAWDSSTVV





481
MQSIQLPLT





482
MQSIQLPFT





483
MQALQTYT





484
YSTDSSGNHRRV





485
SSYTSSSTLV





486
YSTDSSGNHRGV





487
QQYNSFPYT





488
QQRSNWPVT





489
LQHNSYPLT





490
LQHNSYPFT





491
QQYGTSAGT





492
QQYGNLPPFT





493
QQYYSTPLT





494
MQNRHLYT





495
MQNRHLYT





496
MQTLQTSIT





497
QQYGSSQYS





498
QQYGSSQYT





499
QHYDTLLT





500
QQYFDTPWT





501
MQNRQLYT





502
QQFDNLPPFT





503
QQSYSARMST





504
MQGTQWPWT





505
QQFDNSPPWT





506
QSADSSGTYVV





507
CSYAGSYTLV





508
QQSYSTPFT





509
MQGTHSYT





510
QAWDSSTASYV





511
SSYTSASTVV





512
SSYTSASTVV





513
MQGTHSPWT





514
GTWDSSLSAWV





515
QSADGRGDWV





516
QQYGSSQYS





517
QQYDSYSGT





518
ETWDSPYVV





519
QHYDSLLT





520
SSYTSSSTVV





521
MQALQTLT





522
QQYNSYPLFT





523
MQGTHWPMT





524
QQYGSSPMYT





525
QQANSFPA





526
QAWDSHTVV





527
QQYNSYSWT





528
QQYTSWPLT





529
QQYTSWPLT





530
YSPKV





531
QQYNILPHT





532
QQYYNAPLS





533
QQYYNAPLS





534
QQRSNWIT





535
QQRSNWIT





536
AAWDDSLNGPV





537
QQYGSSPQT





538
QQYNNWPPLT





539
QQYYSYSLT





540
CSYAGSSTFYV





541
QSADSSGTWV





542
QQYGSSPEMYT





543
HQYGSGLGT





544
MQSIQLRT





545
QQCSSWPLSLT





546
QQYNNWPPIT





547
QQSNSFPPT





548
QSYDISLSAYV





549
QQYNTYSLT





550
QQLNSYPPA





551
QQYYRTPLT





552
LQHHTYPLT





553
MQSIQLWS





554
LLSYSGPWV





555
SSYAGSNNYV





556
QQYDNLPSFT





557
CSYAGSYTLV





558
CSYAGSSTVV





559
QQSYNVPPWT





560
MQGTHWPWT





561
QSYDINLSAV





562
HQYHNSPWT





563
MQALQTPYT





564
QVWDSSSDHYV





565
QQYGSSPRT





566
QQYDNWLPYT





567
LLSYSGAYVL





568
QQYSNWPLYT





569
AAWDDSLNGPYV





570
SSYTSISTVL





571
QVWDGGSDDRGYV





572
SSFTSNGAWV





573
QQNYIRPYT





574
QQYDNLPIT





575
ATWDDSLNGV





576
QQYNNWPYT





577
GADHGSGSNFVYV





578
CSYAGSSTLV





579
QQHDSAPYT





580
QQYNSYVT





581
MQGKHLRWT





582
YSTDYSGNHGV





583
QQCSNWPNT





584
QSADSNDSWV





585
GTWDSSLSAGV





586
QQGHNFPWT





587
QQYGSLPLT





588
QQYGSLPLT





589
QSYDSSLSGWV





590
QQRRNWPLT





591
QHRSNWPYT





592
AAWDDSLNGVV





593
MQTTQFPRT





594
QSQDSSATYVV





595
QAWDSSIEV





596
QQYGSSPPWT





597
QSGDSSGTYVV





598
MQTTQFPRT





599
LQYNTYSYS





600
QQYNSYIT





601
QQYNSYVT





602
YSTDSSDNQRV





603
QHLKSYPLT





604
QQGHNFPWT





605
QQGHNFPWT





606
QQYHNFP





607
QSYDSSLSVV





608
QAWDSNTGV





609
QSYDSSLSGSV





610
QSVDNTGASPHVV





611
QQYHTYWT





612
QAWDSGT





613
QQYGSSPRT





614
QQYGSSPRT





615
QHYGTSPYT





616
QQYGSSTLVT





617
CSYAGSSLWV





618
QSYDSSFWV





619
GTWDSSLSAVV





620
YSTDRSGNHRGV





621
NSRDSSGNHLYWV





622
QSYDSSLSGHVV





623
GTWDSSLSAGGV





624
CSYAGSSTFVV





625
GTWDSSLSAVV





626
QQLNSYPPT





627
QQSYSTLWT





628
QQYGDSPET





629
QAWDSSTVV





630
QQYDNLPYT





631
QQYDNLPYT





632
QQRSNWPSIT





633
QQANSFPLA





634
QQSYSTPFG





635
LSYDSSLSGSV





636
QQFNNYPLT





637
QQYDNLPFT





638
SSYTSSSAYV





639
NSRDSSGNHVV





640
CSYAGSYPVV





641
SSYAGSNKV





642
QQYGSSGGYT





643
QQSYSTPYT





644
QQYGSSSWT





645
QQSYSTPYT





646
QAWDSSTANWV





647
SSFTDSSTLVV





648
QQSYSVPHT





649
QQYNNWLT





650
QQYNNWPPIT





651
QQYNNWPPIT





652
SSYAGTNKIL





653
QQSYSTPLT





654
SSYTSSSTWV





655
QQSYSTPYT





656
MQALQTPGT





657
MQALQTPGT





658
QQYNSYSA





659
QAWDRTTAT





660
QSYDSSLSGWV





661
SSYTSLNTLEVV





662
MQALQTPYS





663
QVWDSSSDRTVV





664
ASWDDKVRGWV





665
QQYGSSPWT





666
QQYNSYSRT





667
QQYNTSPLT





668
QSYDSSLSGSL





669
QSADSSGTYRV





670
QQYGRT





671
SSYTNIDTLEIV





672
LQHNSYPRT





673
QVWHSSFDPWV





674
QQSYSTPPTT





675
QQYNSYFPT





676
QVWDSSSDHYWV





677
GTWDSSLSAGV





678
QTWGTGPQVL





679
QQYDNLLT





680
QVWDSSGDHWV





681
QQRSNWLT





682
QQHDNLPSFT





683
QQYGSSPRT





684
QQYGSSPRT





685
LLYYGGAPV





686
QQLNSYPPA





687
QQYDNLPQT





688
CSYAGSSLWV





689
QSYDSSNQV





690
QQRSNWLFT





691
GTWDSSLSAGV





692
MQASQFPLT





693
CSFAGSNRE





694
QQYGSSPWT





695
GTWDSSLSAWV





696
QHYSSSAPIT





697
QQRNKWPGT





698
QQYGDSPYT





699
QQLNSYPLT





700
CTYAGSSTWV





701
QQSYSSPYT





702
QQANSFPRT





703
QQFNDYPLT





704
QSYDSSLSGSV





705
QQYSTYYT





706
MQGSHWPWT





707
AAWDDSLNGPWV





708
CSYAGSYTWV





709
QQLNSYPFT





710
QQYDNLPRT





711
QQLNSYPLT





712
QQSYSTPPDT





713
QQYDNLPPT





714
QQSYTTPLFT





715
QQLNGYPHSA





716
HQYDNLPPT





717
QQLNSYPLT





718
QQLNSNPPIT





719
QQSYSTPPYT





720
HQYDNLPRT





721
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGVDTAMV



GFDYWGQGTLVTVSS





722
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGVDTAMV



GFDYWGQGTLVTVSS





723
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARSTRRWLQFVFP



FDYWGQGTLVTVSS





724
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARSTRRWLQFVFP



FDYWGQGTLVTVSS





725
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARSTRRWLQFVFP



FDYWGQGTLVTVSS





726
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARSTRRWLQFVFP



FDYWGQGTLVTVSS





727
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARSTRRWLQFVFP



FDYWGQGTLVTVSS





728
QMQLQESGPGLVEPSETLALTCTVSGGSINRNHFWAWLRRPPGKGLEWIGSASYT



GTTHDNPSLRSRLTISVDTSKNQFSLKMTSVTVADTAVYFCARQAPGGGLLGYY



HGLDVWGQGTTVTVSP





729
QMQLQESGPGLVEPSETLALTCTVSGGSINRNHFWAWLRRPPGKGLEWIGSASYT



GTTHDNPSLRSRLTISVDTSKNQFSLKMTSVTVADTAVYFCARQAPGGGLLGYY



HGLDVWGQGTTVTVSP





730
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDRYCGGDC



SGPHYYYYGMDVWGQGTTVTVSS





731
EVQLVESGGGLVQPGGSLRLSCAASGFTFSYFEMNWVRQAPGKGLEWISYISSSG



TNIYYADSVKGRFTISRDNAENSLYLQMNSLRVEDTAVYYCARWDCSGGSCNYY



YYYNMDVWGQGTRVTVSS





732
EVQLVESGGGLVQPGGSLRLSCAASGFTFSYFEMNWVRQAPGKGLEWISYISSSG



TNIYYADSVKGRFTISRDNAENSLYLQMNSLRVEDTAVYYCARWDCSGGSCNYY



YYYNMDVWGQGTRVTVSS





733
QVQLVQSGAEVKKPGASVKVSCKASGYKFSNYYIHWVRQAPGQGLEWMGWIN



PYSGETNYAQKFQGRVTMTRDTSTSTAYMELSRLRADDTAVFFCAREDILLVPAA



SNFYYFGMDVWGQGTTVAVSS





734
QVQLVQSGAEVRKPGASVKISCKSSGYIFTNFYVDWVRQAPGRGLEWMGRVNP



NDGSSIYAQKFRDRFSLTSDTSTSTVFLNLRGLTSEDTALYFCARGDYYDPDDRY



NAYYSLGAWGQGTTVIVSS





735
EVQLLESGGGLQQRGGSLRLSCAASGFNFSSYAMSWVRQAPGKGLEWVSSISAT



GGTTFYADSEKGRFTISRDNSKNILYLQMNSLRAEDTAVYYCTKGSMLLEVYWG



QGTLVTVSS





736
EVQLVESGGGLVQPGGSLRLSCGVSGIIVSRNEMSWVRQAPGKGLEWVSYISSSG



TGVHYADSVKGRFTSSRDSAKNSVYLQMHSLRAEDTAVYYCARAPSDSSGINGA



FDIWGQGTMVTVSS





737
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYAISWVRQAPGQGLEWMGGIIPIF



GTPTYAQRFQGRVTITADESTSTAYMELTSLRSDDTAVFYCARPKAPGYSYLSLDY



WGQGTLVTVSS





738
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCCGFGVVTTDAY



GMDVWGQGTTVTVSS





739
EVQLVESGGGLVQPGGSLRLSCSASGFTFNNYAMHWVRQAPGKGLEHVSVISSY



GDNTFYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAVYYCVKDKACTTTSCY



EGTFFDYWGQGTLVTVSS





740
EVQLVESGGGLVQPGGSLRLSCAASGFVFSNYWMTWVRQAPGKGLEWVANIKQ



DESEEYYRDSLKGRFTISRDNAKNSVFLQMDSLRVEDSAVYYCVRGDDSILTPTF



DHWGQGTLVTVSS





741
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARAGKGFMVITHF



DYWGQGTLVTVSS





742
EVELVQSGAEMKEPGESLKISCKGFGYNFNNYWVAWVRQTPGKGLEWMGIIYG



GDSDTRYNPSMQGQVTISADKSINTIYLEWDVLRASDSGIYYCARPHTNSWDQF



DYWGQGTLVTVSS





743
QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLEWMGWIN



TNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCARPQGGSSWYR



DYYYGMDVWGQGTTVTVSS





744
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATSTAVLRYFAP



TGGWFDPWGQGTLVTVSS





745
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNGHSYGY



SWFDPWGQGTLVTVSS





746
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYPMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATDGATIPINYY



GMDVWGQGTTVTVSS





747
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARSPITMIVVVNAF



DIWGQGTMVTVSS





748
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARARITMIVVVNH



FDYWGQGTLVTVSS





749
EVQLVESGGRSVQPGGSLRLSCEASGFTVSSNYMNWVRQAPGKGLEWLSVLYS



GGNEYYADSVRGRFTISRHSSKNTLFLQMNRLRPEDTAVYYCARVQSTGYKYW



YFDIWGRGTLVIVSS





750
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGFDYWGQGTLVTV



SS





751
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYFIYWVRQAPGQGLEWMGRINP



SSGVANYAQKFQGRVTMTRDTSITTAYMELSRLTSDDTVVYYCARARDYGSGSP



MDVWGQGTTVTVSS





752
EVQLVESGGGLVQPGGSLRLSCVASGFTASSNYMNWVRQAPGKGLEWVSVIYA



GGGTHYADSVKGRFTISRDNFKNTVYLQMNSLRSEDTAVYYCARDGVYYGSVI



YHHYDLHVWGQGTTVTVSS





753
QVQLVQSGPEVKKPGSSVKVSCKVSGGTFSSYGISWVRLAPGRGLEWMGRILPV



LDTTTYAPKFEGRVTITADESTTTAYMELTSLKSDDTAVYYCARGGGELLRYPFD



YWGQGTPVTVSS





754
QVHLVQSGPEVKKPGSSVKVSCKASGGRFGSFAFSWLRQAPGQGLEWMGKVTP



IVGVPVYAEKFQGTVTISADESTNTAYMEVSSLRSEDTALYYCAKAGLGLETSGG



NYFESWGQGTLVTVSS





755
QVRLVESGGGLVQPGRSLRLSCAASGFTFTDYAIHWVRQAPGKGLEWMATISYD



GNDKYFAASVRGRFSISRDNSNNTLFLQMNNLRAEDTAVYYCAKDRVTMNYFD



YWGQGTLVSVSS





756
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVREGYTSGWYADY



WGQGTLVTVSS





757
QVQLVQSGAEVQKPGASVRVSCKASGYTFTDYYIHWVRQAPGQGLEWMGWVN



PNRGGTNNAQKFQGRVTMTRDTSITTAYMELHSLRSDDTAVYYCARDRSYYHSS



GYHYYFDYWGQGSLVTVSS





758
QVQLVQSGAEVKKPGASVKVSCKASGYSFTGHYIHWVRQAPGQGLEWMGWIN



PDSGGTNNAQKFQGRVTMARDTSISTAYMDLSTLTNDDTAVYYCVRDRIVGGYS



YGGDYWGQGTLVTVSS





759
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVSAITGS



GGSTHYADSVKGRFTISRDNSNNTLSLQMNSLRAEDTAVYYCAKGRLSPRLGQG



TLVTVSS





760
QLQLKESGSGLVKSSQTLSLTCAVSGGSISSDVYSWSWIRQAPGKGLEYIGYVFH



TGSAYYNPSLKSRVIISVDRSKNQVSLNVTSVTAADTAIYYCARVKVDNVVFDLW



GQGTMVTVSS





761
QVQLVQSGTEVKKPGSSVKVSCKASGDTFNSYAISWVRQAPGQGLEWMGRIIPIL



RLATYAQEFQGRVTITADKSTTTTYMEVTSLKSEDTAIYYCARDRGLAARPAGW



VDLWGQGTLVTVSS





762
QTQLVESGGGVVQPGRSLRLSCAASGFTFSHYGMHWVRQAPGKGLEWVALIWY



DGSKKYYADSVKGRFTISRDISENTLYLQMNSLRAEDTAVYYCARENFHFSGTPP



LYWGQGTLVTVSS





763
EVQLVQSAAEQKKPGESLKLSCKGSGYSFPAHWIDWVRQMPGGGLEWVGSIFP



GDSDTKYSPSFEGQVNISADRSINTAYLQWSSLKASDTAIYYCARKYTYDTSGFF



LSSSRNAFDVWGQGSMVFVSS





764
EVQLVQSGAEVKKPGESLKISCKGSGYNFDTYWIAWVRQTPGKGLEWMGDIYP



GDSDSRYSPSFQGRVTFSADKSISVAYLQWSTLKASDTAMYFCARLGSNGYGLW



GQGTLITVSS





765
EVQLVQSGAEVKEPGESLKISCKGSGYSFSGYWIAWVRQRPGKGLEWMGTIFPS



DSDTRYSPSFEGQVTISTDKSISTAYLQWSSLKASDTAMYYCARTYSYDSSGFFLT



SSREAFDIWGQGTMVIVSS





766
EVQLVQSGAEVKKPGESLKISCKASGYYFAAHWIDWVRQMPGRGLEWMGSIFP



SDSDTEYGPSFQGQVNISADKSITTAYLQLKNLKASDTALYYCVRKYSFDVSGFF



LSSSRHAFDVWGQGTMVTVSS





767
EVHLVQSGPEQKKPGESLRISCKGSGYSFPAFWIVWVRQMPGEGLEWMGSVFPG



DSDTEYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARKYSYDTSGFFL



TSSRDAFDVWGQGTMIAVSS





768
DVQLVQSGAEEKKPGEFLKISCKGSGYSFPAYWIGWVRQMPGKGLEWMGSIFPG



DSDTEYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCVRKFSYDISGFFLT



SSRDAFDVWGQGTKVTISS





769
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATEGVWGQGT



TVTVSS





770
QVQLVQSGAEAKKPGASVKVSCKASGYTFTRYWMHWVRQGPGQGLEWMGLM



KPGDGKTIYAQKFQYRVTLTRDTSTSTVYMELRSLTSADTAMYYCLLIEGMGATS



GDWGQGTLVTVSS





771
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSS



SYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATTNDGYYYGMD



VWGQGTTVTVSS





772
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSS



SSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATNPHNTAMVLD



YYGMDVWGQGTTVTVSS





773
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAGAYIAAAGWGWE



LFQYYFDYWGQGTLVTVSS





774
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWD



DDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHQAPFEWFGVD



YWGQGTLVTVSS





775
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVGRIKS



KTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTDGLYCSG



GSCYYHSYYYYYGMDVWGQGTTVTVSS





776
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDGLGNYDILTG



YTERAFDIWGQGTMVTVSS





777
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARVKPILRVVVVA



ATPCDYWGQGTLVTVSS





778
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARHARGYQLLSPRL



GELSLYRSFDYWGQGTLVTVSS





779
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARATTTKMIVVVIN



AFDIWGQGTMVTVSS





780
QLQLQESGPGLVKPSETLSLTCTVSGGSISSRSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARHWITMIVVVIKG



GWFDPWGQGTLVTVSS





781
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKALEWLAHIFS



NDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARIRGQWLVGKY



YYGMDVWGQGTTVTVSS





782
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWD



DDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHRGWGFSSSFFD



YWGQGTLVTVSS





783
QVQLVESGGGVVQPGRSLRLSCAASGFTISPYGMHWVRQAPGKGLECVAIIWYD



GSNKYYADSVKGRFTISRDSSKNTLYLQMDRLRAEDTAVYYCARMSSSLQHYYG



MDVWGQGTTVTVSS





784
QVQLVESGGGVVQPGRSLRLSCAASGFTISPYGMHWVRQAPGKGLECVAIIWYD



GSNKYYADSVKGRFTISRDSSKNTLYLQMDRLRAEDTAVYFCARMSSSLQHYYG



MDVWGQGTTVTVSS





785
QVQVVQSEGEVKKPGASVKVSCMASGYTFGDYGISWVRQAPGQGLEWMGWIS



GYNGDPKYAQKFQGRITLTTDAATSSAYMELRSLRSDDTAVYFCARDVTLVRGT



ASPRFDYWGQGTLITVSS





786
QVQVVQSEGEVKKPGASVKVSCMASGYTFGDYGISWVRQAPGQGLEWMGWIS



GYNGDPKYAQKFQGRITLTTDAATSSAYMELRSLRSDDTAVYFCARDVTLVRGT



ASPRFDYWGQGTLITVSS





787
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWD



DDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAQEGRNYDRNWF



DPWGQGTLVTVSS





788
QVRLQESGPGLVKPSETLSLTCTVSGGSISTYRWSWIRQPPGKGLEWIGYIYYSGR



TNYHPSLKSRVTMSVDTSKNQFSLKLTFVSAADTAVYYCARLIPIDGRDVWGRG



TTVTVSS





789
EVQLVESGGGLVEPGGSLRLSCAASGFTFSNAWMCWVRQAPGKGLEWVGRIKR



IIDGGTINYAAPVKGRFTISRDDSTNTVYLQMNSLRSEDTAVYYCTTYWDQYTST



WTWGQGTLVTVSS





790
QVQLVQSGSELKKPGASVKVSCKASGYIFTNYAINWVRQAPGQGLEWMGWTNT



NTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCASIVKYDSSGYNF



DYWGQGTLVTVSS





791
QVQLVQSGAEVKKPGASVKLSCKTSGYAFTSYQVHWVRQAPGQGLEWMGMIN



PSGSATHYAQKWQGRVSMTADTSTTTVYMELSGLRSEDTAVYYCTRDPWHESE



HRFDPWGQGTLVTVSS





792
EVQLVESGGGLVQPGRSLRLSCAASGFTFGDYAMHWVRQVPGKGLEWVSSITW



NSGNIGYADSVKGRFTISRDNAKNSLYLQMNSLRIEDTALYYCAKDNKVSSWYS



FDIWGQGTMVTVSS





793
QVQLQQWGAGLLKPSETLSLTCAVSGASFSSYYWTWIRQPPGKGLEWIGDISQS



ASTNYSPSLKSRVTISADASRTQFSLNLISVTAADTAVYYCARGLGYYVALGQGT



LVTVSS





794
EVQLVQSGVEVKEPGESLKISCKSSGYSFTKYWIGWVRQMPGKGLEWLGIIYPD



DSETRYSPSFRGQVTISADKSISTAYLAWDRLKASDTAIYYCVRGGQEVSLRRLD



WFVGYWGQGTLVTVSS





795
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSISGS



GDKTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTALYYCAKERGGSGKMY



DYWGQGNLVTVSS





796
QVQLQQSGPGLLKPSQTLSLTCAISGDSVSSNTVAWSWIRQSPSRGLEWLGRTYY



RSNWYNDYAVSVKGRITLNSDTSKNQLSLQLNSVTPEDTAVYYCARRGAAVAGT



TGGSAFDIWGQGTMVTVSS





797
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYGMNWVRQAPGKGLEWVSGISW



NSNSVAYADSVNGRFTISRDNAKNSLYLQMNSLRIEDTAFYYCTKTSDLLYYGSG



SYLPYWGQGTLVVVSS





798
AVQLVESGGGFVQPGRSLRLSCAGSGFAFDDFAMHWVRQAPGKGLEWVSGINW



NSDNIAYAASVKGRFIVSRDNGKNSLYLQMNSLRPEDTALYYCTRDGGAWDWG



RGTLVTVSS





799
EVQVVESGGGLVQPGGSLRLSCAASGFTVSSTFMSWVRQAPGKGLEWVSVIYT



VGDTFYADSVKGRFTISRHTSNNALYFQMNSLRTEDTAVYYCARGIPREYTTRWE



NAFDIWGQGTMVTVSS





800
QVQLQESGSGLVKPSQTLSLTCSVSGGSIKRRGYYWSWIRQHPGKGLEWIGYIYY



SGTTYYNPSLQSRVNISVDTSKNQFSLNLRSVTAADTAVYYCARDRGADKDSNS



GDVFDIWGQGTMVTVSS





801
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSAYYWSWIRQPPGKGLEWIGEINRR



GNTNYNPSLKGRVTISIHTSKNQFSLNLSSMTAADTAVYYCVGPQGAYWGQGTL



VTVSS





802
QLQLQESGPGLVKPSETLSLTCVVSGGSISSSDYYWGWIRQPPGKGLEWIGTIYYS



GNTFYNPSLKSRVTMSVDPSKNQFSLKLSSVTAADTAVYYCARDPRGSSTSCSYD



YWGQGTLVTVSS





803
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVGRIKS



KTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTGQERITIFG



VVIISSDYWGQGTLVTVSS





804
QVHLVQSGAEVKKPGSSVKVSCKASGGTFSTYAISWVRQAPGQGLEYMGGIIPS



LRTANYAQRFQDRVSITADESTTTAYMELSSLRSDDTAVYYCARRLNDGANHSW



GQGTRVTVSS





805
EVQLVQSGGGLVKPGESLRLSCAVSGLRFTDAWLNWVRQAPGKGLEWVGRIKS



RGSGGTIELAAPVKGRFTISRDDSKSTLFLQMNSLRTEDTAIYYCSWDATVYYDM



AVWGQGTTVTVSS





806
QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYALHWVRQAPGKGLEWVALISYD



GRNKYYADSVKGRFTISRDNSKKTLYLQMSTLTAEDTAVFYCARPSSGSYADPFD



IWGQGTMVTVSS





807
QTVVESGGAVVQPGKSLTLSCEASGFSFSDFAMHWVRQSPGKGLEWVAVVSYDS



RQQYYADSVQGRFRISRDNSQYTVTLRMDTLSFEDTGIYFCVASRSSSLDYWGQ



GTRVTVSS





808
QIQLVESGGGVVQPGRSLRLSCAASGFTFTTYGFHWVRQAPGKGLEWVAVIWYD



GSNEAYADSVKGRITISRDNSRNTVYLQMNSLRAEDTAIYHCARSRGYGGLAGV



DYWGQGTLVTVSS





809
DVQLVESGGGLVQPGGSLRLSCLATGFTFRSYSMNWVRQAPGKGLEWISYLSND



DRTRKYADSVNGRFTISRDNDGSSLFLQMDSLRDEDTAIYYCARAYFDDSSGGFD



YWGQGALVIVSS





810
QVQLQESGPGLVKPAETLSLTCTVSGDSITSYYWSWIRQPAGKGLEWIGRIYSSG



DTNYDPSLKSRVTMSVDTSKDQFSLRLSSVTAADTAIYYCAGSTYGDYVPHFYF



WGQGTLVTVSS





811
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGSYWSWIRQSPGKGLEWIGEINPS



GGSNYNPSLKSRVIISLDTSKNQFSLKLNSVTAADTAVYYCARGLSSFTTIVVVFV



GASFYFDSWGQGTLATVAS





812
QVQLQQWGAGLLKPSETLSLTCAVSGGSFTDHYWTWIRQPPGKGLEWIGEINHS



GRTNYSPSLKSRVTMSLDTSKNQFSLKLRSVTAADTGIYYCARGTTSTTMIVIVIT



AVSTWFDPWGQGTLVTVSS





813
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARHPLKVDTIFGVVI



IDPAPFDYWGQGTLVTVSS





814
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKALEWLAHIFS



NDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARIASYYYDSSGY



YQTRPIGHAFDIWGQGTMVTVSS





815
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRAQLLWF



GQSRGMDVWGQGTTVTVSS





816
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLEWVGFIRSK



AYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDTAVYYCTSTSDWWGQG



TLVTVSS





817
EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAMHWVRQASGKGLEWVGRIRS



KANSYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTRLRSGLVGF



DWLPLYGMDVWGQGTTVTVSS





818
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPS



DSYTNYSPSFQGHVTISADKTISTAYLQWSSLKASDTAMYYCARRGVGILKDLPV



YAMDVWGQGTTVTVSS





819
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIIN



PSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAREARQIFITM



MTTKTSWFDPWGQGTLVTVSS





820
QVRLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPIF



HIANSAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARVSSTAVVTGLDY



YYGMDVWGQGTTVTVSS





821
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVGRIKS



KTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTISVGLLW



FGLAVRDHYYFDYWGQGTLVTVSS





822
EVQLVESGGGSVRSGGSLRLSCAASGFTFRSYWMHWVRQAPGKGLVWVSRIFS



DWSTTTYADSVRGRFTISRDNAKNTLYLEMNRLKVEDTAVYYCARSYYDSSTGY



YPDALDLWGQGTTVTVSS





823
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVAAISGS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSGSVWGSYH



KTYYFDYWGQGTLVTVSS





824
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKNYADSVKGRFTISRENSKNTLYLQMNSLRAEDTAVYYCAKEILKGYSSG



WKYYYYGMDVWGQGTTVTVSS





825
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMNWVRQAPGKGLEWVSVIYSG



SSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARATTTMVRGVIY



HYYYYGMDVWGQGTTVTVSS





826
QVQLQESGPGLVKPSQTLSLTCTVSGGPISSGGYYWSWIRQHPGKGLEWLGCIYY



SGSTYYNPSLKSRVSISVDTSKSQFSLKLSSVTAADTAVYYCARERLGRMVRGVN



WFDPWGQGILVTVSS





827
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSYYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASWTMVRGVIRWF



DPWGQGTLVTVSS





828
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARQFHYVGIVVVVA



PHYYYGMDVWGQGTTVTVSS





829
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSS



SYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCASPRGYSYGPFDY



WGQGTLVTVSS





830
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARVLYYDILTG



YWWYYYGMDVWGQGTTVTVSS





831
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINS



DGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARGAPITIFGVV



ISTWFDPWGQGTLVTVSS





832
QLQLQESGSGLVKPSQTLSLTCAVSGGSISSGGYSWSWIRQPPGKGLEWIGYIYHS



GSTYYNPSLKSRVTISVDRSKNQFSLKLSSVTAADTAVYYCARAHTDSLELGIWG



QGTMVTVSS





833
EVQLLQSGGEVRRPGESLKISCKASGYSFPAHWIGWVRQMPGRGLEWMGSIFPS



DSDTEYSPSFEGQVKISADKSITTAYLQWSSLKASDTAFYYCVRKYTYDTSGFFLT



STRSAFDVWGQGTMVTVSS





834
EVQLEQSGAEEKKPGESLKISCKGSGYSFPAFYIAWMRQMPGKGLEWMGSIFPG



DSETEYNPSFQGQVTISADKSITTAYLQWDNLKASDTALYYCARKHVYDTSGFFL



SSSRNAFDVWGQGTKVTVFS





835
EVQLVQSGAEQRKPGESLRISCKGSGYSFPAHWIAWVRQMPGRGLEWMGSIFPG



DSDTEYNPSFQGHVNISADRSINTAYLQWSSLKASDSAIYYCARKYSFDISGFFLS



SSRYALDVWAQGTTVTVSS





836
DMQLVESGGGLVQPGGSLKLSCAASGFTFSASAIHWVRQASGKGLEWVGHIRTR



TNRYATAFSESVNGRFTISRDDSKSTAYLQMNSLKAEDTAVYYCARDEGVTFHDH



WANEIRYGMDVWGRGTTVTVSS





837
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARARTTMIVVVSQ



FDYWGQGTLVTVSS





838
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINS



DGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARDRGGWLLGS



YYYYGMDVWGQGTTVTVSS





839
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGQISHYGFG



ESHWGQGTLVTVSS





840
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVSVGWIRQPPGKALEWLALIYWD



DDKRYSPSLKSRLTITKDTSKKQVVLTLTNMDPVDTASYYCAHSGIAVVGNQLFH



YYAMDVWGQGTTVTVSS





841
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKERSSGSQW



GWTYYYYGMDVWGQGTTVTVSS





842
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPYGGNRR



FHGWVYYYYGMDVWGQGTTVTVSS





843
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARESTPDVRGVM



NYWGQGTLVTVSS





844
EVQLLESGGGLVLPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEWVSAISGSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDAVASAGSPDY



WGQGTLVTVSS





845
QVQLVESGVGVVQPGKSLRLSCAASGFTFTSYGMHWVRQAPGKGLEWVAVISF



DGSNIYYADSVKGRFTISRDNFKNTLYLQMNSLRAEDTAVYYCARDKLLWFGEP



VVGYYYYYYMDVWGKGTTVTVSS





846
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGGDYAQI



YFDYWGQGTLVTVSS





847
QVQLVESGGGVVHPGRSLRLSCAASGFAFNKYGIHWVRQAPGKGLEWVALIWN



DGNKQYYGDSVKGRFTVSRDNSKNTVSLQMDTLRDEDTAVYYCARDRLMTTY



NYYSSMDVWGRGATVIVSS





848
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREPGDCSGGS



CYYYGMDVWGQGTTVTVSS





849
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIFYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARATRGYSYDDAFD



IWGQGTMVTVSS





850
QVQLQESGPGLVKPSGTLSLTCSVSGGAITTSSYFWGWIRQPPGRGLEWIGSISYS



GDTFYNPSLNDRVTISVDSSKNQFFLKLRSVTAADSAVYYCASPSYTDLLTGYYV



PVDYWGQGILVIVSS





851
QVHLVESGGGVVQPGKSLTLSCAASGFTFSAYGMHWVRQTPGKGLEWVALISFD



GSNKYYRDSVKDRFTIARDNSKNTLSLQMNSLRPEDTAIYYCAKDPRVNELLWF



GSLTQFYFDDWGQGTLVTVSS





852
QVQLVESGGGVVQPGRSLTLSCAASGFTFNNYGMHWVRQAPGKGLEWLALISY



EGSIRYYGDSVKGRFTISRDSSKNTVYLQMISLRAEDTAVYYCAKSGGPFHLSLY



YYMDVWGKGTTVTVSS





853
QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQTAGQGLEWIGRIYSGG



STNYNPSLKSRVTMSVDTSQNQFSLNLNSVTAADTAVYYCARAFYGHAFDFWG



LGVLVIVSS





854
QVQLVESGGGVVHPGRSLRLSCAASGFTFSRFGMHWVRQAPGKGLEWVALISY



EGSTEQYSDSVKGRFAISRDNSKNTLYLQMNSLRPEDTAVYYCAKGLTIPFDKWG



HGTLVTVSS





855
QVQLVESGGGVVHPGRSLRLSCAASGFTFSRFGMHWVRQAPGKGLEWVALISY



EGSTEQYSDSVKGRFAISRDNSKNTLYLQMNSLRAEDTAVYYCAKGLTIPFDKW



GHGTLVTVSS





856
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFWMTWFRQTPGKGLEWVANIKED



GSEKQYVDSVKGRFNISRDNAHNSLYLEMNSLRSEDAAVYYCARRGKYCSGGR



CYSWWFDPWGQGTQVTVSS





857
QVQLVQSGGEMRKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLEWMGRIIPM



LNKTYYAQKFQGRVTFAADESTSTVYMELSSLRSEDTAMYYCARVASLIGDDYW



GQGSLVTVSS





858
QVQLVQSGGEMRKPGSSVKVSCKASGGSFSSYTISWVRQAPGHGLEWMGRIIPM



LNKTYYAQKFQGRVTVAADESTSTVYMELSSLSSEDTAIYYCARVASLIGDDYW



GQGSLVTVSS





859
QITLKESGPTLVKPTQTLTLTCTFSEFSLDSRGVGVGWIRQPPGRALEWLALIYWN



DNKRYNPSLRSRLTITKDTSKNQVVLTMSNMDPVDTATYYCAHKPSGWSLRFDS



WGQGTLVTVSS





860
QVQLQEAGPGLVKPSETLSLTCSVFGGSISSYYWSWIRQPPGKGLEWIGYIYYRG



STNYNPSLKSRVTMSVDTSKNQFSLNLTSVTAADTAVYFCARESLFNWFDSWGH



GTLVTVSS





861
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGMHWVRQAPGKGLEWVALISY



EGSTEQYSDSVKGRFAISRDNSKNTLYLQMNSLRHEDTAVYYCAKGLTIPFDNW



GQGTLVTVSS





862
EVQLVESGGGLVQTGGSLRLSCAASGFPFSGYALNWVRQAPGKGLEWVSYISSS



SSTVYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARVDYDSSRNY



WGQGTLVTVSS





863
EVQLVESGGGLVQPGGSLRLSCAASGFTFINYDMTWVRQAPGKGLEWISYISSSS



STTHYSDSVKGRFTISRDNARNSLYLEMNSLRAEDTAVYYCARVERWLVLGYYY



YGMDVWGQGTTVTVSS





864
EVQLVESGGGLVQPGESLRLSCVASGFAFDKFWMAWLRQAPGKGLEWVALLNK



DESEKYYVDSVKGRFTISRDNAIDSVFLQMNSLRTEDTAVYYCGSIDYWGQGAL



VTVSS





865
QVQLQESGPGLVKPSQTLSVTCTVSGGSINRDGHYWIWIRQHPEKGLEWLGYIY



SGRNTFYNPSLRSRLSISADTSKSQFSLNLHSVTAADTAVYYCAKMYSDYDDNY



YGLDVWGRGTTVTVSS





866
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDRYCSSTSCGGYYY



YMDVWGKGTTVTVSS





867
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYFWSWIRQPPGKGLEWIGYIYY



SGSTNYNPSLKSRVTISVDTSKNQFSLKLRSVTAADTAVYYCARAPNDFWSGYPY



YFDYWGQGTLVTVSS





868
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCTRDGSTAAIFG



NIDYWGQGTLVTVSS





869
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWI



NPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARGVVRNDY



GDPGFDYWGQGTLVTVSS





870
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATAPAYCSGGS



CPENNWFDPWGQGTLVTVSS





871
QVLLVQSGAEVKKPGASVKVSCKASGYRFTSYGIHWVRQAPGQSLEWMGCINT



DNEKTEYSQKFQGRVTITRDTSASTAYMELSTLRFEDTAVYYCAILWFGEFYFYD



LFYNAVDVWGQGTTVTVSS





872
QVLLVQSEAEVKKPGASVKVSCKASGYRFTSYGIHWVRQAPGQGLEWMGSINT



DNGKTEYSQKFQGRVTITRDTSAGTAYMELSTLRSEDTAVYYCAILWFGEFYFYD



LFYNAVDVWGQGTTVTVSS





873
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQRLEWMGWIN



AGNGNTRYSQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCASRREQWLGD



LGYYYYGMDVWGQGTTVTVSS





874
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPEQGLEWMGIINP



SGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGAHSEDY



WGQGTLVTVSS





875
QVQMVQSGAEVKKPGASVKVSCKASGYTFTNYYVHWVRQAPGQGLEWMGRI



NPSDGSTSYTQKFQGRVTMTRDTSTSTVYMQLSSLRSEDTALYYCARHQDPLDI



VATVDWGGLDYWGQATLVTVSS





876
QVQLVQSGGELRKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLEWMGRIIPM



LNKTYYAQKFQGRVTFAADESTNTVYMELSSLRSEDTAMYYCARVASLIGDDY



WGQGSLVTVSS





877
QVQLVQSGAEVKKPGSAVKVSCKASGGTFNSYAFNWVRQAPGQGLEWMGGIIPI



FGPPNYAQNFQGRVTITADESTSTAYMELSSLTSEDTAVYYCATTGTDNYYYYMD



VWGKGTTVTVSS





878
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSSDINWVRQATGQGLEWMGWMN



PNTGTTGYAQKFQDRVTMTRDTSINTAYMELSSLRSEDTAVYYCARKNCSGGICY



FHDYWGQGTRVTVSS





879
QITLKESGPTLVKPTQTLTLTCTFSEFSLDARGVGVGWIRQPPGRALEWLALIYW



NDYKRYSPSLQSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHKPSGWSLRFD



SWGQGTLVTVSS





880
EVQLLESGGGLVQPGGSLRLSCAASGFTFISYATSWVRQAPGKGLEWVSAISGSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGQTIQLWLFGA



LWGQGTLVTVSS





881
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGS



GGTTYYADSVKGRFTISRDNSKNTLYLQMDSLRGDDTAVYSCALTVSSWYPGIFE



NWGQGTLVTVSS





882
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKAFSGSYWD



AFDIWGQGTMVTVSS





883
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSHGMHWVRQAPGKGLEWVAVISY



DGINKYYADSVKGRFTISRDNSKNTLFLQLNSLRAEDTAVYYCAKAASGARGYY



GMDVWGQGTTVTVSS





884
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSSSGHYVSD



LGYWGQGTLVTVSS





885
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARALNGYRYN



DYWGQGTLVTVSS





886
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVMW



FDGVDKYYADSVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCAREEGGGSST



HFDCWGQGTLVTVSS





887
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTFAMHWVRQAPGKGLEWVAIISYD



EINKYYADSVKGRFTISRDNSKNMLYLQMNSLRAEDTAVYYCARTREGSYYYG



MDVWGQGTTVTVSS





888
EVKLVESGGHLVQPGRSLRLSCTASGFIFGDYAMGWVRQAPGKGLEWVSFIRGR



LVGATVEYAASVKGRFTMSRDDSERVAYLQMNSLKIEDTGVYYCVRGGLQFVVA



VGPYGVDVWGQGTTVTVSS





889
EVKLVESGGHLVQPGGSLRLSCTASGFIFGDYAMGWVRQAPGKGLEWVSFIRGR



LVGATVEYAASVKGRFTMSRDDSERVAYLQMSSLKIDDTGVYYCVRGGLQFVVA



VGPYGVDVWGQGTTVTVSS





890
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQ



DGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVYYCARDIGGGAPDY



WGQGTLVTVSS





891
QVLLQESGPGLVRPSQTLSLTCSVSGASISSGDYYWTWVRQTPGKGLEWLGFIYY



SGSTYYNPSLQRRVLISMDTAMNQFSLRLTSVTAADTAVYYCAIKPSIPGYFDPW



GQGTLVTVSS





892
QVQLQQWGAGLLKPSETLSLTCALNGGVLSDYYWSWIRQPPGQGLEWIGAIHRS



GSTSYTPSLKSRVTMSVDTSKNQFSLRLSSVTAADTAVYYCARVGGWQRSPRPN



WGQGTRVTVSS





893
QVQLQQWGAGLLKPSETLSLTCALNGGVLSDYYWSWIRQPPGQGLEWIGAIHRS



GSTSYTPSLKGRVTMSVDTSKNQFSLRLSSVTAADTAVYYCARVGGWQRSPRPN



WGQGTRVTVSS





894
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRRPPGKGLEWIGEITHS



GSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGQGYGRVLLWF



GEWGQGTLVTVSS





895
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYFWYWIRQPPGKGLEWIGEINHS



GSTNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVYYCARGQGYGRVLLWFG



EWGQGTLVTVSS





896
QVQLQESGPGLVKPSGTLSLTCDVSGDSISSNNWWTWVRQPPGKGLEWIGDIYH



SGTTNYNPSLKSRLTMSVDKSKNHFSLKLTSVTAADTAVYYCARPSSGSRFDYW



GQGTLVTVSS





897
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPAGKGLEWIGHIYTSGS



TNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYCARGFDYWGQGTLVT



VSS





898
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYYWSWIRQSPGKGLEWIGYIYHSGS



ADYNPSLKSRVSMSLDASKNQFSLKMSSVTAADTALYYCAKARGVVLFDYWGQ



GTLVTVSS





899
QVQLRESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYLHYSG



RSNSSPSLNSRVSISVDTSQNRFSLKVTSLTAADTAVYYCARHSYGSGTYLDPFDY



WGQGTLVTVSS





900
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLEWIGRIYTS



GSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARQPHLAYYYDSSG



YNDAFDIWGQGTMVTVSS





901
QVQLQESGPGLVKPSQTLSLICTVSDDSISSGSYYWSWIRQPAGKGLEWIGRIYAG



ESTNYNPSLKSRVIISVDTSKKQFSLRLSSVTAADTAVYYCARGAVVTPFGLDSW



GQGTLVTVSS





902
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG



DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCASEDYYDSSGYY



WYWGQGTLVTVSS





903
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG



DSDTRYSPSFQGQVTISADKSISTAYLQWGSLKASDTAMYYCARLSAIAVVGYYY



YAMDVWGQGTTVTVSS





904
QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLEWMGWIN



TNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCARDFIAASPFYY



YYYMDVWGKGTTVTVSS





905
EVQLVQSGAEVKKPGESLKIFCKGSGYTFSFYWIGWVRQTPGKGLEWMGIIYPG



DFDTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAMYYCATSPGGYGVRRTV



LEDFRHWGQGTLVTVAS





906
QLQLQESGPGLVKPSETLSLTCTVSGGAFSSGRHYWGWIRQPPGKGLEWIGSIYS



GVITHYNAPLKSRVTIAVDTSKNQFSLKLSSVTAADTAVYYCWTMEYDDYSFVY



DYWGQGTLVTVSS





907
QVHLQQWGAGLLKPSQTLSLTCAVYGGSFSSYYWSWIRQTPGKGLEWIGEVTHS



GSTNYKPSLKSRVTMSVDTSRNQFSLNLTSVTAADTAVYYCARGGKQQLVRNYY



LDSWGQGTLVTVSS





908
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMDWVRQAPGKGLEWMGGFD



PEDGETIDAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATGFGGVIVRG



FDYWGQGTLVTVSS





909
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARVYGDYSYYM



DVWGKGTTVTVSS





910
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTDYADSVKGRFTISRDKSKNTLYLQMNSLRAEDTAVYYCARDLGEAGGMDV



WGQGTTVTVSS





911
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRFWMTWVRQAPGKGLEWVANIKE



DGSVMFYVDSVKGRFSISRDNSKNSLYLEMNSLRAEDTAVYFCVREIESGVDFW



SGHYYWGQGTLVTVSS





912
EVQLVESGGGLVQPGGSQRLSCVASGFTFSNYWMSWVRQAPGKGLHWVANIKS



DGSETYYVDSLRGRFTISRDNAKNSLYLQLTSLTVEDTAVYYCARDSAYYDTIGY



YSGDYWGRGTLVTVSS





913
QVQLVESGGGAVQPGRSLRLSCEASAFSFHLHGMHWVRQAPGKGLEWVALIWF



DGSKKFYADAVKGRFTISRDNSKNTLYLQMNSLRVEDTAIYYCGRSFRGSCFDYL



GQGTLVTVSS





914
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISSS



GGGTYYADSVKGRFTISRDNSKNTLYVQMNSLRAEDTAVYYCALGTGSYYGVN



YWGQGTLVTVSS





915
EVQLVESGGGLVQPGRSLRLSCAAFGFIFDDYGMHWVRQVPGKGLEWVSGITW



NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYFCAKDMGGRYSSG



LYYYYYGMDVWGQGTTVTVSS





916
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARELRGYFDYW



GQGTLVTVSS





917
QMRLQESGPGLVKPSETLSLTCTVSGGSIGSSSYFWGWIRQPPGKGLEWIGNIYY



GGSTYYKPSLKSRVTISLDTSKNQLTLRLSSVTAADTAVYYCARDPNDFWSGFPR



GAFDIWGQGTMVTVSS





918
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYS



GSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASHARYEEETFDYW



GQGTLVTVSS





919
EVQLVESGGGLAQPGGSLRLSCAASGFTFSSYDMHWVRQAAGKGLEWVSTIGT



AGDTYYPGSVKGRFTISRENDKNSLYLQMNSLRAGDTAVYYCVRDSYTSAWTPA



GYFDLWGRGTLVTVSS





920
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRSAMHWVRQGPGKGLEWVAMMS



YDGSDIQYADSVKGRFTISRGNSKNTLFLQMNSLRLADTAMYYCAKDHYGSIDY



WGQGTLVTVSS





921
QVQLVESGGGVVQPGRSLRLSCVASGFTFSSQSMHWVRQAPGKGLEWVSIISYD



GNNKQYADSVKGRFTISRDNSKSTLFLQINSLRPQDTAVYYCARPYTSRWFWSN



WGQGTLVTVSS





922
EVQLVESGGGLVQPGRSLRLSCAASGFTFEEYSIHWVRQAPGKGLEWVSGVSWN



SGTIAYADSVRGRFTISRDNAKNSLYLQMSRLRADDTALYYCALLPPNAYDYGD



GLLDHWGQGTLVTVSS





923
EVQVVQSGAEVKKPGESLKISCKGSGYTFGRYWIAWVRQMPGKGLEWMGIINP



ADSDTRYSPTFQGQVTISVDQAISTAYLQWSSLKASDTAMYHCARHRAAGGNYY



YGMDVWGQGTTVTVSS





924
QVQLVQSGAEVKKPGASVKVSCKASGYTFSTYYMHWVRQAPGQGLEWMGIIN



PSGDSTRYAQKFQGRVTMTRDTSTSTVYMEVSSLRFEDTAVYYCARERVGPAAG



YMDVWGKGTTVTVSS





925
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPIF



GTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARAAYYYDSSGYG



WFDPWGQGTLVTVSS





926
QVQLVQSGAEVKNPGSSVKVSCKTSGATFTTYAINWVRQAPGQGLEWIGGIFPIF



TAAVYAQKFQGRVTITADESTTTAYLELSSLRSEDTAVYYCARGDYTEYSYYYMD



VWGKGTTVTVSS





927
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYAMSWVRQAPGRGLEWVSAVSGS



GGSTYYADSVKGRFTISRDNSKNMLYLQMNSLRAEDTAIYYCALPTGASSSYSGP



NYWGQGTLVTVSS





928
QVQLVESGGGVVQPGRSLRLSCVASGFTFSNYDMHWVRQAPGKGLEWVTVISS



DGNNRRYADSVKGRFTISRDNSKNMLYLQMNSLKAEDTAVYYCARDEVIAVATG



EGMDVWGQGTTVTVSP





929
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISW



NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKDMGYDILTG



SGLGDYWGQGTLVTVSS





930
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISW



NSGTIGYEDSVKGRFIISRDNAKNSLYLQMNSLRAEDTALYYCAKEPLFGETYGM



DVWGQGTTVTVSS





931
EAQLVESGGGLVQPGRSLTVSCAVSGFTFDDYAMHWVRQAPGKGLEWVSSISW



NSEKIAYADSVKGRFTVSRDNAKNSLYLQMTSLRPEDTALYYCARDKGSGSYYS



GAYYYYMDVWGKGTTVTVSS





932
EVQLVESGGGLVPPGGSLRLSCAASGFTFSSYTINWVRQAPGKGLEWVSYINSGS



SIIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATFNSGNDNAYEY



WGQGTLVTVSS





933
EVRLVESGGGWVQPGGSLRLSCEASTFIFSNSEMNWVRQAPGKGLEWVSYISSS



DNSVHYADSVKGRFTISKDSAKKTLYLQMNSLRAEDTGVYYCAREYPDFWSGH



YYYYMDVWGKGTTVTVSS





934
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPYGMDVWG



QGTTVTVSS





935
QVKLQQWGAGLVKPSETLSRTCAVYGGSFSGYFWSWIRQSPGKGLEWIGEINHS



GKTNYSPSLKSRVSISVDTSKNQFSLKLTSVTAADTAVYYCARGLYDKSGYRSDG



FDSWGQGAVVTVYS





936
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGYYWTWIRQPPGKGLEWIGEINHS



GSTNYNPSLKSRITMSVDTSKNQFSLELRSVSAADTAVYYCARGFEGYCSGGRC



YSYFDYWGQGTLVTVSS





937
QVQLQESGPGLVKPSETLSLTCTVSGGSLSSYYWNWIRQPPGKGLEWIGYMYNS



GSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVKNWDYGLYWG



QGTLVIVSS





938
QVQLQESGPGLVKPSETLSLTCTVSGGSISTFYWNWVRQPPGKGLEWIGFIYYSG



RTNYNPSLKSRVTISVDTSKNQFSLKVSSVTAADTAVYYCARDGQSDWHFDLWG



RGTLVTVSS





939
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSYFWSWLRQPPGKGLEWIAYIFYTG



TSNYNPSLKSRVTISLDTSKNQMSLNLSSVTTADTAVYYCARVYGDYLDHWGQG



TVVTVSS





940
QITLKESGPTLVKPTQTLTLTCTFSGFSFNTPGVGVGWIRQPPGKAPECLALIYWD



DEKLYNPSLKTRLTITKDPSKNQVVLTMTTMDPVDTATYYCAHRSFLYNIFNGYS



YAPFDYWGQGSMVTVSS





941
QVQLVESGGGVVQPGRSLRLSCAASGFSFSNHGMHWVRQAPGKGLEWVAVIWY



DGDNRFYADSVRGRFTISRDNSKNTLFLQMDSLRAEDTGIYYCAKDLFSGDRDF



WGQGTLVTVSS





942
QVQLVESGGGVVQPGRSLRLSCVASGFTFSNSAMHWVRQAPGMGLEWVAVIYY



DGSNEYYADSVKGRFTISRDNSKNTLYLQMNSLRADDTAVYYCAKDSGAVLLWF



GADFWGQGTLVTVSS





943
DVQLVESGGSLVQPGGSLRLSCAASEFTFSSYEMNWVRQAPGKGLEWVSYIDSS



STTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGAYDIWRGS



YMRAYDHWGQGTLVTVSS





944
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFAINWVRQAPGQGLEWMGWINT



KTGIPTYAQGFTGRFVFSLDTSVSTAYLQISGLKAEDTAVYYCARYIEMFDPWGQ



GTLVTVSS





945
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARQAYGDYG



WDYYYGMDVWGQGTTVTVSS





946
QVQLAEAGGGVVQPGTSLRLSCVVSGFSFSRYGMHWVRQAPGKGLEWVAVISH



DDSQKYYGDSVKGRFTISRDNSKDTLYLEMTSLRLEDTAVYYCLKDWDWEYED



SRPTLRGSVYWGQGTLVIVSA





947
QVQLVESGGGAVQPGRSLRLSCVTSGFNFNSYTMHWIRQAPGKGLEWVAVISYE



GSKKYYADSLKGRFTISKDNSKNTVYLEMNSLTTEDTAVYYCARGSVFWFGEGK



NWFDPWGQGTLVTVSS





948
QVQLVESGGGAVQPGRSLRLSCVTSGFNFNSYTMHWIRQAPGKGLEWVAVISYE



GSKKYYADSLKGRFTISKDNSKNTVYLEMNSLTTEDTAVYYCARGSVFWFGEGK



NWFDPWGQGTLVIVSS





949
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREDSSGWSRGD



YWGQGTLVTVSS





950
QVQLVQSGSELKKPGASVKVSCKASGYIFTSYGMNWVRQAPGQGLEWMGWIN



TNTGSPMYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCARRFVVREVEY



NWFDPWGQGTLVTVSS





951
QAQLVQSGSEVRKPGASVKVSCKASGYSFNDYGITWVRQAPGQGLEWMGWIS



AYNGETNYAQKFQDTVTMTTDTSTNTAYLELRSLRFADTALYYCARDGYCNSM



RCYRYYHGMDVWGQGTTVTVSS





952
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATGPTAKPNKQ



WGYWFDPWGQGTLVTVSS





953
QVQLVQSGAEVKKPGASVKVSCKASGNTFSTYYIHWVRQAPGQGLEWMGIISPS



GDDANYTQKFQDRVTMTRDTPTNTVYLELSSLRSEDTAVYYCASPVSVEQDFDI



WGQGTMVTVSA





954
EVQLVESGGGSVKPGGSLRLSCAASGFTFSDVWMSWVRQAPGKGLEWVGRIRS



KSDGGTTDYAAPMKERFSISRDDAKNTMYLQMNSLKTEDTGVYYCTTPVGDFW



GQGTMVTVSS





955
EVQLMESGGGLVKPGGSLRLSCAGSGLTFDNAWMSWVRQAPGKGLEWVGRVK



SKTDGGTTDYAAPVKGRFTISRDDSKNTLFLQMNSLKTEDTAVYYCSTSHPPFFD



YWGQGTLVTVSS





956
QVQLVESGGGVVQPGRSLRLSCAASRFTFSSYAMHWVRQAPGKGLEWVALISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMDSLRPEDTAVYYCARGLWQLVSPV



FDYWGQGTLVTVSS





957
EVQLVESGGVVVQPGGSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSLISW



DGGSTYYADSVEGRFTISRDNSKNSLYLQMNSLRAEDSALYYCAKVTNRGVRGL



YFDYWGQGTLVTVSS





958
QVQLVQSGAEVKKPGASVKVSCKASGNTFTTYYIHWVRQAPGQGLEWMGIISPS



GDDANYTQKFQDRVTMTRDTPTNTVYLELSSLRSEDTAVYYCASPVSVEQDFDI



WGQGTMVTVSA





959
QVQLVQSGAEVKKPGSSVNVSCKASGGTFNSYTLSWVRQAPGQGLEWMGRIVP



MLGITNYAQKFQDRVTITADESTATAYMDLSSLTSEDTAVYFCAINTLLVTAWGQG



TLVTVSS





960
QITLKESGPTLVKPTQTVTLTCTFSGFSLNTPGAGVGWIRQPPGQALECLALIYWD



DDKRYSPSLRSRLSIAKDTAKNQVVLTVTNLDPVDTATYYCVHRSFLYDIFSGYS



YAPFDYWGQGMLVTVSS





961
QITLKESGPTLVKPTQTLTLTCTFSGFSFNTPGVGVGWIRQPPGKAPECLGLIYWD



DEKRYSPSLKSRLTITKDPSKNQVVLTMTTMDPVDTATYYCAHRSFLYNIFDGYS



YAPFDYWGQGSMVTVSS





962
QVQLVESGGGLVKPGGSLRLSCAASGFTFTFSDYYMNWIRQAPGGGLEYIAYISS



GGDAIYYADSVKGRFIISRDNSESSVSLQMTSLRADDTAVYYCAGGADCRRTSCH



YLVSNREEYMGVWGKGTTVTVSS





963
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSMSS



DSDYIFYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGLVLSGTRYS



YFYGMDVWGQGTTVTVSS





964
QVHLAEAGGGVVQPGRSLRLSCVVSGFSFSRYGMHWVRQAPGKGLEWVAVISH



DESQKYYGESVKGRFTISRDNSKDTVYLQMDSLRVEDTAVYYCVKDWDWEYE



DNRPTLRGSVYWGQGTLVIVSA





965
QVQLAEAGGGVVPPGRSLRLSCVVSGLSFSRYGMHWVRQAPGKGLEWVAVISH



DESQKYYGESVKGRFTISRDNSKDTLYLQMDGLRVEDTAMYYCVKDWDWEYE



ESRPTLRGSVYWGQGALVIVSA





966
QVQLVESGGGVVQPGRSLRLSCATSGFSFNNFGMHWVRQAPGKGLEWLAVISY



EGSKKYYADSLKGRFTISRDGSKDTLYLQLSSLGVEDTAVYHCAKGGPIFWLGEG



KNWFDAWGPGTPVIVSS





967
QVQLVESGGGVVQPGRSLRLSCAASGFTLSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYRDSVKGRFTISRDNSKNTLYLQINSLRVDDTAVYYCARDKGGILMLR



GADFWGQGTLATVSS





968
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYITSS



GNTILYADSVKGRFTISRDNAKNSLYLRMNSLRAEDTALYYCARTLIAAAGSAFDI



WGQGTMVTVSS





969
EVQLVESGGGLGLPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWISYISSSS



GTIYYADSVKGRFTISRDNAKNSLFLQMNSLRDEDTAVYYCARGPTSITMIVVVD



DAFDIWGQGTMVTVSS





970
QVQLQESGPGLVKPSETLSLTCSVSGGSISPYSWSWIRQPPGKGLEWIGYIYYTGK



TNYNSSLKTRVTISLDTSKNQFSLRLTSVTTADTAIYYCARVMNSSWYTRYYYNY



MDVWGKGTSVTVSS





971
QLQLQESGPRLVKPSATLSLTCTVSGDSIRSSSFYWGWIRQPPEKGLEWLGSVYN



SGTAYYNPSLKSRVSVSVDTSKNQFSLKVNSVTAADTAVYYCARRGGGCSEGVC



YNFDRWGQGTLVTVSS





972
QVQLVQSGSELKKPGASVKISCKAFGYSFTTYAMNWVRQAPGRGLEWMGWIDT



NTGKPTYARGFTGRFVFSLDTSVRTSYMQINTLKAEDTAVYYCARGDPRDYWG



QGTLVTVSS





973
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPIF



GTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGSYYYDSSGYYL



DYWGQGTLVTVSS





974
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPIF



GTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARAAYYYDSSGYG



WFDPWGQGTLVTVSS





975
EVQLVESGGGLVKPGGSLRLSCAASGFTFSHAWMCWVRQAPGKGLEWVGRIKS



NTDGGTTDYAAPVKGRFTISRHDSKNTLYLQLNSLKTEDTAVYYCTTDLGATGIY



YYYYMDVWGKGTTVTVSS





976
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSS



GSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARFPRDYYDSSG



YLIQEGNFDYWGQGTLVTVSS





977
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVTRAGAAGDG



GAFDIWGQGTMVTVSS





978
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TKYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARSVVPVAGTDYWGQ



GTLVTVSS





979
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYGISWVRQAPGQGLEWMGWIS



AYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDQHPGYP



ALVYYYYYMDVWGKGTTVTVSS





980
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGITWVRQAPGQGLEWMGWIS



TYSGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDNIQTFDY



WGQGTLVTVSS





981
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATSSPVAGYNS



WFDPWGQGTLVTVSS





982
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATGPAVIPLRWF



DPWGQGTLVTVSS





983
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATAPAAAGPTD



WFDPWGQGTLVTVSS





984
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFD



PEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCAISPSVHSLWW



FDPWGQGTLVTVSS





985
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQRLEWMGWIN



AGNGNTKYSQKFQGRVTITRDTSASTSYMELSSLRSGDTAVYYCARDEIHYDILT



GYYNRFWFHPWGQGTLVTVSS





986
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIF



GTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDAETGYYDSSGY



PINWFDPWGQGTLVTVSS





987
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKALEWLAHIFS



NDKKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARHYYDTGAYYV



PFDHWGQGTLVTVSS





988
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTTGVGLAWIRQPPGKALEWLAFIYWD



DDKRYSPSLQTRLTITKDTSKNQVVLTLTNMDPMDTATYYCAHFQGFGESEYFQ



HWGQGTLVTVSS





989
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIFWD



DDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHRHPLTGFDSWG



QGTLVTVSS





990
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSS



SYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATPRGYSYGPLDY



WGQGTLVTVSS





991
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSS



SYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCASPRGYSYGPFDY



WGQGTLVTVSS





992
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRVDKGYD



FWSSWYFDLWGRGTLVTVSS





993
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASGGGSYFDAF



DIWGQGTMVTVSS





994
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRSGSYYG



GFDYWGQGTLVTVSS





995
QVQLVESGGGVVQPGWSLRLSCAASGFTFGSYGMHWVRQAPGKGLEWVALIW



NDGSNKYYADSVKGRFTISRDKSKNTLYLQMNSLRAEDTAVYYCAKAVYGGNS



VYFDYWGQGTLVTVSS





996
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIYGGNYENY



FDYWGQGTLVTVSS





997
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYAMHWVRQAPGKGLEWVAVISYD



GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARESEAGTTPSF



DYWGQGTLVTVSS





998
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSLVRGVITYFD



YWGQGTLVTVSS





999
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWMNWVRQAPGKGLEWVANIKE



DGSETYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGLSMEVWG



QGTTVTVSS





1000
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEIDHS



GSTNDNPSLKSRVTISVDTSKNQFSLKLSSVTAADAAVYYCARGGYSSSWYGTK



YYFDYWGQGTLVTVSS





1001
QVQLQQWGAGLLKPSETLSLTCAVYDGSFSGHYWSWIRQPPGKGLEWIGEINHS



GSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGPTVTTFFRRNA



WFDPWGQGTLLTVSS





1002
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEINHS



GSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGRYSSGWYGSRN



WFDPWGQGTLVTVSS





1003
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARLSMGAARQSGFDP



WGQGTLVTVSS





1004
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDGGRDGYNELGAR



VYYYYGMDVWGQGTTVTVSS





1005
EVQLVQSGAEVKKPGESLRISCKGSGYNFTSYWISWVRQMPGKGLEWMGTIDPS



DSYTNYRPSFQGHVTISADKSINTAYLQWSSLKASDTAMYYCARIGSYGIWGQG



TLVTVSS





1006
QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLEWMGWIN



TNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCAKLGCSGGSCY



YYYGMDVWGQGTTVTVSS





1007
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYVSWVRQAPGTGLEWVSVVYSG



GHAYYADSVKGRFTMSRDNSENAVYLQMNSLRAEDTAVYYCARGDHYYDRSG



PHKFDYWGQGTLVTVSS





1008
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGLYHWSWIRQPAGKGLEWIGRIFSS



GSTAYSPSLKSRVIISADTSKNQFSLKLSSVTAADTAVYYCARDSPLKFDSFGYPLY



GMDVWGQGTTVTVSS





1009
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLEWMGRIIPIL



GIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGIVGATPGYFDY



WGQGTLVTVSS





1010
QVQLVQSGAEVKKPGASVKVSCKASGFTFGRHGITWVRQAPGQGLEWMGWIST



YSGNTNYAQNLQGRVTMTTDTSTNTAYMELRSLFFDDTAVYYCAKAVSGWPIYF



DAWGQGTLVTVSS





1011
QIQLVQSGAEVKKPGASVRVSCKASGFTFGRYGITWVRQVPGQGLEWMGWIST



YSGNTNYAQNLQGRVTMTTDTSTNTAYMELRSLFFDDTAMYYCAKAVSGWPIY



FDAWGQGTLVTVSS





1012
QITLEESGPTLVKPTQTLTLTCTFSGFSLTTRGEGVAWIRQPPGKALEWLALIYWD



DDQRYTPSLDSRLTITKDISKNHVVLTLTDVEPVDTATYFCAHTIHSGYDRTFDSW



GQGTLVIVSS





1013
QVQLVQSGSELKKPGASVKVSCKASGYTFTFYTIYWVRQAPGQGLEWMGWINT



NTGTPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAIYYCAREESYSSSSPLDY



WGPGTLVAVSS





1014
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSAVQWVRQARGQRLEWIGWIVV



GSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAGSDFWSGYY



VNYYMDVWGKGTTVTVSS





1015
QVTLRESGPALVKPTQTLTLTCTFSGFSLSTSGMCVSWIRQPPGKALEWLARIDW



DDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARLTAAGVYFDY



WGQGTLVTVSS





1016
EVQLLESGGGVVQPGGSLRLSCAASGFTFTTYAMNWVRQAPGRGLEWVSAISD



SGGSAYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTRGRGLYDY



VWGSKDYWGQGTLVTVSS





1017
EVQLLESGGGVVQPGGSLRLSCAASGFAFTTYAMNWVRQAPGRGLEWVSAISD



GGGSAYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTRGRGLYD



YVWGSKDYWGQGTLVTVSS





1018
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDESGSYYG



DQAFDIWGQGTMVTVSS





1019
QAQLVQSGPEVKKPGASVKVSCEASGYTFSRYGISWVRQAPGQGLEWMGWISG



YNGNTTSEQKVQGRVTMTTDTSTNKVFLELRSLRSDDTAMYYCARDRRARAYE



IPFGSDHYYFGMDVWGQGTTVTVSS





1020
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWI



NPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARDYYGSGS



YPIGYMDVWGKGTTVTVSS





1021
EVQLVESGGGLAKPGGSLRVSCVVSGSGFTFRNAWMSWVRQAPGKGLEWVGRI



KSKNDGGTTDYAASVKGRFTISRDDSKNSLDLQMQSLKTEDTAVYYCTTSYCST



KVCFDYWFDPWGQGTLVTVSS





1022
QVQLVESGGDVVQPGNSLRLSCAASGFTFNFYGMHWVRQAPGKGLEWVAFISY



DGNKRYYVDSVRGRFTASRDNSKNTLFLQMNGLRNDDSAVYYCASNLYATSPY



GGVKNWGRGTLVAVAS





1023
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISW



NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKDIGSGSPDAF



DIWGQGTMVTVSS





1024
GVQLVESGGGLVQPGRSLRLSCAASGFIFDDYTMHWVRQAPTKGLEWVSGITW



NYATVGYADSVRGRFTISRDNVKNSLFLQIHSLRPDDTAFYYCVKDLEFRGGTGG



FDLWGQGTLVTVSS





1025
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDGHSAWGA



FDIWGQGTMVTVSS





1026
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDHPTLRRAF



DYWGQGTLVTVSS





1027
QVELVQSGAQVRKPGASVKVSCKASGDTFNDYHMHWVRQAPGQGLEWMGWI



NPNSGETRYSQRFQGTVTMTRDTSISTVYMELRSLPSDDTAVYFCARDRGSSSW



WGWLDPWGQGTLVTVSS





1028
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIF



GTANYAHKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCATRRGYSGYGAAYY



FDYWGQGTLVTVSS





1029
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPIL



GIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREVYVGGEDDYS



YYYGLDVWGQGTTVTVSS





1030
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVGRIKS



KTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTDLGEAGP



TEWLRSSLFDYWGQGTLVTVSS





1031
DIHMAESGGGLVKPGGSLRLSCAVSGLTFTKAWMSWVRQAPGKGPEWVGRIKS



RSDGGKIDYAAPVKGRFIISRDDSKNTLYLQMHSLKTEDTALYYCTTSYCNPKVC



FDYWFDPWGQGTLVTVSS





1032
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVSVISGS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEYYYDSSGYY



YREDAFDIWGQGTMVTVSS





1033
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMTWVRQAPGKGLEWVSGISAN



GRSPYYADSVKGRFTISRDNSKNTMYVQMNSLRVEDTAVYYCAKDGGLTAYLE



YWGLGTLVTVSA





1034
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATEKWEVVDVCF



DYWGQGTLVTVSS





1035
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGWDVVV



VAATHGVFDYWGQGTLVTVSS





1036
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY



DGSNKYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDPYYYGSG



SSNFFDYWGQGTLVTVSS





1037
QVQLVESGGGVVQPGWSLRLSCAASGFTFSSFAMYWVRQAPGKGLEWVAVISY



DGANKYYADSVKGRFTISRDNSKNTLYLQVNSLRVEDTAVYYCARGPDYYDTG



GYFDLWGRGTLVTVSS





1038
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVMW



HDGSNKYHSDSVKGRFTISRDNSKNTLYLQMKTLRADDTAVYYCARDGYKQIY



WYLDLWGRGTLVTVSS





1039
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWY



DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGEGVYGSG



SRYFLDYWGQGTLVTVSS





1040
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYATHWVRQAPGKGLEWVAVISYD



GSNKYHADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREWSRGAVAG



TGYFDYWGQGTLVTVSS





1041
EVQLVESGGGLVQPGRSLRLSCAASGFTFHDYAMHWVRQAPGKGLEWVSGISW



NSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKVAKLPGDYY



GMDVWGQGTTVTVSS





1042
EVQLVESGGGLIQPGGSLRLSCAASGVIVSRNYMNWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARELRGAFDIWGQ



GTMVTVSS





1043
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGTTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARDWGEYYFDY



WGQGTLVTVSS





1044
EVQLVESGGGLIQPGGSLRLSCAASEFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDLYFDYW



GQGTLVTVSS





1045
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRRVGSPYYYY



YMDVWGKGTTVTVSS





1046
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSILYSG



GTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLGDNAFDIWG



QGTMVTVSS





1047
EVQLVESGGGLVQPGGSLRLSCAASGITVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRITISRDNSKNTLYLQMNSLRAEDTAVYYCARDRYSGYDFWGQ



GTLVTVSS





1048
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLSGTGYGGDG



GWFDPWGQGTLVTVSS





1049
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRIKS



DGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAGKKIYYGSSF



DPWGQGTLVTVSS





1050
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGGSGSGWYGG



RFDYWGQGTLVTVSS





1051
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYY



SGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVWRETYYYDSS



GDSFDYWGQGTLVTVSS





1052
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGYYWTWIRQSPGKRLEWIGEISHG



GKTNYNIFFEGRVTLSVDSSKSQFSLTLASVTAADTAIYYCARGRSITGIRDVDFW



GQGALVTVSS





1053
QVQLHQWGAGLLKPSETLSLTCAVSGGSFSDDFWNWIRQPPGKGLEWIGEINHS



GTTNYNPSLKSRITMSVDTSKSQFSLKLNSVTAADSAMYFCARGRGNYMFRWF



DPWGQGTLVTVSS





1054
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGS



TNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGGLWYDSINYYGM



DVWGQGTTVTVSS





1055
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG



DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARLILRWPTTWDY



FDYWGQGTLVTVSS





1056
QVQLVQSGTEVKEPGSSVKVSCKASGDTFSNYPIAWVREAPGQGLEWMGRIIPIV



GFANYAQKFQGRVTITADKSTSTAYMELSSLRFEDTAVYYCARVDGPFDYWGQG



TLVTVSS





1057
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTSAMHWVRQAPGKGLEWVAGISY



DGSNEHLDSVKGRFTISRDNSKNTLYLQMSSLRPEDTAVYYCARCPFWNYGHCY



LDNWGQGTLVTVSS





1058
QVQLVESGGGVVQPGGSLRLSCAASGFTFSTYAMHWLRQAPGRGLEWVAVISY



DGSNKYNADSVKGRFTISRDNSKNTLSLHMNSLRPEDTAVYYCARPSVRWYYH



AMDVWGQGTTVTVTS





1059
EMQLLESGGGLVQPGGSLRLSCAASGFTFFSYALSWVRQAPGKGLEWVSGISGIS



DSGGNTYYADSVKGRFTISRDNSQNMLYLQMNSLRVEDTAVYYCAKERRPVLR



YFDWLPIEAPDYWGPGTLVTVSS





1060
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMNWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTLSRDNSKNTLYLQMNSLRAEDTAVYYCARGQYDILTGYQ



YGAFDIWGQGTMVTVSS





1061
QVQLQESGPGLVKPSQTLSLTCTVSAGSISSDTYYWSWIRQPAGKGLEWIGRIYT



TGSTIYNPSLNSRVLISADTSNNQFSLKLTSVTASDTAVYYCAAHYYSRTDAFHIW



GQGTMVTVSS





1062
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISA



YNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDSVSGSGSY



YKGLWFDPWGQGTLVTVSS





1063
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWMRQAPGQGLEWMGIIN



PSGGSTSYAHQFQGRVTMTRDTSTSTVYMEMSSLRSEDTAVYFCVVGIGYCSSPS



CPPLRWFDYWGQGTLVTVSS





1064
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLEWMGRIIPIL



GIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARERGYSGSGSLYY



FDYWGQGTLVTVSS





1065
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWD



DDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHYSSSRPPLFDY



WGQGTLVTVSS





1066
EAQLLESGGGLVQPGGSLRLSCAVSGFTVSSYDMSWVRQAPGKRLEWVSFISAR



GSVTYYADSVRGRFTISRDNFKNTLYVEMNNLRVEDTAVYYCAKGHWSTWGQG



TLVTVSS





1067
QVQLVESGGGVVQPGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEWVAVISY



DGSNKYYADSVKGRFTISRDNSKSTLYLQMNSLRAEDTAVYYCANGAYYYGSGS



YYNGAAYWGQGTLVTVSS





1068
QVQLVESGGGVVQPGKSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISN



YGSNKYHADSVKGRITISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGYYDILTG



YFPFDYWGQGTLVTVSS





1069
EVQLVESGGGLIQPGGSLRLSCAASGFTVSRNYMSWVRQAPGKGLEWVSLIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNTLRSEDTAVYYCARDLVVYGMDVW



GQGTTVTVSS





1070
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPIRNGMDV



WGQGTTVTVSS





1071
EVQLVESGGGLVQPGGSLRLSCAASGFTVSRNYMSWVRQAPGKGLEWVSVIYS



GGTTHYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARDLVVYGMDV



WGQGTTVTVSS





1072
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMTWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARDAMSYGMDVW



GQGTTVTVSS





1073
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRVVYGMDVW



GQGTTVTVSS





1074
EVQLVESGGGLIQPGGSLRLSCAASGLIVSSNYMSWVRQAPGKGLEWVSVLYAG



GSTDYAGSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDAAVYGIDVW



GQGTTVTVSS





1075
EVQLVESGGGLVQPGGSLRLSCAASGITVRSNYMSWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLISRGMDVWG



QGTTVTVSS





1076
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMNWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRVVYGMDVW



GQGTTVTVSS





1077
EVQLVESGGGLVQPGGSLRLSCAASGVTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLVSYGMDV



WGQGTTVTVSS





1078
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMNWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNMVYLQMNSLRAEDTAVYYCARDLVVYGMDV



WGQGTTVIVSS





1079
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMTWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRHNSKNTLFLQMNSLRAEDTAVYYCARDAQNYGMDVW



GQGTTVTVSS





1080
EVQLVESGGGLVQPGGSLRLSCAASEFIVSRNYMSWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTGVYYCARDRGLVSDYWG



QGTLVTVSS





1081
DIEMTQSPSSLSASVGDRVTITCRASQSIASYAYWYQQKPGKAPKLLISAASILQS



GVPSRFSGSGSGGHFTLTINSLQPEDVATYYCQQTYIIPYSFGQGTKLEIK





1082
AIRMTQSPSSFSASTGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSYPYTFGQGTKLEIK





1083
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVS



KRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNLVFGGGTKLTV



L





1084
GIQMTQSPSTLSASVGDRVTITCRASQSISDWLAWYQQKPGKIPKLLIYKASTLES



GVPSRFSGSGSGTEFTLTISSLQPDDFGTYYCQRYDSYRTFGQGTKVEIK





1085
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKSPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIK





1086
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKVLIYDASNLK



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIK





1087
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASHRA



SGIPDRFSGSGSGTDFTLTISRLEPGDFAMYYCQQYATSPWTFGQGTTVEIK





1088
QSVLAQPPSASGTPGQSVTISCSGNNSNIGINNVYWYQQFPGTAPKLLIHRSNQRP



SGVPDRFSGSRSGTSASLVISGLRSEDEAEYHCAAWDDSLSSWGFGGGTKLTVL





1089
QLVLTQSPSASASLGASVKLTCTLSSGHSSYAIAWHQQQPEKGPRYLMKLSSDGS



HRKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQTWGTGTVVFGGGTKLTV



L





1090
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTWVFGGGTKLTVL





1091
EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYEAANRATG



IADRFSGSGSGTDFTLTISSLEPEDFAIYYCQQRSDWTPTFGQGTKVEIK





1092
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLES



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPRTFGGGTKVEIK





1093
QSALTQPASVSGSPGQSITISCTATSSDFGTFHLVSWYQQHPGKAPQLMIYEVNKR



PSGVSDRFSASKSGNTASLTISGLQPEDEADYYCCSYAGNTTFFGGGTKLTVL





1094
QAVLTQPPSVSAAPGQRVSISCSGSAFNIGTNFVSWYQHLPGAAPKLLIYGDQWR



ISGTPDRFSGSKSGTSATLAITGLQSGDEAHYYCSTWDASLKEVLFGGGTRLDVL





1095
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYYDGNTYLNWFQQRPGQSPRRLIYK



VSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPLTFGPGTKV



DIK





1096
DIQMTQSPSTLSASVGDSVTITCRPSQSISRWLAWYQQKPGKAPKLLIYKASTLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYDSYPWTFGQGTKVEIK





1097
DIQLTQSPSFLPASVGDRVTITCRASQHISNYVAWYQQKPGKAPKLLIYAASTLES



GVPSRFGGSGSGTEFTLTINSLQPEDFATYYCQQLTTYPRTFGQGTKLEIK





1098
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTWVFGGGTKLTVL





1099
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNNKNYLAWYQQKPGQPPKLLI



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYFCQQFYSTPVTFGPGTKV



DIK





1100
NFMLTQPHSLSESPGKTVTISCTGSGASIASNYVQWYQQRPGSAPVTVIFEDTQRP



SGVPDRFSGSIDRSSNSASLTISGLRTEDEADYYCQSYDGSNVVFGGGTKLTVL





1101
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGGGTKV



EIK





1102
DIVMIQSPDSLAVSLGERATINCKSSHSVFFSKVNKDYLAWYQQKPGLPPKLLIY



WASTRQTGVPDRFSGSGSGTDFSLTISNLQAEDVAVYYCQQYYDTPMYTFGQGT



KLEIK





1103
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPYTFGQGTKLEIK





1104
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTFVFGTGTKVTVL





1105
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYSNWVFGGGTKLTVL





1106
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSN



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTVVFGGGTKLTVL





1107
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK





1108
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK





1109
DFQMTQSPSSLSASVGDRVTISCQASEDIDNHLNWYQQKPGKAPRLLIYDASNLE



TGVPSRFSGSGSGTDFLFTITSLQPEDFATYYCQQYGAFGQGTKVEIK





1110
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK





1111
QSVLTQPPSASGTPGQRVTISCSGSRSNIGSKNVHWYQQLPGTAPKFLIYSNNQRP



SGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAVWDDSLNGVVFGGGTKLTVL





1112
QSALTQPPSASGSPGQSVTISCTGTSSDVGSYHYVSWYQQHPGKAPKLIIYEVSK



RPSGVPDRFSGSKSGNTASLTVSGLQTDDEADYYCSSFAGSNNPYVFGTGTKVTV



L





1113
DIVMTQSPDSLAVSLGERATINCRSSQSVLYSANNKYYLAWYQHKPGQPPKLLIH



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAIYYCQQYYSTPYTFGQGTKLE



IK





1114
EIVMTQSPATLSVSPGERATLSCRASQSVKSYLAWYQQKAGQAPRLLIYGASSRA



TGIPARFSGSRSGTEFTLTISSLQSEDFAVYFCHQYDSWPPTFGGGTKVEIK





1115
DVVLTQSPATLSLSPGERATLSCRASKDINSYLAWYQQKPGQAPRLLIYDASKRA



TGVPVRFSGSGSGTDFTLTISSLEPEDSAIYFCQNRDDWPPLFTFGPGTKVDFK





1116
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGTKL



EIK





1117
DMQMTQSPSSVSASVGDRVTITCRASQDISSSLAWYQQKPGKPPKLLIYAASSLQ



RGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAHSFLSLTFGGGTKVEIK





1118
SCELTQPPSVSVSPGQTARITCSGDALSNQYTYWYQQRPGQAPLLVIYKGTKRPS



AIPERFSGSRSGTTVTLTISGVQAEDEADYYCQSADTSGTYLWVFGGGTKLTVL





1119
DIQMTQSPSSLSASVGDRVTITCQASQDISNFLNWYQQKPGKAPELLIYDASNLE



TGVPSRISGSGSGTDFTFTISSLQPEDIATYYCQQYDSLPITFGQGTRLEIK





1120
DIQMTQSPSSLSAVLGDRVTITCRASQAISNSLAWYQQKPGKAPKLLLYAASRLES



GVPSRFSGSGSGTDYTLTISSLRPEDFATYYCQQYYGIPTFGQGTRLENK





1121
DVQMTQSPSSLSASVGDRVTITCQASRDIHNLLNWYQQKPGKAPKLLIYDASNL



ETGVPSRFSGSGSGTDFTFTITGLQPEDVATYYCQKCDNFPWTFGQGTKVEIK





1122
QSVLTQSPSASGTPGQRVTISCSGSNSNIGSNYVFWYHQLPGTTPKLLIYKNNQRP



SGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSVVVFGGGTKLTVL





1123
DIHMTQSPSSLSASEGDRVTISCRASQGISTNYLNWYQQKSGKAPRLLIYATSTLQ



SGVSSRFSGSGSGTDFTLTINSVQPEDFATYYCQQSYSSPPTFGGGTKLDIK





1124
QSVLTQPPSVSGAPGQRVTISCTGIGARYNVHWYQQVPGTAPKLLIYRNTNRPSG



VPDRFSGSKSDTSASLAITGLQAEDEADYYCQSYDDTLTIFGGGTKLTVL





1125
DIQMTQSPSSLSASVGDRVTITCRASQSISNHFNWYQHRPQKAPKLLIYSASNLQS



GVPSRFSGSGSGRNFTLTISSLQPEDFATYYCQQSYGAPPTFGGGTKVEIK





1126
DIQMTQSPSSLSASEGDRVTITCRANQSISTNYLNWYQQQSGKAPKLLIYASSTLQ



SGVPTRFSGSGSGTDFALTINSLQPEDFAAYYCQQSYSTPPTFGGGTRVDLR





1127
DIQMTQSPSSLSASEGDRVTILCRASQSISTNYLNWYQQKSGKAPKLLIYSTSNLQ



SGVPSRFSGSGSGTDFTLTIDSLQGEDFATYYCQQSFSTPPTFGGGTKVDIK





1128
DIQMTQSPSSLSASEGDRVTITCRANQSISTNYLNWYQQKSGKAPNLLIYATSSLE



RGVPSRFSGSGSGTEFSLTINSLQPEDFVTYYCQQSYSSPPTFGGGTKVEIKRMEIK





1129
SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWYQQKSGQAPVLVIYEDSKRPS



GIPERFSGSSSGTMATLTISGAQVEDEADYYCYSTDSSGNHWVFGGGTKLTVL





1130
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQGPRTLIYDINN



KYSWTPARFSGSLLGGKAALTLFGAQPEDEADYYCLLSYSGVRIFGGGTKLTVL





1131
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSKVFGGGTKLTVL





1132
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTFYVFGTGTKVTVL





1133
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVL





1134
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRAT



GIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPWTFGQGTKVEIK





1135
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPRTLIYDTSN



KHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSGARPVFGGGTKLTV



L





1136
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPYTFGQGTKLEIK





1137
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVVFGGGTKLTVL





1138
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPITFGQGTRLE



IK





1139
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK





1140
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSVVVFGGGTKLTVL





1141
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTFAVFGGGTQLTVL





1142
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPLTFGGGTKVEI



K





1143
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTVFTFGPGTKVDI



K





1144
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTVFTFGPGTKVDI



K





1145
DIEMTQSPSSLSASVGDRVTITCRASQSIASYAYWYQQKPGKAPKLLISAASILQS



GVPSRFSGSGSGGHFTLTINSLQPEDVATYYCQQTYIIPYSFGQGTKLEIK





1146
AIRMTQSPSSFSASTGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISCLQSEDFATYYCQQYYSYPYTFGQGTKLEIK





1147
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPS



GIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTKLTVL





1148
SYELTQPPSVSVSPGQTASITCSRDKLGDEYACWYQQKPGQSPILVIYQNNKRPAG



IPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTSYVVFGGGTKLTVL





1149
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



LSGIPDRFSGSKSGTSATLDITGLQTGDEADYYCGTWDSSLSVGVFGGGTKLTVL





1150
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSNSTAVFGGGTKLTVL





1151
EVVLTQSPATLSASPGERATLSCRASLSINTDLAWYQQRPGQPPRLLIYGASTRAT



GIPARFSGSGSGTEFTLTVSSLQSEDFALYYCQQSYNWPRTFGQGTRVEIK





1152
DIQMTQSPSAMSASVGDRVTITCRASQGMSNYLAWFQQKPGKVPKRLIYAASSL



ASGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPYTFGQGTKLEIK





1153
DIQMTQSPSTLSAPVGDRVTITCRASQSINSWLAWYQQKPGKAPKLLIYKASNLE



SGVSSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNGYPHTFGQGTKLEIK





1154
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASNLE



SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQYSYYSAFGQGTQVEFK





1155
EIVLTQSPGTLSLSPGERASLSCRASQTVSSTYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYGTFGQGTKLEIK





1156
QAGLTQPPSVSKGLRQTATLTCTGTSSNVGNQGAAWLQQHQGHPPKLLSYRNDN



RPSGISERLSASRSGNTASLTITGLQPEDEADYYCSAWDSSLSAWVFGGGTKLTVL





1157
DIVMTQSPDSLAVSLGERATINCKSSQSVLYNSNNKDYLAWYQQKPGQPPKLLFS



WASTRQSGVPARFSGGGSGTDFTLTISSLQAEDVAVYYCQQYYSTPITFGGGTKV



EIK





1158
DFVLTQPHSVSESPGKTVTISCTRSSGSIASYFVHWYQQRPGSAPTTVIYEDNQRP



SGVPDRFSGSIDSSSNSASLIISGLKTEDEADYYCQSFDDNDQVFGGGTKLTVL





1159
QTVVTQEPSFSVSPGGTVTLTCGLTSGSVSTTYYPSWYQQTPGQPPRTLIYSTNIR



SSGVPDRFSGSILGNKAALTITGAQADDESNYYCLLYVGGGIWVFGGGTKLTVL





1160
EIVMTQSPATLAVSPGERATLSCRASQSVSDNLAWYQQRPGQPPRLLIYAASTRAT



GIPPRFSGSGSGTEFTLTIASLQSEDFALYYCQQYNIWLTFGGGTKVEIK





1161
AVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYK



VSDRDSGVPDRFSGSGSGTDFTLKINRVEAEDVGVYYCMQGTLLLTFGGGTKVE



IK





1162
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGVPDRFSGSKSGTSATLGITGLQTGDEADYYCETWDSSLDAVIFGGGTKLTVL





1163
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKVLIYRNNQRP



SGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGRVFGGGTKLTVL





1164
DVVVTQSPLSLSVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYK



VSNRDSGVPDRFSGSGSGTDFTLKISRVEADDVGVYYCMQGTHWPHPTFGQGT



RVEIK





1165
AVVVTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRRLIYKV



SNRDSGVPDRFSGSGSGTDFTLQISKVEAEDVGVYYCMQGTPWPTFGQGTKVEI



K





1166
EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQLKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQSGSSYTFGQGTKLEIK





1167
AIVMTQSPLSLPVTPGEPASISCRSSQSLRQSQRFSYLDWYVQKPGQSPQLLIYLN



SRRAPGVPDRFSASGSGTDFTLKISRVEAEDVGVYYCMQSLPSGFTFGPGTNVHI



K





1168
DIVMTQAPLSLSVTPGQPASISCKSSQSLLHSIGKTHLYWYLQKPGQPPQLLIYEV



SNRFSGVPERVSGSGSGTDFTLTISRVEAEDVGVYYCMQSLDLPPTFGQGTKVDI



K





1169
DIQMTQSPSFVSASVGDRVTITCRASHDIRTWLSWYQQKPGKAPKLLIYTAFRLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGSSFPLTFGGGTTVDIR





1170
DIQMTQSPSSLSASVGDSVTVTCRASQDIGNWLAWYQLKPEKAPRSLIFAASILRS



GVPSRFSGSGSGTEFTLTISSLQPEDFGVFYCQQYDSSPITFGQGTRLEIK





1171
SSQLTQDPAVSVALGQTVRITCQGDSLETYYATWYQQKPGQAPLLVIYGKNSRPS



GIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGQLHVVVFGGGTKLTVL





1172
SSELTQDPAVSVALGQTVRITCQGDSLRTSYASWYQQKPGQAPMLVIYEKNNRPS



GVPDRFSGSTSFNTASLTITGAQAEDEAEYYCNSRDNNDDLPLFGGGTRLTVL





1173
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVS



KRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNLGVFGTGTKV



TVL





1174
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGVVFGGGTKLTV



L





1175
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPFTFGPGTKV



DIK





1176
DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYK



VSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPITFGQGTRL



EIK





1177
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTLVVFGGGTKLTVL





1178
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIK





1179
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVS



KRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYVVFGGGTKLTVL





1180
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLHTFGQGTKVEIK





1181
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPS



GIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHLVFGGGTKLTVL





1182
SYELTQPPSVSVSPGQTATITCSGDELGDTDIAWYQQKPGQSPVLVILQDTKRPSGI



PERFSGSNSGTTATLTIGGTQAMDEAEYYCQAWDTITHEEVFGGGTKLTVL





1183
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNYYPVAFGQGTKVEIK





1184
DIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPPRLLIYKIS



NRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCTQATQFPLTFGGGTKVEIK





1185
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDLATYYCQQSYSTPPYTFGQGTKLEIK





1186
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGIAPKLLIYGNNN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSSPVVFGGGTKLT



VL





1187
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQRP



SGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGPVFGGGTKLTVL





1188
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPS



GIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHLVFGGGTKLTVL





1189
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPYTFGQGTKLEIK





1190
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL





1191
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRAT



GIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPWTFGQGTKVEIK





1192
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTYVVFGGGTKLTVL





1193
DIQMTQSPSSLSASEGDRVTITCRASQSISTNYLNWYQQKSGRAPTLLIYATSTLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSPPTFGGGTTVDVK





1194
DIQMTQSPSSVYASEGDRVTITCRASHSISTNYLNWYQQNSGKAPKLLIYATSSLQ



SGVPFRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSPPTFGGGTKVEIK





1195
DIQMTQSPSSLSASEGDRVTISCRASQTISTNYLNWYQQKSGKAPRLLIYATSTLE



SGVPSRFSGSGSGTDFTLTINTLQPDDFATYYCQQSYSSPPTFGGGTKVDIK





1196
EIVLTQSPATLSLSPGERAALSCRASQTINSGYLAWYQQKPGQAPRLLIYAASHRA



TGIPNRFSGSGSATDFTLTITRLEPEDVAVYYCHHYGTSPPFTFGPGTKVDIK





1197
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK





1198
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYYVFGTGTKVTVL





1199
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK





1200
SYELTQPPSVSVSPGQTASISCSGDKLGDTYASWYQQKPGQSPVLVMYQDNKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVL





1201
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTYLYWYLQKPGQSPQLLIYEV



SNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQSIQLPLTFGGGTKVEIK





1202
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTYLYWYLQKPGQSPQLLIYEV



SNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQSIQLPFTFGQGTRLEIK





1203
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTYTFGQGTKLEI



K





1204
SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWYQQKSGQAPVLVIYEDSKRPS



GIPERFSGSSSGTMATLTISGAQVEDEADYYCYSTDSSGNHRRVFGGGTKLTVL





1205
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



WPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTLVFGGGTKLTVL





1206
SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWYQQKSGQAPVLVIYEDSKRPS



GIPERFSGSSSGTMATLTISGAQVEDEADYYCYSTDSSGNHRGVFGGGTKLTVL





1207
DIQMTQSPDTLSASVGDRVTITCRASESISNWLAWYQKKVGQAPNLLIDKASNL



HRGVPSRFSGSGSGTEFTLTITSLQPDDSASYYCQQYNSFPYTFGQGTTLEIK





1208
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPVTFGQGTKVEIK





1209
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQ



SGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPLTFGGGTKVEIK





1210
DIQMTQSPSSLSASVGDRVTITCRASQGIGNDLGWFQQKPGKAPKRLIYGASNLQ



SGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPFTFGGGTKVEIK





1211
ETVLTQSPGTLSLSPGERATLSCRASQSVSGSYLAWYQQKPGQAPRLLIYGASRR



ATGIADRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSAGTFGQGTKVEIK





1212
EIVLTQSPGTLSLSPGERGTLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASTRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNLPPFTFGPGTKVDIK





1213
DIVVTQSPDSLAVSLGERATINCKSSQSLLYNFNNENYLGWYQQKPGQPPKLLIY



WASTRESGVPDRFNGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGGGTKV



EIK





1214
GIVMTQSPLSLSVTPGQPASISCKSSQSLLDSDGKTYMCWYLQKPGQPPQLLIYE



VSNRFSGVPERFSGSGSGTDFTLKISRVETEDVGVYYCMQNRHLYTFGQGTKLEI



K





1215
GIVMTQSPLSLSVTPGQPASISCKSSQSLLDSDGKTYMCWYLQKPGQPPQLLIYE



VSNRFSGVPERFSGSGSGTDFTLKISRVEAEDVGVYYCMQNRHLYTFGQGTKLEI



K





1216
NIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQTLQTSITFGQGTRLEI



K





1217
EIVLTQSPGTLSLSPGERATLSCRASQSVSTYLAWYQQRPGQAPRLLIYGSSSRAA



GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSQYSFGQGTKLEIK





1218
EIVLTQSPGTLSLSPGERATLSCRASQSVSSYLAWYQQRPGQAPRLLIYGASSRAA



GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSQYTFGQGTKLEIK





1219
DIQMTQSPSSLSASVGDRVTITCQASQDSSKYLNWYQQKPGKAPKLLIYDASTLE



TGVPSRFSGSGSGTDFTFTISGLQPEDVATYYCQHYDTLLTFGPGTKVEIK





1220
DIVMTQSPDSLAVSLGERATINCKSSQSVSFTSNNKNYLAWYQQKPGQPPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVALYLCQQYFDTPWTFGQGTKV



EIK





1221
GIVMTQSPLSLSVTPGQPASISCKSSQSLLDSDGKTYLCWYLQKPGQPPQLLIYEV



SNRFSGVPERFSGSGSGTDFTLKISRVEAEDVGVYYCMQNRQLYTFGQGTKLEIK





1222
DIQMTQSPSSLSASVGDRVTITCQASQDISTYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQFDNLPPFTFGPGTRVHIT





1223
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGRAPKVLIYGASTLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSARMSTFGQGTKLEIK





1224
DVVMTQSPLSLPVTLGQPASISCRSSQSVVHSDGKTYLNWYHQRPGQSPRRLIYE



VSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTQWPWTFGQGTK



VEIK





1225
EIVLTQSPGTLSLSPGERATLSCRASHTISSSYLAWYQQKAGQAPRLLIYAASSRAT



GIPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQFDNSPPWTFGRGTKVEMR





1226
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYVVFGGGTKLTVL





1227
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVS



KRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLVFGGGTKLTV



L





1228
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYAASGLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPFTFGPGTKVDIK





1229
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRRLIYK



VSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHSYTFGQGTKLE



IK





1230
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTASYVFGTGTKVTVL





1231
QSALTQPASVSGSPGQAITISCTGTSSDVGGHDYVSWYQQHPGKVPKLVVYDVT



NRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSASTVVFGGGTKLTV



L





1232
QSALTQPASVSGSPGQAITISCTGTSSDVGGHDYVSWYQQHPGKVPKLVVYDVT



NRPSGISNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSASTVVFGGGTKLTVL





1233
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRRLIYK



VSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHSPWTFGQGTKV



EIK





1234
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYHCGTWDSSLSAWVFGGGTKLTVL





1235
SYELTQPPSVSVSPGQTASITCSGDALPKQYGYWYQQKPGQAPVMVIYKDNERP



SGIPERFSGSSSGTTVTLTISGAQAEDEADYYCQSADGRGDWVFGGGTKLTVL





1236
EIVLTQSPGTLSLSPGERATLSCRASQSVSTYLAWYQQRPGQAPRLLIYGSSSRAA



GIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSQYSFGQGTKLDIK





1237
DIQMTQSPSTLSASIGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYETSSLEP



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYDSYSGTFGQGTKVEIK





1238
QPVLTQSSSASASLGSSVKLTCTLSVGHDYFTIAWHQQQPGKAPRFLMKLEGSGS



YYKGSGVPDRFSGSSSGADRYLIISNLQSEDEADYFCETWDSPYVVFGGGTKLTV



L





1239
DIQMTQYPSSLSASVGDTVTITCQASQDSNTYLNWYQQKPGKAPKLLIYDASNL



ETGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQHYDSLLTFGPGTKVDIK





1240
QSALTQPASVSGSPGQSITISCNGTNSDVGGYNYVSWYQQHPGKAPKLMIYDVS



KRPSGVSNRFSGSKSGNTASLTISGLQAEDDADYYCSSYTSSSTVVFGGGTKLTV



L





1241
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTLTFGPGTKVDIK





1242
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPLFTFGPGTKVDIK





1243
DVVLTQSPLSLPVTLGQPASISCRSSQSLIYSDGNTYLNWFQQRPGQSPRRLIYKV



SNRDSGVPDRFSGSGSGTDFTLRISRVEAEDVGVYYCMQGTHWPMTFGQGTKV



EIK





1244
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPMYTFGQGTKLEIK





1245
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAASSLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPAFGGGTKVEIK





1246
SYEVTQSPSVSVSPGQTASITCSGDKLGDKYACWYQQRPGQSPVLVIYQDSKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSHTVVFGGGTKLTVL





1247
DIQMTQSPSTLSASVGDRVTITCRASQSISTWLAWYQQRPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSWTFGQGTKVEIK





1248
ETMMTQSPVALSVSPGDRATLSCEASQYVGDNLAWYQQKPGQAPRLLIYGAFTR



ATGVPARFSASGSGAGFTLTISSLQSEDFAVYYCQQYTSWPLTFGGGTKVEIK





1249
ETMMTQSPVALSVSPGDRATLSCKASQYIGDNLAWYQQKPGQTPRLLIYGASTR



ATGVPARFSASGSGAGFTLTISSLQSEDFAVYYCQQYTSWPLTFGGGTKVEIK





1250
SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWYQQKSGQAPVLVIYEDSKRPS



GIPERFSGSSSGTMATLTISGAQVEDEADYYCYSPKVFGGGTKLTVL





1251
DIQMTQSPSSLSASVGDRVTVACQASQDVSIYLNWYQQKPGRAPKLLIYDAYNL



QTGVPSRFSGSGSGTHFTLTISSLQPEDVATYHCQQYNILPHTFGGGTKVELT





1252
DIVMTQSPDSLAVSLGERATIKCKSSQSVYDSSNSKNYLAWFQQKPGQPPQLLIF



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNAPLSFGGGTKV



EIK





1253
DIVMTQSPDSLPVSLGERATIKCKSSQSVYDTSNSKNYLAWFQQKPGQPPQLLIF



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNAPLSFGGGTKV



EIK





1254
EIVLTQSPATLSLSPGERATLSCRASQSVSTYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWITFGQGTRLEIK





1255
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWITFGQGTRLEIK





1256
QSVLTQPPSASGTPGQGVTISCSGGSSNIGAYTVSWYQQLPGTAPKLLIYSTDQRP



SGVPDRFSGSKSGTSASLAVTGLQSEDEADYYCAAWDDSLNGPVFGGGTKLTVL





1257
EIVLTQSPGTLSLSPGERATLSCRASQSVSSIYLAWYQQKPGQAPRLLIYGASSRAT



GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPQTFGQGTKLEIK





1258
EIVMTQSPATLSVSPGERATLSCRASQSVTSYLAWYQQKPGQAPRLLIYGASTRA



TGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPLTFGGGTKVEIK





1259
DIQMTQSPSTLSASVGDRVTITCRASQSITNWLAWYQQRPGKAPKLLLSKASSLE



SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQYYSYSLTFGGGTKVESK





1260
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFYVFGTGTKVTV



L





1261
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKTGQAPVLVIYKDSERPS



GIPERVSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTWVFGGGTKLTVL





1262
EIVLTQSPGTLSLSPGERATLSCRASQSVSSRYLAWYQQKPGQAPRLLIYGASRRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPEMYTFGQGTKLEIK





1263
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCHQYGSGLGTFGPGTKVDIK





1264
DIVMTQTPLSLSVTPGQPASISCKSSQSLLDSDGKTYLYWYLQKPGQTPQLLIYEV



SDRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQSIQLRTFGQGTKVEIK





1265
EIVLTQSPATLSLSPGERATLSCRASQRVGSSLAWYQQKPGQAPRLLIYGASNRAT



GIPARFSGSGSGTDFTLTITRLEPEDFAVYYCQQCSSWPLSLTFGGGTKVEIR





1266
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRAT



GIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPITFGQGTRLDIK





1267
DIQMTQSPSSVSASVGDRVTITCRASQGIRFWLAWYQQKPGKAPKLLIYAASTLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPPTFGGGTKVEIK





1268
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNTN



RPSGVPDRFSGSKSGTSPSLAITGLQAEDEAGYYCQSYDISLSAYVFGGGTKLTVL





1269
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLES



GVPSRFSGSGSGTEFTLTISSLLPADFATYYCQQYNTYSLTFGQGTRLEIK





1270
AIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPPAFGGGTKVEIK





1271
EIVMTQSPDSLAVSLGERATINCKSSQSVLYSASNKNYLAWYQQKQGQSPKLLIY



WASTRESGVPDRFSGSGSGTDFTLTINGLQAEDVAVYYCQQYYRTPLTFGGGTKV



EIK





1272
DIQMTQSPSAMSASVGDRVTITCRASQDISNYLAWFQQRPGKVPKRLIYAASSLQ



SGVPSRFSGTGSGTEFTLTISSLQPEDFATYYCLQHHTYPLTFGGGTKVEIR





1273
EIVLTQTPLSLSVTPGQPASISCKSSHSLLHSDGKTYVYWYLQRPGQPPQLLIYELF



NRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGTYYCMQSIQLWSFGQGTKVEIK





1274
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPRTLIYDTNN



KHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSGPWVFGGGTKLTVL





1275
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVS



KRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNYVFGTGTKVT



VL





1276
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPSFTFGPGTKVDIK





1277
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVN



KRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLVFGGGTKLSV



L





1278
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTVVFGGGTKLTVL





1279
DIQMTQSPSSLSASVGDRVTISCRASQSIGKYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTINNLQPEDFATYYCQQSYNVPPWTFGQGTKVEIK





1280
DVVMTQSPVSLTVTLGQPASISCRPSQSIEHSDGNIYLNWFQQRPGQSPRRLIYKIS



NRDSGVPDRISGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPWTFGQGTKVEI



K





1281
QSVLTQPPSVSGAPGQRVIIPCTGSSSNTGAGYDVHWYQQLPGTAPKLVIYDNSH



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDINLSAVFGGGTKLTVL





1282
EIVLTQSPGTLSLSPGERATLSCRATQSLTSSSLAWYQQKPGQAPRLLIYGASSRAT



GIPDRFSGSGSGTDFTLTISRLKPEDFAVYYCHQYHNSPWTFGQGTKVEIK





1283
DFVMTQSPLSLPVTPGEPASISCRSSQSLLHGNGYTYLDWYLQKPGQSPQLLIYL



GSTRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPYTFGQGTKL



EIK





1284
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRP



SGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVL





1285
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





1286
QIVMTQSPATLSVSPGGGATLSCRASQSVSSKVAWYQQKPGQAPRLLIYGASTRA



TGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYDNWLPYTFGQGTKLEIK





1287
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPRTLIYDTSN



KHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSGAYVLFGGGTKLTV



L





1288
EIVMTQSPAILSVSPGERATLSCRASQSVTRNLAWYQQKPGQAPRLLIYGASTRAT



NIPARFSGSGFGTEFTLIISSLQSEDFAVYYCQQYSNWPLYTFGQGTKLEIK





1289
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYSNNQRP



SGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGPYVFGTGTKVTV



L





1290
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQHHPGKAPKLMIYEVSN



RPSGVSNRFSGSKSANTASLTISGLQTEDEADYYCSSYTSISTVLFGGGTKLTVL





1291
SDALTQPPSVSVAPGKTAAITCGGDNIGSKNVHWYQQKPGQAPLLVVFDDGDRP



SGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDGGSDDRGYVFGTGTKVT



VL





1292
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQQHPGKAPKLMIYDVTK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSFTSNGAWVFGGGTKVTVL





1293
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKFLIYAASTLHT



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYIRPYTFGQGTKLEIK





1294
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPITFGGGTKVEIK





1295
QSVLTQPPSTSGAPGQRVTISCSGSSSNVALNAVSWYQQLPRMAPKLLIYRDNQR



PSGVPERFSGSRSGTSASLAITGLQSDDEADYYCATWDDSLNGVFGGGTKLTVL





1296
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASSRAT



GIPARFSGSGSGTEFTLTISSLQSEDFGVYYCQQYNNWPYTFGQGTKLEIK





1297
QPVLTQPPSASASLGASVTLTCTLSSGYSNYKVDWYQQRPGKGPRFVMRVGTGG



IVGSKGDGIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGSGSNFVYVFGT



GTKVTVL





1298
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTLVFGGGTKVTVL





1299
DIKMTQSPSTLSASVGDRVTITCRASQHINRWLAWYQQKPGKAPKLLIYEASSLK



SGVPSRFSGSGSGTEFTLTITSLQLDDFATYSCQQHDSAPYTFGQGTKLEIK





1300
DIQMTQSPSTLSASLGDRVMITCRASQNISRWLAWYQQKPGKAPKFLIYKASALE



TGVPSRFSGSGSGTEFTLTITGLQPDDFATYYCQQYNSYVTFGGGTKVEMK





1301
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTYLYWFLLKPGQSPQFLIYEV



SSRFSGVPDRFRGSGSGTDFTLKISRVEAEDVGVYYCMQGKHLRWTFGQGTKVE



IK





1302
SYELAQPPSVSVSPGQTARITCSGDALPIKYAYWYQQKSGQAPVLVISEDSKRPSG



IPERFSGSSSGTMATLTISGAQVEDEADYYCYSTDYSGNHGVFGGGTKLTVV





1303
EIVLTQSPATLSLSPGERATLSCRASQSVSTYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQCSNWPNTFGQGTKLEIK





1304
SYELTQPPSVSVSPGQTARITCSGDELPKQYSYWFQQRPGQAPVLVIYKDRERPS



GIPERFSGSHSGTTVTLTISGVQAEDEADYYCQSADSNDSWVFGGGTKLTVL





1305
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL





1306
GIQLTQSPSSVSASLGDTVTITCRASQNINVFLAWYQQRPGSAPSLLIYAASNLQS



GVPSRFVGSGSGTDFTLTISGLQPEDFATYYCQQGHNFPWTFGRGTKVEVK





1307
EIVLTQSPGTLSLSPGDRATLSCRASQSLNNNQLAWYQQKLGQAPRLLIYGASSR



ATGIPDKISGSGSGTVFTLTISRLEPEDFAVYYCQQYGSLPLTFGGGTKVEIK





1308
EIVLTQSPGTLSLSPGDRATLSCRASQSLNNNQLAWYQQKLGQAPRLLIYGASSR



ATGIPDKISGSGSGTVFTLTISRLEPEDFAVYYCQQYGSLPLTFGGGTKVEIK





1309
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTKLT



VL





1310
EIVLTQSPATLSLSPGERATLSCRASQSISSHLGWYQQKPGQAPRLLIYDASNRAP



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRNWPLTFGGGTKVEIK





1311
EIVLTQSPATLSLSPGEGATLSCRASQSVASYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRSNWPYTFGQGTKLEIK





1312
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYSNNQRP



SGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGVVFGGGTKLTVL





1313
DIVMTQTPLSSPVILGQSASISCRSSHSLLHNNGNTYLSWLHQRPGQPPRLLIYEIS



NRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGIYYCMQTTQFPRTFGQGTKVEIR





1314
SYELTQPPSVSVSPGQTAKITCSGDALPKEFAYWYQQKPGQAPVLIIYKDKERPSG



IPERFSGSSSGTTVTLTISGVQAEDEADYYCQSQDSSATYVVFGGGTKLTVL





1315
SSDLTQPPSVSVSPGQTASIACSGDKLGDKYVSWYQQKPRQSPVLVIYQDNKRPS



GIPERFAGSNSGNTATLTISGTQTMDEADYYCQAWDSSIEVFGTGTKVTVL





1316
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPWTFGQGTKVEIK





1317
SYELTQPPSVSVSPGQTARITCSADALSKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSNSGTTVTLTISGVQAEDEAEYYCQSGDSSGTYVVFGGGTKLTVL





1318
DIVMTQTPLSSPVILGQSASISCRSSQSLLHNNGNTYLSWLHQRPGQPPRLLIYEIS



NRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGIYYCMQTTQFPRTFGQGTKVEIR





1319
DIQMTQSPSAMSASVGDRVTITCRASQGIRNSLAWFQQKPGKVPKRLIYDASNLQ



SGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYNTYSYSFGQGTKLEIK





1320
DIQMTQSPSILSASVGDRVTITCRASQNISRWLAWYQQKPGKAPKFLIYKASGLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYITFGGGTKIEIK





1321
DIQMTQSPSTLSASVGDRVIITCRASQNISRWLAWYQQKPGTAPKFLIYKASALES



GVPSRFSGSGSGTEFTLTITSLQPDDFATYYCQQYNSYVTFGGGTKVEMK





1322
SYELTQPPSVSVSPGQTARITCSGDALPQRYAYWYQQKSGQAPVLVIYEDTKRPS



GIPERFSGFSLGTLATLTISGAQVEDEADYYCYSTDSSDNQRVFGGGTKLTVL





1323
AIQLTQSPSSLSASVGDRVTITCRASQGVASYLAWYQQKPGKAPNLLIYAASTLQ



GGVPSRFSGSGSGTDFTLTISNLQPEDFATYYCQHLKSYPLTFGGGTKVEIK





1324
DIQMTQSPPSVSASIGDTVTITCRATQNINVFLAWYQQKPGSAPTLLIYGASSLQS



GVPSRFVGSGSGTDFTLTISGLQPEDFATYYCQQGHNFPWTFGRGTKVEVK





1325
DIQMTQSPSSVSASIGDTVTITCRATQNINVFLAWYQQKPGSAPTLLIYGASSLQS



GVPSRFVGSGSGTDFTLTISGLQPEDFATYYCQQGHNFPWTFGRGTKVEVK





1326
EIVMTQSPATLSVSPGERATLSCRASQSLNSNLAWYQQKPGQAPRLVIYGASTRA



AGFPARFSGSGSETEFTLTISSLQSEDFAIYFCQQYHNFPLTFGQGTEVEVR





1327
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQLLPGTAPKLLIYGNNN



RPSGVPDRFSGSKSGTSASLAIIGLQAEDEATYYCQSYDSSLSVVFGGGTKVTVL





1328
SYELTQPPSVSVSPGQTAIITCSGDKLGEKYASWYQQRPGQSPMLVIYQDTKRPSG



IPERFSGSNSGNTATLTISGTQAVDEADYFCQAWDSNTGVFGTGTKVTVL





1329
QSVLTQPPSLSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGDSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGSVFGGGTKLTV



L





1330
SYELTQPPSVSVSPGQTARISCSADALPKQNAYWYQCKPGQAPILLIYKDTERPSG



IPERFSGSSSGTTVTLTISGVQPEDDADYYCQSVDNTGASPHVVFGGGTKLTVL





1331
DIQMTQSPSTLSASVGDSVTITCRANETIASWVAWYQQKPGKAPKLLIYKASSLE



SGVPSRFSGSESGTEFTLTISSLQPDDFATYYCQQYHTYWTFGQGTKVEVK





1332
SYELTQPPSVSVSPGQTASIACSGDKLGDKYTCWYQQKPGQSPVLVMYQDSKRP



SGIPERFSGSNSGNTATLTISGTQVMDEADYYCQAWDSGTVVFGGGTKLTVL





1333
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





1334
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





1335
DIVLTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLVIHGASSRAT



GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGTSPYTFGQGTKLEIK





1336
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSTLVTFGQGTKVEIK





1337
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSLWVFGGGTKLTVL





1338
NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQR



PSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSFWVFGGGTKLTVL





1339
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVL





1340
SYELTQPPSVSVSPGQTARITCSGDALPEKYAYWFQQKSGQAPVLVIYEDNKRPS



GIPERFSGSSSGTMATLTISGAQVEDEADYYCYSTDRSGNHRGVFGTGTKVTVL





1341
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPS



GIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHLYWVFGGGTKLTVL





1342
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGHVVFGGGTKLT



VL





1343
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGGVFGTGTKVTV



L





1344
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFVVFGGGTKLTV



L





1345
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQFPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVL





1346
AIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPPTFGQGTKVEIK





1347
DIQMTQSPSSLSASVGDRVTITCRASQSIRFYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLWTFGQGTKVEIK





1348
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWYQQKPGQAPRLLIYDASSRA



TGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYGDSPETFGQGTKVEIK





1349
SYELTQPPSVSVSPGQTASITCSGDKLGDNYASWYQQKSGQSPVLVIYQDTKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVL





1350
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPYTFGQGTKLEIK





1351
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPYTFGQGTKLEIK





1352
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPSITFGQGTRLEIK





1353
DIQMTQSPSSVSASVGDRVTITCRASQGISNWLAWYQQKPGKAPKLLIYAASSLQ



SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPLAFGGGTKVEIK





1354
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPFGFGPGTKVDIK





1355
QSVLTQPPSVSGAPGQRVTISCTGSRSNIGAGFDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEAVYYCLSYDSSLSGSVFGGGTKLTV



L





1356
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKVLIYDASSLES



GVPPRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNNYPLTFGGGTKVEIK





1357
DIQMTQSPSSLSASVGDRVTITCQASQDMSNYLNWYQQKPGKAPKLLIYDASNL



ETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPFTFGPGTKVDIK





1358
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSN



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSAYVFGTGTKVTVL





1359
SSELTQDPAVSVALGQTVRITCQGDSLRSYSASWYQQKPGQAPVLVIYVKNNRPS



GIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTRLTVL





1360
QSALTQPRSVSGSPGQSVTISCTGTSSDVGDYDYVSWYQHHPGKAPKLMIYDVS



KRPSGVPDRFSGSKSGNTASLTISGLQAEDDADYYCCSYAGSYPVVFGGGTKLTV



L





1361
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVS



KRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNKVFGGGTKLTV



L





1362
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSGGYTFGQGTKLEIK





1363
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIK





1364
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSSWTFGQGTKVEIK





1365
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIK





1366
SYELTQPPSVSVSPGQTASITCSGDKLGNKYACWYQQKPGQSPVLVIYQDSKRPS



GIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTANWVFGGGTKLTVL





1367
QSALTQPASVSGSPGQSITISCTATSGDVGGYNYVSWYQQHPGKAPKLMIFDVYN



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSFTDSSTLVVFGGGTKLTVL





1368
DIQMTQSPSSLSASVRDKVTITCRASQSISSCLNWYQQKPGKAPKVLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSVQPEDFATYYCQQSYSVPHTFGQGTKVEIK





1369
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRAT



GIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWLTFGGGTKVEIK





1370
EIVMTQSPATLSVSPGERVTLSCRASQSINRNLAWYQQKPGQAPRLLVYDASTRA



PGIPTRVSGSGSGTDFTLTISSLQSEDFAVYYCQQYNNWPPITFGQGTRLEIQ





1371
EIVMTQSPATLSVSPGERVTLSCRASQSVNRNLAWYQQKPGQAPRLLVYDASTR



APGIPTRVRGSGSGTDFTLTISSLQSEDFAVYYCQQYNNWPPITFGQGTRLEIQ





1372
QTALTQPPSASGSPGQSVTISCTGSSGDVGGYNYVSWYQQYPGKAPKLILSEVSQ



RPSGVPDRFFGSKSGNTASLTVFGLQAEDEADYYCSSYAGTNKILFGGGTKLTVL





1373
DIQMTQSPSSLSASVGDRVTITCRASQSISSFLNWFQQKPGKAPKLLIYAASSLQG



GVPSRFSGSGSGTDFTLTINSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK





1374
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTWVFGGGTKLTVL





1375
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIK





1376
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPGTFGQGTRLEI



K





1377
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLG



SNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPGTFGQGTRLEI



K





1378
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSAFGQGTKLEIK





1379
PYDLTQPPSVSVSPGQTATITCSGDKLGKKYACWYQQKPGQSPVLLIYQDVKRPS



GIPERFSGSNSGTTATLTISETQTMDEADYYCQAWDRTTATFGGGTRLTVL





1380
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTKLT



VL





1381
QSALTQPASVSGSPGQSITISCTGTTFDVGVYDFVSWYQQLPGKAPKLIIHDDTHR



PSGVSDRFSGSRSGTTASLTISGLQADDEADYYCSSYTSLNTLEVVFGGGTKLTVL





1382
DIVMTQSPLSLPVTPGEPASMSCKSTQSLLHSNGNYYVTWYLQKPGQSPHLLIYL



ASNRASGVPDRFSGSGSGTDFTLKISSVEAEDVGVYYCMQALQTPYSFGQGTKL



EIK





1383
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPS



GIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDRTVVFGGGTKLTVL





1384
QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNYVYWYQHLPGTAPKLLIYRNNQRP



SGVPDRFSGSKSGTSASLAISGLRSENEADYYCASWDDKVRGWVFGGGTKLTVL





1385
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK





1386
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSRTFGQGTKVEIK





1387
DIQMTQSPSTLSASVGDRVTITCRASQSISDWLAWYQQKPGKAPKLLIYKASTLE



GGVPSRFSGSESGTEFTLTISSLQPDDFATYYCQQYNTSPLTFGGGTKVEIK





1388
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGSLFGGGTKLTV



L





1389
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPS



GIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYRVFGGGTKLTVL





1390
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGRTFGQGTKVEIK





1391
QSALTQPASVAGSPGQTITISCTGPNSDINSYDYVSWYQQRPGKAPKLIIHDVDHR



PSGVSDRFSGFMSDNTASLTISGLQAEDEAHYYCSSYTNIDTLEIVFGAGTKLTVL





1392
DIQMTQSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVPKRLIYAASSLQ



SGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPRTFGQGTKVEIK





1393
SYELTQPPSVSVAPGKAASITCGGINIGSKSVHWYQQKPGQAPVLVVYDDSDRPS



GIPERFSGSNSGNTATLTISRVESGDEADYYCQVWHSSFDPWVFGGGTKLTVL





1394
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTTFGPGTKVDIK





1395
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYFPTFGQGTKVEIK





1396
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDNDRP



SGIPDRFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYWVFGGGTKLTVL





1397
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL





1398
QLVVTQSPSASASLGASVKLTCTLSSGHSSYVIAWHQQQPEKGPRFLMKLNSDGS



HNKGDGIPDRFSGSSSGAERYLTISNLQSEDEADYYCQTWGTGPQVLFGGGTKLT



VL





1399
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLLTFGGGTKVEIK





1400
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRP



SGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSGDHWVFGGGTKLTVL





1401
EIVLTQSPATLSLSPGERATLSCRASQSVSNYLAWYQQKPGQVPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWLTFGGGTKVEIK





1402
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLISDASLLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQHDNLPSFTFGPGTKVDIK





1403
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





1404
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQTPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





1405
QTVVTQEPSLTVSPGGTVTLTCASSTGAVTSGYYPNWFQQKPGQAPRALIYSTSN



KHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLYYGGAPVFGGGTKLTVL





1406
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPPAFGQGTKVEIK





1407
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPQTFGPGTKVDIK





1408
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSLWVFGGGTKLTVL





1409
NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSAPTTVIYEDNQR



PSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNQVFGGGTKLTVL





1410
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWLFTFGPGTKVDIK





1411
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL





1412
VIVLTQTPLSSPVTLGQPASISCRSRRSLVHTNGNTYLSWLHQRPGQTPRLLIHNV



SNRFSGVPDRFSGSGAGTDFTLNISRVEADDVGIYYCMQASQFPLTFGGGTKLEI



K





1413
QSALTQPASVSGSPGQSITISCTGTFSDIGNYDLVSWYQQHPGKAPKVIIYEGYKR



PSGVSDRFSGSKSGNTASLTISGLQAEDEADYFCCSFAGSNREFGGGTKLTVL





1414
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK





1415
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR



PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAWVFGGGTKLTVL





1416
EIVLTQSPGTLSLSPGERATLSCRASQSVSNYLAWYQHKPGQAPRLLIYGASNGA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYSSSAPITFGQGTRLEIK





1417
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIFDASNRAT



GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNKWPGTFGQGTKVEIK





1418
ETVLTQSPGTLSLSPGERATLSCRASQSVNSNYLAWYQQKPGQAPRLLIYGASSR



ATGIPDNFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDSPYTFGQGTNLEIK





1419
AIQLTQSPSSLSASVGDRVTITCRASQGISSSLAWYQQKPGKAPKLLIYSASTLQSG



VPSRFSGSGSGTDFTLTITSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK





1420
QSALTQPASVSGSPGQSITISCTGTSSDVGTYNLVSWYQQHPGKAPKLMIYEVSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCTYAGSSTWVFGGGTKLTVL





1421
DIQMTQSPSSLSASVGDRVTITCRASQSIAKFLNWYQKKPGKAPNLLISTASSFQS



GVPSRFSGSGSGTDYTLTISGLQPEDFATYYCQQSYSSPYTFGQGTNLEIK





1422
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAASSLQ



SGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPRTFGQGTKVEIK





1423
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKVLIYDASGLQS



GVPSRFSGGGSGTDFTLTISSLQPEDFATYYCQQFNDYPLTFGGGTKVEIK





1424
QSVLTQPPSVSGAPGQRVTISCTGSNSNIGAGYDVHWYQQLPGTAPKLLIYVNTN



RPSGVPDRFSGSKSGTSASLAITGLQAEDEAHYYCQSYDSSLSGSVFGGGTKLTV



L





1425
DIQMTQSPSTLSASVGDRVTITCRASQIISSWLAWYQQKPGKAPKLLIYKASSLES



GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSTYYTFGQGTKLEIK





1426
DVVLTQSPLSLPVTLGQPASISCRSSHSLVYSDGYTHLHWIQERPGQSPRRLIYSVS



HRDSGVPDRFSGSGSATDFTLQISRVEAEDVGVYYCMQGSHWPWTFGQGTKVEI



K





1427
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYSNNQRP



SGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGPWVFGGGTKLTV



L





1428
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQYPGKAPKLMIYEVS



KRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTWVFGTGTKVT



VL





1429
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQV



GVPSRFSGSGSGTEFTLTISSLQPEDFATYFCQQLNSYPFTFGPGTKVDIK





1430
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPRTFGQGTKVEIK





1431
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSSFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK





1432
DIQMTQSPSSLSASVGDRVTITCRASQSISNFLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTGFTLTISSLQPEDFATYYCQQSYSTPPDTFGQGTRLEIK





1433
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPPTFGGGTKVEIK





1434
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPLFTFGPGTKVDIK





1435
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNGYPHSAFGPGTKVDIK





1436
DIQMTQSPSSLSASVGDRVTITCQASQDIINYLNWYQQKPGKAPKLLIYGASNLE



TGVPSRFSGGGSGTDFTFTISSLQPEDIATYYCHQYDNLPPTFGQGTRLEIK





1437
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK





1438
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQQLNSNPPITFGPGTKVDIK





1439
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIFAASSLQT



GAPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPYTFGQGTKLEIK





1440
DIQMTQSPSSLSASVGDRVTITCQASQDINKYLNWYQQKPGKAPKLLIFDASHLE



TGVPSRFSASGSGTDFTFTISSLQPEDIATYYCHQYDNLPRTFGQGTRLEIK





1441
GGSFSDYY





1442
GGSFSDYF





1443
GITVSSNY





1444
GYTFTSYA





1445
ITHSGST





1446
INHSGST





1447
IYSGGST





1448
INTNTGNP





1449
QSVSTY





1450
QSVSSY





1451
QGISSY





1452
QSISSW





1453
DAS





1454
DAS





1455
AAS





1456
KAS





1457
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA



VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCP



PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV



EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI



SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY



KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP



GK





1458
RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





1459
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF



STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF



TGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVE



GFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKC



VNF





1460
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFL



PFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDS



KTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNC



TFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFS



ALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLL



KYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT



NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLN



DLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLD



SKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGF



QPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGV



LTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQV



AVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC



DIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTI



SVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQD



KNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADA



GFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGW



TFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSST



ASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDR



LITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHL



MSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWF



VTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKN



HTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWP



WYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKG



VKLHYT





1461
GFTFSSYG





1462
GFTFSSYG





1463
GYSFTSYW





1464
GYSFTSYW





1465
GYSFTSYW





1466
GYSFTSYW





1467
GYSFTSYW





1468
GGSINRNHF





1469
GGSINRNHF





1470
GYTFTSYG





1471
GFTFSYFE





1472
GFTFSYFE





1473
GYKFSNYY





1474
GYIFTNFY





1475
GFNFSSYA





1476
GIIVSRNE





1477
GGTFSTYA





1478
GFTFSSYG





1479
GFTFNNYA





1480
GFVFSNYW





1481
GGSISSGGYY





1482
GYNFNNYW





1483
GYTFTSYA





1484
GYTLTELS





1485
GFTFSSYG





1486
GFTFSSYP





1487
GGSISSGGYY





1488
GGSISSGGYY





1489
GFTVSSNY





1490
GGSISSYY





1491
GYTFTGYF





1492
GFTASSNY





1493
GGTFSSYG





1494
GGRFGSFA





1495
GFTFTDYA





1496
GGSISSYY





1497
GYTFTDYY





1498
GYSFTGHY





1499
GFTFSNYG





1500
GGSISSDVYS





1501
GDTFNSYA





1502
GFTFSHYG





1503
GYSFPAHW





1504
GYNFDTYW





1505
GYSFSGYW





1506
GYYFAAHW





1507
GYSFPAFW





1508
GYSFPAYW





1509
GYTLTELS





1510
GYTFTRYW





1511
GFTFSSYS





1512
GFTFSSYS





1513
GGSISSSSYY





1514
GFSLSTSGVG





1515
GFTFSNAW





1516
GFTFSSYE





1517
GFTFSSYE





1518
GGSISSSSYY





1519
GGSISSGGYY





1520
GGSISSRSYY





1521
GFSLSNARMG





1522
GFSLSTSGVG





1523
GFTISPYG





1524
GFTISPYG





1525
GYTFGDYG





1526
GYTFGDYG





1527
GFSLSTSGVG





1528
GGSISTYR





1529
GFTFSNAW





1530
GYIFTNYA





1531
GYAFTSYQ





1532
GFTFGDYA





1533
GASFSSYY





1534
GYSFTKYW





1535
GFTFSSYA





1536
GDSVSSNTVA





1537
GFTFDDYG





1538
GFAFDDFA





1539
GFTVSSTF





1540
GGSIKRRGYY





1541
GGSFSAYY





1542
GGSISSSDYY





1543
GFTFSNAW





1544
GGTFSTYA





1545
GLRFTDAW





1546
GFSFSSYA





1547
GFSFSDFA





1548
GFTFTTYG





1549
GFTFRSYS





1550
GDSITSYY





1551
GGSFSGSY





1552
GGSFTDHY





1553
GGSISSSSYY





1554
GFSLSNARMG





1555
GFTFSSYG





1556
GFTFGDYA





1557
GFTFSGSA





1558
GYSFTSYW





1559
GYTFTSYY





1560
GGTFSSYA





1561
GFTFSNAW





1562
GFTFRSYW





1563
GFTFSTYA





1564
GFTFSSYG





1565
GFTVSSNY





1566
GGPISSGGYY





1567
GGSISSSYYY





1568
GGSISSSSYY





1569
GFTFSSYS





1570
GYTFTSYG





1571
GFTFSSYW





1572
GGSISSGGYS





1573
GYSFPAHW





1574
GYSFPAFY





1575
GYSFPAHW





1576
GFTFSASA





1577
GGSISSGGYY





1578
GFTFSSYW





1579
GYTFTSYG





1580
GFSLSTSGVS





1581
GFTFSSYG





1582
GFTFSSYA





1583
GFTFSSYE





1584
GFTFSIYA





1585
GFTFTSYG





1586
GFTFSSYG





1587
GFAFNKYG





1588
GFTFSSYG





1589
GGSISSSSYY





1590
GGAITTSSYF





1591
GFTFSAYG





1592
GFTFNNYG





1593
GGSINSYY





1594
GFTFSRFG





1595
GFTFSRFG





1596
GFTFSSFW





1597
GGTFSSYT





1598
GGSFSSYT





1599
EFSLDSRGVG





1600
GGSISSYY





1601
GFTFSRYG





1602
GFPFSGYA





1603
GFTFINYD





1604
GFAFDKFW





1605
GGSINRDGHY





1606
GGSISSYY





1607
GGSVSSGSYF





1608
GYTFTSYG





1609
GYTFTGYY





1610
GYTLTELS





1611
GYRFTSYG





1612
GYRFTSYG





1613
GYTFTSYA





1614
GYTFTSYY





1615
GYTFTNYY





1616
GGTFSSYT





1617
GGTFNSYA





1618
GYTFTSSD





1619
EFSLDARGVG





1620
GFTFISYA





1621
GFTFSSYA





1622
GFTFSSYG





1623
GFTFSSHG





1624
GFTFSSYA





1625
GFTFSSYA





1626
GFTFSTYG





1627
GFTFSTFA





1628
GFIFGDYA





1629
GFIFGDYA





1630
GFTFSSYW





1631
GASISSGDYY





1632
GGVLSDYY





1633
GGVLSDYY





1634
GGSFSDYY





1635
GGSFSDYF





1636
GDSISSNNW





1637
GGSISSYY





1638
GDSISSYY





1639
GGSISGYY





1640
GGSISSGSYY





1641
DDSISSGSYY





1642
GYSFTSYW





1643
GYSFTSYW





1644
GYTFTSYA





1645
GYTFSFYW





1646
GGAFSSGRHY





1647
GGSFSSYY





1648
GYTLTELS





1649
GFTFSDYY





1650
GITVSSNY





1651
GFTFSRFW





1652
GFTFSNYW





1653
AFSFHLHG





1654
GFTFSSYA





1655
GFIFDDYG





1656
GFTVSSNY





1657
GGSIGSSSYF





1658
GGSISSSSYY





1659
GFTFSSYD





1660
GFTFSRSA





1661
GFTFSSQS





1662
GFTFEEYS





1663
GYTFGRYW





1664
GYTFSTYY





1665
GGTFSSYA





1666
GATFTTYA





1667
GFTLSSYA





1668
GFTFSNYD





1669
GFTFDDYA





1670
GFTFDDYA





1671
GFTFDDYA





1672
GFTFSSYT





1673
TFIFSNSE





1674
GFTVSSNY





1675
GGSFSGYF





1676
GGSFSGYY





1677
GGSLSSYY





1678
GGSISTFY





1679
GGSVSSYF





1680
GFSFNTPGVG





1681
GFSFSNHG





1682
GFTFSNSA





1683
EFTFSSYE





1684
GYTFTNFA





1685
GYTFTSYG





1686
GFSFSRYG





1687
GFNFNSYT





1688
GFNFNSYT





1689
GFTFSSYE





1690
GYIFTSYG





1691
GYSFNDYG





1692
GYTLTELS





1693
GNTFSTYY





1694
GFTFSDVW





1695
GLTFDNAW





1696
RFTFSSYA





1697
GFTFDDYA





1698
GNTFTTYY





1699
GGTFNSYT





1700
GFSLNTPGAG





1701
GFSFNTPGVG





1702
GFTFTFSDYY





1703
GFTFSDYY





1704
GFSFSRYG





1705
GLSFSRYG





1706
GFSFNNFG





1707
GFTLSSYA





1708
GFTFSSYE





1709
GFTFSSYA





1710
GGSISPYS





1711
GDSIRSSSFY





1712
GYSFTTYA





1713
GGTFSSYA





1714
GGTFSSYA





1715
GFTFSHAW





1716
GFTFSSYE





1717
GFTVSSNY





1718
GGSISSYY





1719
GYTFTTYG





1720
GYTFTNYG





1721
GYTLTELS





1722
GYTLTELS





1723
GYTLTELS





1724
GYTLTELS





1725
GYTFTSYA





1726
GGTFSSYA





1727
GFSLSNARMG





1728
GFSLSTTGVG





1729
GFSLSTSGVG





1730
GFTFSSYS





1731
GFTFSSYS





1732
GFTFSSYA





1733
GFTFSSYA





1734
GFTFSSYA





1735
GFTFGSYG





1736
GFTFSSYA





1737
GFTFSIYA





1738
GFTVSSNY





1739
GFTFSNYW





1740
GGSFSGYY





1741
DGSFSGHY





1742
GGSFSGYY





1743
GGSISSYY





1744
GGSISSYY





1745
GYNFTSYW





1746
GYTFTSYA





1747
GFTVSSNY





1748
GGSISSGLYH





1749
GGTFSSYT





1750
GFTFGRHG





1751
GFTFGRYG





1752
GFSLTTRGEG





1753
GYTFTFYT





1754
GFTFTSSA





1755
GFSLSTSGMC





1756
GFTFTTYA





1757
GFAFTTYA





1758
GYTFTSYG





1759
GYTFSRYG





1760
GYTFTGYY





1761
GSGFTFRNAW





1762
GFTFNFYG





1763
GFTFDDYA





1764
GFIFDDYT





1765
GYTFTSYG





1766
GYTFTSYG





1767
GDTFNDYH





1768
GGTFSSYA





1769
GGTFSSYA





1770
GFTFSNAW





1771
GLTFTKAW





1772
GFTFSTYA





1773
GFTFSNYA





1774
GFTFSSYA





1775
GFTFSSYG





1776
GFTFSSYG





1777
GFTFSSFA





1778
GFTFSNYG





1779
GFTFSSYG





1780
GFTFSSYA





1781
GFTFHDYA





1782
GVIVSRNY





1783
GFTVSSNY





1784
EFTVSSNY





1785
GFTVSSNY





1786
GFTVSSNY





1787
GITVSSNY





1788
GFTVSSNY





1789
GFTFSSYW





1790
GGSISSGGYY





1791
GGSISSGGYY





1792
GGSFSGYY





1793
GGSFSDDF





1794
GGSISSYY





1795
GYSFTSYW





1796
GDTFSNYP





1797
GFTFSTSA





1798
GFTFSTYA





1799
GFTFFSYA





1800
GFTVSSNY





1801
AGSISSDTYY





1802
GYTFTSYG





1803
GYTFTNYY





1804
GGTFSSYT





1805
GFSLSTSGVG





1806
GFTVSSYD





1807
GFTFRNYG





1808
GFTFSSYG





1809
GFTVSRNY





1810
GFTVSSNY





1811
GFTVSRNY





1812
GLTVSSNY





1813
GFTVSSNY





1814
GLIVSSNY





1815
GITVRSNY





1816
GFTVSSNY





1817
GVTVSSNY





1818
GLTVSSNY





1819
GFIVSSNY





1820
EFIVSRNY





1821
IWYDGSNK





1822
IWYDGSNK





1823
IDPSDSYT





1824
IDPSDSYT





1825
IDPSDSYT





1826
IDPSDSYT





1827
IDPSDSYT





1828
ASYTGTT





1829
ASYTGTT





1830
ISAYNGNT





1831
ISSSGTNI





1832
ISSSGTNI





1833
INPYSGET





1834
VNPNDGSS





1835
ISATGGTT





1836
ISSSGTGV





1837
IIPIFGTP





1838
ISYDGSNK





1839
ISSYGDNT





1840
IKQDESEE





1841
IYYSGST





1842
IYGGDSDT





1843
INTNTGNP





1844
FDPEDGET





1845
ISYDGSNK





1846
ISYDGSNK





1847
IYYSGST





1848
IYYSGST





1849
LYSGGNE





1850
IYYSGST





1851
INPSSGVA





1852
IYAGGGT





1853
ILPVLDTT





1854
VTPIVGVP





1855
ISYDGNDK





1856
IYYSGST





1857
VNPNRGGT





1858
INPDSGGT





1859
ITGSGGST





1860
VFHTGSA





1861
IIPILRLA





1862
IWYDGSKK





1863
IFPGDSDT





1864
IYPGDSDS





1865
IFPSDSDT





1866
IFPSDSDT





1867
VFPGDSDT





1868
IFPGDSDT





1869
FDPEDGET





1870
MKPGDGKT





1871
ISSSSSYI





1872
ISSSSSTI





1873
IYYSGST





1874
IYWDDDK





1875
IKSKTDGGTT





1876
ISSSGSTI





1877
ISSSGSTI





1878
IYYSGST





1879
IYYSGST





1880
IYYSGST





1881
IFSNDEK





1882
IYWDDDK





1883
IWYDGSNK





1884
IWYDGSNK





1885
ISGYNGDP





1886
ISGYNGDP





1887
IYWDDDK





1888
IYYSGRT





1889
IKRIIDGGTI





1890
TNTNTGNP





1891
INPSGSAT





1892
ITWNSGNI





1893
ISQSAST





1894
IYPDDSET





1895
ISGSGDKT





1896
TYYRSNWYN





1897
ISWNSNSV





1898
INWNSDNI





1899
IYTVGDT





1900
IYYSGTT





1901
INRRGNT





1902
IYYSGNT





1903
IKSKTDGGTT





1904
IIPSLRTA





1905
IKSRGSGGTI





1906
ISYDGRNK





1907
VSYDSRQQ





1908
IWYDGSNE





1909
LSNDDRTR





1910
IYSSGDT





1911
INPSGGS





1912
INHSGRT





1913
IYYSGST





1914
IFSNDEK





1915
ISYDGSNK





1916
IRSKAYGGTT





1917
IRSKANSYAT





1918
IDPSDSYT





1919
INPSGGST





1920
IIPIFHIA





1921
IKSKTDGGTT





1922
IFSDWSTT





1923
ISGSGGST





1924
ISYDGSNK





1925
IYSGSST





1926
IYYSGST





1927
IYYSGST





1928
IYYSGST





1929
ISSSSSYI





1930
ISAYNGNT





1931
INSDGSST





1932
IYHSGST





1933
IFPSDSDT





1934
IFPGDSET





1935
IFPGDSDT





1936
IRTRTNRYAT





1937
IYYSGST





1938
INSDGSST





1939
ISAYNGNT





1940
IYWDDDK





1941
ISYDGSNK





1942
ISYDGSNK





1943
ISSSGSTI





1944
ISGSGGST





1945
ISFDGSNI





1946
ISYDGSNK





1947
IWNDGNKQ





1948
IWYDGSNK





1949
IFYSGST





1950
ISYSGDT





1951
ISFDGSNK





1952
ISYEGSIR





1953
IYSGGST





1954
ISYEGSTE





1955
ISYEGSTE





1956
IKEDGSEK





1957
IIPMLNKT





1958
IIPMLNKT





1959
IYWNDNK





1960
IYYRGST





1961
ISYEGSTE





1962
ISSSSSTV





1963
ISSSSSTT





1964
LNKDESEK





1965
IYSGRNT





1966
IYYSGST





1967
IYYSGST





1968
ISAYNGNT





1969
INPNSGGT





1970
FDPEDGET





1971
INTDNEKT





1972
INTDNGKT





1973
INAGNGNT





1974
INPSGGST





1975
INPSDGST





1976
IIPMLNKT





1977
IIPIFGPP





1978
MNPNTGTT





1979
IYWNDYK





1980
ISGSGGST





1981
ISGSGGTT





1982
ISYDGSNK





1983
ISYDGINK





1984
ISYDGSNK





1985
ISYDGSNK





1986
MWFDGVDK





1987
ISYDEINK





1988
IRGRLVGATV





1989
IRGRLVGATV





1990
IKQDGSEK





1991
IYYSGST





1992
IHRSGST





1993
IHRSGST





1994
ITHSGST





1995
INHSGST





1996
IYHSGTT





1997
IYTSGST





1998
IYHSGSA





1999
LHYSGRS





2000
IYTSGST





2001
IYAGEST





2002
IYPGDSDT





2003
IYPGDSDT





2004
INTNTGNP





2005
IYPGDFDT





2006
IYSGVIT





2007
VTHSGST





2008
FDPEDGET





2009
ISSSGSTI





2010
IYSGGST





2011
IKEDGSVM





2012
IKSDGSET





2013
IWFDGSKK





2014
ISSSGGGT





2015
ITWNSGSI





2016
IYSGGST





2017
IYYGGST





2018
IYYSGST





2019
IGTAGDT





2020
MSYDGSDI





2021
ISYDGNNK





2022
VSWNSGTI





2023
INPADSDT





2024
INPSGDST





2025
IIPIFGTA





2026
IFPIFTAA





2027
VSGSGGST





2028
ISSDGNNR





2029
ISWNSGSI





2030
ISWNSGTI





2031
ISWNSEKI





2032
INSGSSII





2033
ISSSDNSV





2034
IYSGGST





2035
INHSGKT





2036
INHSGST





2037
MYNSGST





2038
IYYSGRT





2039
IFYTGTS





2040
IYWDDEK





2041
IWYDGDNR





2042
IYYDGSNE





2043
IDSSSTTI





2044
INTKTGIP





2045
ISAYNGNT





2046
ISHDDSQK





2047
ISYEGSKK





2048
ISYEGSKK





2049
ISSSGSTI





2050
INTNTGSP





2051
ISAYNGET





2052
FDPEDGET





2053
ISPSGDDA





2054
IRSKSDGGTT





2055
VKSKTDGGTT





2056
ISYDGSNK





2057
ISWDGGST





2058
ISPSGDDA





2059
IVPMLGIT





2060
IYWDDDK





2061
IYWDDEK





2062
ISSGGDAI





2063
MSSDSDYI





2064
ISHDESQK





2065
ISHDESQK





2066
ISYEGSKK





2067
ISYDGSNK





2068
ITSSGNTI





2069
ISSSSGTI





2070
IYYTGKT





2071
VYNSGTA





2072
IDTNTGKP





2073
IIPIFGTA





2074
IIPIFGTA





2075
IKSNTDGGTT





2076
ISSSGSTI





2077
IYSGGST





2078
IYYSGST





2079
ISAYNGNT





2080
ISTYSGNT





2081
FDPEDGET





2082
FDPEDGET





2083
FDPEDGET





2084
FDPEDGET





2085
INAGNGNT





2086
IIPIFGTA





2087
IFSNDKK





2088
IYWDDDK





2089
IFWDDDK





2090
ISSSSSYI





2091
ISSSSSYI





2092
ISYDGSNK





2093
ISYDGSNK





2094
ISYDGSNK





2095
IWNDGSNK





2096
ISYDGSNK





2097
ISYDGSNK





2098
IYSGGST





2099
IKEDGSET





2100
IDHSGST





2101
INHSGST





2102
INHSGST





2103
IYYSGST





2104
IYYSGST





2105
IDPSDSYT





2106
INTNTGNP





2107
VYSGGHA





2108
IFSSGST





2109
IIPILGIA





2110
ISTYSGNT





2111
ISTYSGNT





2112
IYWDDDQ





2113
INTNTGTP





2114
IVVGSGNT





2115
IDWDDDK





2116
ISDSGGSA





2117
ISDGGGSA





2118
ISAYNGNT





2119
ISGYNGNT





2120
INPNSGGT





2121
IKSKNDGGTT





2122
ISYDGNKR





2123
ISWNSGSI





2124
ITWNYATV





2125
ISAYNGNT





2126
ISAYNGNT





2127
INPNSGET





2128
IIPIFGTA





2129
IIPILGIA





2130
IKSKTDGGTT





2131
IKSRSDGGKI





2132
ISGSGGST





2133
ISANGRSP





2134
ISGSGGST





2135
ISYDGSNK





2136
ISYDGSNK





2137
ISYDGANK





2138
MWHDGSNK





2139
IWYDGSNK





2140
ISYDGSNK





2141
ISWNSGSI





2142
IYSGGST





2143
IYSGGTT





2144
IYSGGST





2145
IYSGGST





2146
LYSGGTT





2147
IYSGGST





2148
IYSGGST





2149
IKSDGSST





2150
IYYSGST





2151
IYYSGST





2152
ISHGGKT





2153
INHSGTT





2154
IYYSGST





2155
IYPGDSDT





2156
IIPIVGFA





2157
ISYDGSN





2158
ISYDGSNK





2159
ISGISDSGGNT





2160
IYSGGST





2161
IYTTGST





2162
ISAYNGNT





2163
INPSGGST





2164
IIPILGIA





2165
IYWDDDK





2166
ISARGSVT





2167
ISYDGSNK





2168
ISNYGSNK





2169
IYSGGST





2170
IYSGGST





2171
IYSGGTT





2172
IYSGGST





2173
IYSGGST





2174
LYAGGST





2175
IYSGGST





2176
IYSGGST





2177
IYSGGST





2178
IYSGGST





2179
IYSGGST





2180
IYSGGST





2181
QSIASY





2182
QGISSY





2183
SSDVGGYNY





2184
QSISDW





2185
QSISSY





2186
QDISNY





2187
QSVSSSY





2188
NSNIGINN





2189
SGHSSYA





2190
ALPKQY





2191
QSISSY





2192
QGISSA





2193
SSDFGTFHL





2194
AFNIGTNF





2195
QSLVYYDGNTY





2196
QSISRW





2197
QHISNY





2198
ALPKQY





2199
QSVLYSSNNNKNY





2200
GASIASNY





2201
QSVLYSSNNKNY





2202
HSVFFSKVNKDY





2203
QSISSW





2204
SSDVGGYNY





2205
ALPKQY





2206
SSDVGGYNY





2207
QSVSSSY





2208
QSVSSSY





2209
EDIDNH





2210
QSVSSSY





2211
RSNIGSKN





2212
SSDVGSYHY





2213
QSVLYSANNKYY





2214
QSVKSY





2215
KDINSY





2216
QSVLYSSNNKNY





2217
QDISSS





2218
ALSNQY





2219
QDISNF





2220
QAISNS





2221
RDIHNL





2222
NSNIGSNY





2223
QGISTNY





2224
GARYN





2225
QSISNH





2226
QSISTNY





2227
QSISTNY





2228
QSISTNY





2229
ALPKKY





2230
TGAVTSGHY





2231
SSNIGAGYD





2232
KLGDKY





2233
SSNIGNNY





2234
QSVSSN





2235
TGAVTSGHY





2236
QSISSY





2237
SSDVGGYNY





2238
QSVLYSSNNKNY





2239
QSVSSSY





2240
SSNIGNNY





2241
SSDVGGYNY





2242
QSLLHSNGYNY





2243
QSLLHSNGYNY





2244
QSLLHSNGYNY





2245
QSIASY





2246
QGISSY





2247
NIGSKS





2248
KLGDEY





2249
SSNIGNNY





2250
SSDVGGYNY





2251
LSINTD





2252
QGMSNY





2253
QSINSW





2254
QSISSW





2255
QTVSSTY





2256
SSNVGNQG





2257
QSVLYNSNNKDY





2258
SGSIASYF





2259
SGSVSTTYY





2260
QSVSDN





2261
QSLVHSDGNTY





2262
SSNIGNNY





2263
SSNIGSNY





2264
QSLVHSDGNTY





2265
QSLVYSDGNTY





2266
QSVRSNY





2267
QSLRQSQRFSY





2268
QSLLHSIGKTH





2269
HDIRTW





2270
QDIGNW





2271
SLETYY





2272
SLRTSY





2273
SSDVGGYNY





2274
SSNIGAGYD





2275
QSVLYSSNNKNY





2276
QSLVHSDGNTY





2277
SSDVGGYNY





2278
QSISSY





2279
SSDVGGYNY





2280
QSISSY





2281
SLRSYY





2282

ELGDTD






2283
QSISSW





2284
QSLVHSDGNTY





2285
QSISSY





2286
SSNIGAGYD





2287
SSNIGSNY





2288
SLRSYY





2289
QDISNY





2290
SSNIGNNY





2291
QSVSSN





2292
KLGDKY





2293
QSISTNY





2294
HSISTNY





2295
QTISTNY





2296

QTINSGY






2297
QSVSSSY





2298
ALPKQY





2299
QSISSY





2300
KLGDTY





2301
QSLLHSDGKTY





2302
QSLLHSDGKTY





2303
QSLLHSNGYNY





2304
ALPKKY





2305
SSDVGGYNY





2306
ALPKKY





2307
ESISNW





2308
QSVSSY





2309
QGIRND





2310
QGIGND





2311
QSVSGSY





2312
QSVSSSY





2313
QSLLYNFNNENY





2314
QSLLDSDGKTY





2315
QSLLDSDGKTY





2316
QSLLHSNGYNY





2317
QSVSTY





2318
QSVSSY





2319
QDSSKY





2320
QSVSFTSNNKNY





2321
QSLLDSDGKTY





2322
QDISTY





2323
QSISNY





2324
QSVVHSDGKTY





2325
HTISSSY





2326
ALPKQY





2327
SSDVGGYNY





2328
QSISNY





2329
QSLVYSDGNTY





2330
KLGDKY





2331
SSDVGGHDY





2332
SSDVGGHDY





2333
QSLVYSDGNTY





2334
SSNIGNNY





2335
ALPKQY





2336
QSVSTY





2337
QSISSW





2338
VGHDYFT





2339
QDSNTY





2340
NSDVGGYNY





2341
QSLLHSNGYNY





2342
QSISSW





2343
QSLIYSDGNTY





2344
QSVSSSY





2345
QGISSW





2346
KLGDKY





2347
QSISTW





2348
QYVGDN





2349
QYIGDN





2350
ALPKKY





2351
QDVSIY





2352
QSVYDSSNSKNY





2353
QSVYDTSNSKNY





2354
QSVSTY





2355
QSVSSY





2356
SSNIGAYT





2357
QSVSSIY





2358
QSVTSY





2359
QSITNW





2360
SSDVGSYNL





2361
ALPKQY





2362
QSVSSRY





2363
QSVSSSY





2364
QSLLDSDGKTY





2365
QRVGSS





2366
QSVSSN





2367
QGIRFW





2368
SSNIGAGYD





2369
QSISSW





2370
QGISSY





2371
QSVLYSASNKNY





2372
QDISNY





2373
HSLLHSDGKTY





2374
TGAVTSGHY





2375
SSDVGGYNY





2376
QDISNY





2377
SSDVGGYNY





2378
SSDVGSYNL





2379
QSIGKY





2380
QSIEHSDGNIY





2381
SSNTGAGYD





2382
QSLTSSS





2383
QSLLHGNGYTY





2384
NIGSKS





2385
QSVSSSY





2386
QSVSSK





2387
TGAVTSGHY





2388
QSVTRN





2389
SSNIGSNT





2390
SSDVGGYNY





2391
NIGSKN





2392
SSDVGAYNY





2393
QSISNY





2394
QDISNY





2395
SSNVALNA





2396
QSVSSN





2397
SGYSNYK





2398
SSDVGSYNL





2399
QHINRW





2400
QNISRW





2401
QSLLHSDGKTY





2402
ALPIKY





2403
QSVSTY





2404
ELPKQY





2405
SSNIGNNY





2406
QNINVF





2407
QSLNNNQ





2408
QSLNNNQ





2409
SSNIGAGYD





2410
QSISSH





2411
QSVASY





2412
SSNIGSNT





2413
HSLLHNNGNTY





2414
ALPKEF





2415
KLGDKY





2416
QSVSSSY





2417
ALSKQY





2418
QSLLHNNGNTY





2419
QGIRNS





2420
QNISRW





2421
QNISRW





2422
ALPQRY





2423
QGVASY





2424
QNINVF





2425
QNINVF





2426
QSLNSN





2427
SSNIGAGYD





2428
KLGEKY





2429
SSNIGAGYD





2430
ALPKQN





2431
ETIASW





2432
KLGDKY





2433
QSVSSSY





2434
QSVSSSY





2435
QSISSSY





2436
QSVSSSY





2437
SSDVGSYNL





2438
SGSIASNY





2439
SSNIGNNY





2440
ALPEKY





2441
SLRSYY





2442
SSNIGAGYD





2443
SSNIGNNY





2444
SSDVGSYNL





2445
SSNIGNNY





2446
QGISSY





2447
QSIRFY





2448
QSVSSTY





2449
KLGDNY





2450
QDISNY





2451
QDISNY





2452
QSVSSY





2453
QGISNW





2454
QSISSY





2455
RSNIGAGFD





2456
QGISSA





2457
QDMSNY





2458
SSDVGGYNY





2459
SLRSYS





2460
SSDVGDYDY





2461
SSDVGGYNY





2462
QSVSSSY





2463
QSISSY





2464
QSVSSSY





2465
QSISSY





2466
KLGNKY





2467
SGDVGGYNY





2468
QSISSC





2469
QSVSSN





2470
QSINRN





2471
QSVNRN





2472
SGDVGGYNY





2473
QSISSF





2474
SSDVGGYNY





2475
QSISSY





2476
QSLLHSNGYNY





2477
QSLLHSNGYNY





2478
QSISSW





2479
KLGKKY





2480
SSNIGAGYD





2481
TFDVGVYDF





2482
QSLLHSNGNYY





2483
NIGSKS





2484
SSNIGNNY





2485
QSVSSSY





2486
QSISSW





2487
QSISDW





2488
SSNIGAGYD





2489
ALPKQY





2490
QSVSSSY





2491
NSDINSYDY





2492
QGISNY





2493
NIGSKS





2494
QSISSY





2495
QSISSW





2496
NIGSKS





2497
SSNIGNNY





2498
SGHSSYV





2499
QDISNY





2500
NIGSKS





2501
QSVSNY





2502
QDISNY





2503
QSVSSSY





2504
QSVSSSY





2505
TGAVTSGYY





2506
QGISSY





2507
QDISNY





2508
SSDVGSYNL





2509
SGSIASNY





2510
QSVSSY





2511
SSNIGNNY





2512
RSLVHTNGNTY





2513
FSDIGNYDL





2514
QSVSSSY





2515
SSNIGNNY





2516
QSVSNY





2517
QSVSSY





2518
QSVNSNY





2519
QGISSS





2520
SSDVGTYNL





2521
QSIAKF





2522
QGISSW





2523
QGISSA





2524
NSNIGAGYD





2525
QIISSW





2526
HSLVYSDGYTH





2527
SSNIGSNT





2528
SSDVGGYNY





2529
QGISSY





2530
QDISNY





2531
QGISSY





2532
QSISNF





2533
QDISNY





2534
QSISSY





2535
QGISSY





2536
QDIINY





2537
QGISSY





2538
QGISSY





2539
QSISSY





2540
QDINKY





2541
AAS





2542
AAS





2543
EVS





2544
KAS





2545
AAS





2546
DAS





2547
GAS





2548
RSN





2549
LSSDGSH





2550
KDS





2551
EAA





2552
DAS





2553
EVN





2554
GDQ





2555
KVS





2556
KAS





2557
AAS





2558
KDS





2559
WAS





2560
EDT





2561
WAS





2562
WAS





2563
KAS





2564
DVS





2565
KDS





2566
DVS





2567
GAS





2568
GAS





2569
DAS





2570
GAS





2571
SNN





2572
EVS





2573
WAS





2574
GAS





2575
DAS





2576
WAS





2577
AAS





2578
KGT





2579
DAS





2580
AAS





2581
DAS





2582
KNN





2583
ATS





2584
RNT





2585
SAS





2586
ASS





2587
STS





2588
ATS





2589
EDS





2590
DIN





2591
GNS





2592
QDS





2593
DNN





2594
GAS





2595
DTS





2596
AAS





2597
DVS





2598
WAS





2599
GAS





2600
DNN





2601
DVS





2602
LGS





2603
LGS





2604
LGS





2605
AAS





2606
AAS





2607
YDS





2608
QNN





2609
DNN





2610
DVS





2611
GAS





2612
AAS





2613
KAS





2614
KAS





2615
GAS





2616
RND





2617
WAS





2618
EDN





2619
STN





2620
AAS





2621
KVS





2622
DNN





2623
RNN





2624
KVS





2625
KVS





2626
GAS





2627
LNS





2628
EVS





2629
TAF





2630
AAS





2631
GKN





2632
EKN





2633
EVS





2634
GNS





2635
WAS





2636
KVS





2637
DVS





2638
AAS





2639
DVS





2640
AAS





2641
GKN





2642
QDT





2643
KAS





2644
KIS





2645
AAS





2646
GNN





2647
RNN





2648
GKN





2649
DAS





2650
DNN





2651
GAS





2652
QDS





2653
ATS





2654
ATS





2655
ATS





2656
AAS





2657
GAS





2658
KDS





2659
AAS





2660
QDN





2661
EVS





2662
EVS





2663
LGS





2664
EDS





2665
DVS





2666
EDS





2667
KAS





2668
DAS





2669
AAS





2670
GAS





2671
GAS





2672
GAS





2673
WAS





2674
EVS





2675
EVS





2676
LGS





2677
GSS





2678
GAS





2679
DAS





2680
WAS





2681
EVS





2682
DAS





2683
GAS





2684
EVS





2685
AAS





2686
KDS





2687
DVS





2688
AAS





2689
KVS





2690
QDS





2691
DVT





2692
DVT





2693
KVS





2694
DNN





2695
KDN





2696
GSS





2697
ETS





2698
LEGSGSY





2699
DAS





2700
DVS





2701
LGS





2702
KAS





2703
KVS





2704
GAS





2705
AAS





2706
QDS





2707
KAS





2708
GAF





2709
GAS





2710
EDS





2711
DAY





2712
WAS





2713
WAS





2714
DAS





2715
DAS





2716
STD





2717
GAS





2718
GAS





2719
KAS





2720
EVS





2721
KDS





2722
GAS





2723
GAS





2724
EVS





2725
GAS





2726
GAS





2727
AAS





2728
GNT





2729
DAS





2730
AAS





2731
WAS





2732
AAS





2733
ELF





2734
DTN





2735
EVS





2736
DAS





2737
DVN





2738
EVS





2739
AAS





2740
KIS





2741
DNS





2742
GAS





2743
LGS





2744
DDS





2745
GAS





2746
GAS





2747
DTS





2748
GAS





2749
SNN





2750
EVS





2751
DDG





2752
DVT





2753
AAS





2754
DAS





2755
RDN





2756
GAS





2757
VGTGGIVG





2758
EVS





2759
EAS





2760
KAS





2761
EVS





2762
EDS





2763
DAS





2764
KDR





2765
DNN





2766
AAS





2767
GAS





2768
GAS





2769
GNS





2770
DAS





2771
DAS





2772
SNN





2773
EIS





2774
KDK





2775
QDN





2776
GAS





2777
KDS





2778
EIS





2779
DAS





2780
KAS





2781
KAS





2782
EDT





2783
AAS





2784
GAS





2785
GAS





2786
GAS





2787
GNN





2788
QDT





2789
GDS





2790
KDT





2791
KAS





2792
QDS





2793
GAS





2794
GAS





2795
GAS





2796
GAS





2797
EVS





2798
EDN





2799
DNN





2800
EDN





2801
GKN





2802
GNS





2803
DNN





2804
EGS





2805
DNN





2806
AAS





2807
AAS





2808
DAS





2809
QDT





2810
DAS





2811
DAS





2812
DAS





2813
AAS





2814
AAS





2815
GNS





2816
DAS





2817
DAS





2818
DVS





2819
VKN





2820
DVS





2821
EVS





2822
GAS





2823
AAS





2824
GAS





2825
AAS





2826
QDS





2827
DVY





2828
AAS





2829
GAS





2830
DAS





2831
DAS





2832
EVS





2833
AAS





2834
DVS





2835
AAS





2836
LGS





2837
LGS





2838
KAS





2839
QDV





2840
GNS





2841
DDT





2842
LAS





2843
YDS





2844
RNN





2845
GAS





2846
KAS





2847
KAS





2848
GNS





2849
KDS





2850
GAS





2851
DVD





2852
AAS





2853
DDS





2854
AAS





2855
KAS





2856
DDN





2857
DNN





2858
LNSDGSH





2859
DAS





2860
DDS





2861
DAS





2862
DAS





2863
GAS





2864
GAS





2865
STS





2866
AAS





2867
DAS





2868
EVS





2869
EDN





2870
DAS





2871
DNN





2872
NVS





2873
EGY





2874
GAS





2875
DNN





2876
GAS





2877
DAS





2878
GAS





2879
SAS





2880
EVS





2881
TAS





2882
AAS





2883
DAS





2884
VNT





2885
KAS





2886
SVS





2887
SNN





2888
EVS





2889
AAS





2890
DAS





2891
AAS





2892
AAS





2893
DAS





2894
AAS





2895
AAS





2896
GAS





2897
AAS





2898
AAS





2899
AAS





2900
DAS





2901
GLTVSSNY





2902
GFTVSRNY





2903
GVIVSSNY





2904
GFTVSSNY





2905
GVTVSSNY





2906
GIIVSSNY





2907
GIIVSSNY





2908
GFTVSSNY





2909
GLTVSSNY





2910
GLTVSSNY





2911
GIIVSSNY





2912
GVTVSRNY





2913
GITVSSNY





2914
GFTVSSNY





2915
GLTVSSNY





2916
GLTVSSNY





2917
GLIVSSNY





2918
GFTVSSNY





2919
GFIVSSNY





2920
GFTVSSNY





2921
GFIVSRNY





2922
GITVSSNY





2923
GFTVSSNY





2924
GFTVSSNY





2925
GFTVSSNY





2926
GVTVSSNY





2927
GFTVSSNY





2928
GYTFSSYG





2929
GYSFTYYG





2930
GFTFSSYD





2931
GFIVSSNY





2932
EFIVSRNY





2933
GFTVSSNY





2934
GFTVSSNY





2935
GFTVSFNY





2936
IYSGGST





2937
IYSGGTT





2938
IYSGGTT





2939
IYSGGST





2940
IYSGGST





2941
IYSGGST





2942
IYSGGST





2943
IYSGGST





2944
IYSGGST





2945
IYSGGST





2946
IYSGGST





2947
IYSGGST





2948
IYSGGST





2949
IYSGGST





2950
IYSGGST





2951
IYSGGST





2952
IYSGGST





2953
IYRGGST





2954
IYSGGST





2955
IYPGGST





2956
IYSGGST





2957
IYSGGST





2958
IYSGGST





2959
IYSGGST





2960
IYSGGST





2961
VYSGGST





2962
IYSGGST





2963
ISGYNGHT





2964
ISPYNGDT





2965
IGTAGDT





2966
IYSGGST





2967
IYSGGST





2968
IYSGGST





2969
IYSGGST





2970
IYPGGST





2971
ARDLDYYGMDV





2972
ARDLVVYGMDV





2973
ARDLDYYGMDV





2974
ARDLDYGGGMDV





2975
ARPIVGARSGMDV





2976
ARDLGTYGMDV





2977
ARDLGPYGMDV





2978
ARDLGAYGMDV





2979
ARDLYYYGMDV





2980
ARDLDYYGMDV





2981
ARDLDYYGMDV





2982
ARDGYGMDV





2983
ARGGAYYYGMDV





2984
ARDLDYMDV





2985
ARLPYGMDV





2986
ARLPYGMDV





2987
ARARIYTYGPDY





2988
ARVGDSRSWPFEY





2989
ARAPYSSRSET





2990
AREIRVITPVEV





2991
ARGPYPRFDY





2992
ARERGGRFDY





2993
ARDRPAAAIRF





2994
ARDYAGRV





2995
ARELSYSSSSGVGPKY





2996
ARLINHYYDSSGDGGAFDI





2997
ARIGGVAAAGTADGAFDI





2998
ARERFGISHDY





2999
AKGVVALTGTLLRLDP





3000
ARDRDNGSGSYLGWAFDI





3001
ARDYGDYYFDY





3002
ARDYGDYYFDY





3003
ARDYGDYWFDP





3004
ARSYGDYYFDY





3005
ARDYGDFYFDY





3006
QGISSY





3007
QGISSY





3008
QGISSY





3009
QGISSY





3010
QDINNY





3011
QGISSY





3012
QGISSD





3013
QGISSY





3014
QGISSY





3015
QGISSY





3016
QGISSY





3017
QGISSY





3018
QGISSY





3019
QGISSY





3020
QDVSKY





3021
QDIRNY





3022
QDINNY





3023
QDISNY





3024
QDIRNY





3025
QDINKY





3026
QDIRNY





3027
QDISNY





3028
QDISNY





3029
QDIRSY





3030
QDISNY





3031
SSDVGSYNL





3032
SSDVGSYNL





3033
QSVGSN





3034
QSVRTN





3035
QSISSY





3036
QSVSSSY





3037
QGVSSF





3038
QSVSSSY





3039
QGISSY





3040
QSVSSSY





3041
AAS





3042
AAS





3043
AAS





3044
AAS





3045
DAS





3046
AAS





3047
AAS





3048
AAS





3049
AAS





3050
AAS





3051
AAS





3052
AAS





3053
AAS





3054
AAS





3055
DAS





3056
DAS





3057
DAS





3058
DAS





3059
DAS





3060
DAS





3061
DAS





3062
DAS





3063
DAS





3064
DAS





3065
DAS





3066
EVT





3067
EGS





3068
GAF





3069
EAS





3070
AAS





3071
GAS





3072
GAS





3073
GTS





3074
AAS





3075
GAS





3076
QHLNSYPPIT





3077
QQLNSYPLT





3078
QQLNSYGLT





3079
QQLNSYPHRFT





3080
QQHDNLPVT





3081
QQLNSYLYT





3082
QQLNSDLYT





3083
QQLNSDLYT





3084
QQLDSYPL





3085
QQLNSYLAIT





3086
QQLNSYPPFT





3087
QQLNSYPPA





3088
QQLNTYPPFG





3089
QQLNSYPPMYT





3090
QQYDNLPVT





3091
QQYDNLPIT





3092
QQYDNLPPV





3093
QQYDNLPLFT





3094
QQYDNLPIT





3095
HQYDNLPRT





3096
QQYDNLPVT





3097
QQHDNLPSFT





3098
QQYDNLPPA





3099
QQYDNLPQT





3100
QQYDNLPPT





3101
CSYAGSSTWV





3102
CSYAGSSTWV





3103
QQYNNWYT





3104
QQYNNWPPIT





3105
QQSYSMPPVT





3106
QQYGSTPRT





3107
QQYGSSPRT





3108
QQYGSSPRT





3109
QQLNS





3110
QQYDSSPRT





3111
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSTNTLYLQMNSLRAEDTAVYYCARDLDYYGMDV



WGQGTTVTVSS





3112
EVQLVESGGGLVQPGGSLRLSCAASGFTVSRNYMSWVRQAPGKGLEWVSVIYS



GGTTHYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARDLVVYGMD



VWGQGTTVTVSS





3113
EVQLVESGGGLVQPGGSLRLSCAASGVIVSSNYMRWVRQAPGKGLEWVSVIYS



GGTTYYADSVKGRFTISRHNSKNTLYLQMNSLRTEDTAVYYCARDLDYYGMDV



WGQGTTVTVSS





3114
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCARDLDYGGGM



DVWGQGTTVTVSS





3115
EVQLVESGGGLIQPGGSLRLSCAASGVTVSSNYMSWVRQAPGKGLEWVSLIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPIVGARSGMD



VWGQGTTVTVSS





3116
EVQLVESGGGLIQPGGSLRLSCAASGIIVSSNYMSWVRQAPGKGLEWVSVIYSGG



STFYADSVKGRFTISRDNSKNTLYLQMNTMRAEDTAVYYCARDLGTYGMDVW



GQGTTVTVS





3117
EVQLVESGGGLIQPGGSLRLSCAASGIIVSSNYMTWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAVYYCARDLGPYGMDVW



GQGTTVTVSS





3118
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLGAYGMDV



WGQGTTVTVSS





3119
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLYYYGMDV



WGQGTTVTVSS





3120
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLDYYGMDV



WGQGTTVTVSS





3121
EVQLVESGGGLVQPGGSLRLSCAASGIIVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLDYYGMDV



WGQGTTVTVSS





3122
EVQLVESGGGLVQPGGSLRLSCAASGVTVSRNYMSWVRQAPGKGLEWVSVIYS



GGSTDYADSVKGRFTISRHNSKNTLYLQMNSLRVEDTAVYYCARDGYGMDVW



GQGTTVTVSS





3123
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGAYYYGMD



VWGQGTTVTVSS





3124
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLDYMDVW



GKGTTVTVSS





3125
EVQLVESGGGLVQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTFYADSVKGRFTISRDNSKNTLYLQMNSVRAEDTAVYYCARLPYGMDVW



GQGTTVTVSS





3126
EVQLVESGGGLVQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLNWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLEMNSLKPEDTAVYYCARLPYGMDVWG



QGTTVTVSS





3127
QVQLVESGGGLVQPGGSLRLSCAASGLIVSSNYMSWVRQAPGEGLEWVSVIYSG



GSTYYADSVKGRFTISRDTSKNTLYLQMNSLRAEDTAVYYCARARIYTYGPDY



WGQGTLVTVSS





3128
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGRGLEWVSVIYR



GGSTYYADSVKGRFSISRDNSKNTLYLQMNSLRVEDTAVYYCARVGDSRSWPF



EYWGQGTLVTVSS





3129
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLRMNSLRAEDTAVYYCARAPYCSSRSCET



WGQGTLVTVSS





3130
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSLIYP



GGSTYYADSVEGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREIRVITPVEV



WGQGTLVTVSS





3131
EVQLVESGGGLVQPGGSLRLSCAVSGFIVSRNYMTWVRQAPGKGLEWVSLIYSG



GSTFYTNSVKGRFTISRDNSKNTLYLQMDSLRAEDTAVYYCARGPYPRFDYWG



QGTLVTVSS





3132
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTFYSDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERGGRFDYWG



QGTLVTVSS





3133
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSLIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRPAAAIRFG



QGTLVTVSS





3134
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSIIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYAGRVWGQ



GTLVTVSS





3135
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARELSYSSSSGV



GPKYWGQGTLVTVSS





3136
EVQLVESGGGLVQPGGSLRLSCAASGVTVSSNYMSWVRQAPGKGLEWVSAVYS



GGSTYYADSVKGRFTISRHNSKNTLYLQMKSLRPEDTAIYYCARLINHYYDSSG



DGGAFDIWGQGTMVTVSS





3137
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYS



GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIGGVAAAGT



ADGAFDIWGQGTMVTVSS





3138
QVQLVQSGAEVKKPGASVKVSCKTSGYTFSSYGLSWVRQAPGQGLEWMGWIS



GYNGHTVNAQNFQDRVTMTTDTSTDTAYMELRSLRSDDTALYFCARERFGISH



DYWGQGTLVIVSS





3139
QIQLVQSGPEVKRPGASVKVSCKASGYSFTYYGISWVRQAPGQGLEWMGWISP



YNGDTKFAQKFQDRVILTTDTSTSTAYMELKSLRSDDTAVYYCAKGVVALTGT



LLRLDPWGQGTLVTVSS





3140
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSVIGT



AGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARDRDNGSGSY



LGWAFDIWGQGTMVTVSS





3141
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDYYFDY



WGQGTLVTVSS





3142
EVQLVESGGGLIQPGGSLRLSCAASEFIVSRNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLNLQMNSLRAEDTAVYYCARDYGDYYFDY



WGQGTLVTVSS





3143
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDYWFDP



WGQGTLVTVSS





3144
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSG



GSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGDYYFDYW



GQGTLVTVSS





3145
EVQVVESGGGLVQPGGSLRLSCAASGFTVSFNYMSWVRQAPGKGLEWVSVIYP



GGSTYYADSVKGRFTISRHNSKNTVYLQMNSLRAEDTAVYYCARDYGDFYFDY



WGQGTLVTVSS





3146
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPNLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHLNSYPPITFGQGTRLEIK





3147
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSSFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK





3148
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQR



GVPSRFSGSGSGTDFNLTISSLQPEDFGTYYCQQLNSYGLTFGGGTKVEIK





3149
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPHRFTFGPGTKVDIK





3150
DIQMTQSPSSLSASVGDRVTITCQASQDINNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFIISSLQPEDIATYYCQQHDNLPVTFGGGTKVEIK





3151
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYEQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISTLQPGDFATYYCQQLNSYLYTFGQGTKLEIK





3152
DIQLTQSPSFLSASVGDRVTITCRASQGISSDLAWYQQKPGKAPNLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSDLYTFGQGTKLEIK





3153
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSDLYTFGQGTKLEIK





3154
AIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIFAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLDSYPLFGGGTKVEIK





3155
AIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYLAITFGQGTRLEIK





3156
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPPFTFGPGTKVDIK





3157
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPNLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPPAFGPGTKVDIK





3158
DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNTYPPFGFGPGTKVDIK





3159
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPPMYTFGQGTKLEIK





3160
DIQMTQSPSSLSASVGDRVTITCQASQDVSKYLNWYQQKPGKAPKLLIHDASNL



QTGVPSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPVTFGGGTKVEIK





3161
DIQMTQSPSSLSASVGDRVTITCQASQDIRNYLNWYQQKPGKAPKLLIHDASNLE



TGVPSRFIGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPITFGQGTRLEIK





3162
DIQMTQSPSSLSASVGDRVTITCQASQDINNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPPVFGPGTKVDIK





3163
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLFTFGPGTKVDIK





3164
DIQMTQSPSSLSASVGDRVTITCQASQDIRNYLNWYQQKPGKAPNLLIYDASNLE



TGVPSRFSGSGSGTDFTFTINSLQPEDIATYYCQQYDNLPITFGQGTRLEIK





3165
DIQMTQSPSSLSASVGDRVTITCQASQDINKYLNWYQLKPGKAPNLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDNLPRTFGQGTKVEIK





3166
DIQMTQSPSSLSASLGDRVTITCQASQDIRNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPVTFGGGTKVEIK





3167
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASTLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQHDNLPSFTFGPGTKVDIK





3168
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPPAFGGGTKVEIK





3169
DIQMTQSPSSLSASVGDRVTITCQASQDIRSYLNWYQQKPGKAPKLLIYDASNLE



TGVASRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPQTFGQGTKLEIK





3170
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLE



TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPPTFGGGTKVEIK





3171
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQRPGKAPKLILYEVTKR



PSGVSNRFSGSKSGNTASLAISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTVL





3172
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSK



RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTV



L





3173
EIVMTQFPATLSVSPGERATLFCRASQSVGSNLAWYQQKPGQAPRLLIYGAFTRA



TGVPARFSGSGSGSEFSLTISSLQSEDFAVYYCQQYNNWYTFGQGTKLEIK





3174
EIVMTQSPATLSVSPGERATLSCRASQSVRTNLAWYQQKRGQAPRLLIYEASTRA



TGVPDRFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPITFGQGTRLDIK





3175
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS



GVPSRFSASGSGTDFTLTISSLQPEDFATYYCQQSYSMPPVTFGQGTKVEIK





3176
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPERFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSTPRTFGQGTKVEIK





3177
EIVLTQSPGTLSLSPGERATLSCRASQGVSSFLAWYQQKPGQAPRLLIHGASSRAT



GIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





3178
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK





3179
DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQS



GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSFGPGTKVDIK





3180
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



TGIPDRFSGSGSGTDFTLTISRLEPEDFAMYYCQQYDSSPRTFGQGTKVEIK








Claims
  • 1. A method for providing an antigen-binding unit against a predetermined antigen, comprising (a) obtaining a blood sample from an individual who is confirmed to carry the antigen at a first time and confirmed not to carry the antigen or to carry a reduced amount of the antigen at a second time after the first time;(b) enriching B cells in the blood sample;(c) single-cell transcriptome VDJ sequencing of a sample comprising a plurality of enriched B cells of the individual to provide clonotype information of the antigen-binding unit; and(d) confirming the antigen-binding unit against the antigen based on the comparison.
  • 2. The method of claim 1, wherein the step (b) further comprises selecting memory B cells in the blood sample.
  • 3. The method of any one of the preceding claims, wherein the method further comprises performing one, two, three or four of the following steps before the step (c), so as to exclude at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the enriched B cells: selecting CD27+ B cells;excluding naive B cells;excluding depleted B cells;excluding non-B cells; andselecting cells that can bind to the antigen.
  • 4. The method of any one of the preceding claims, wherein the method further comprises performing one, two, three, four, five or more of the following steps after the step (c), so as to exclude at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the clonotype of the antigen-binding unit: selecting a clonotype with enrichment frequency higher than 1;selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4;excluding non-B cell clonotypes by cell typing;excluding naive B cell clonotypes by cell typing;excluding non-switched B cells by cell typing;excluding depleted B cell clonotypes by cell typing;excluding mononuclear cells by cell typing;excluding dendritic cells by cell typing;excluding T cells by cell typing;excluding natural killer cells by cell typing; andexcluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%.
  • 5. The method of any one of the preceding claims, wherein the method further comprises selecting one, two, three, four, five or more of the following steps after the step (c), so that at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the selected clonotypes are confirmed as the antigen-binding unit in the step (d): selecting a clonotype with enrichment frequency higher than 1;selecting or excluding a clonotype from B cells expressing IgA1, IgA2, IgD, IgM, IgG1, IgG2, IgG3 and/or IgG4;excluding non-B cell clonotypes by cell typing;excluding naive B cell clonotypes by cell typing;excluding depleted B cell clonotypes by cell typing;excluding mononuclear cells by cell typing;excluding dendritic cells by cell typing;excluding T cells by cell typing;excluding natural killer cells by cell typing; andexcluding clonotypes with variable region mutation rates of less than 1%, 1.5%, or 2%.
  • 6. The method of any one of the preceding claims, wherein the method further comprises performing light and heavy chain matching according to the obtained sequence information.
  • 7. The method of any one of the preceding claims, wherein the method further comprises performing lineage analysis according to the obtained sequence information.
  • 8. The method of any one of the preceding claims, wherein the second time is about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days and 30 days after the first time.
  • 9. The method of any one of the preceding claims, wherein the individual is confirmed not to carry the antigen at the second time.
  • 10. The method of any one of the preceding claims, wherein the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at the second time.
  • 11. The method of any one of the preceding claims, wherein the individual is confirmed not to carry the antigen or to carry a reduced amount of the antigen at a plurality of different second times.
  • 12. The method of claim 11, wherein the intervals between the plurality of second times are about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days and 30 days.
  • 13. The method of claim 11, wherein the individual is confirmed to carry a gradually reduced amount of the antigen at a plurality of different second times.
  • 14. The method of any one of the preceding claims, wherein the antigen is a viral antigen.
  • 15. The method of any one of the preceding claims, wherein the antigen is a novel coronavirus (SARS-CoV-2).
  • 16. The method of any one of the preceding claims, wherein the antigen is a receptor binding domain (RBD) of an S protein of a novel coronavirus (SARS-CoV-2).
  • 17. The method of any one of the preceding claims, wherein the method further comprises comparing the clonotype information with one or more reference sequences.
  • 18. The method of claim 17, wherein the reference sequence is an antibody or a fragment thereof that specifically binds to the antigen.
  • 19. The method of claim 17 or 18, wherein the reference sequence specifically binds to SARS-CoV.
  • 20. The method of any one of claims 17 to 19, wherein the reference sequence specifically binds to a receptor binding domain (RBD) of an S protein of SARS-CoV.
  • 21. The method of any one of claims 17 to 20, wherein the reference sequence is an antibody or a fragment thereof, and the comparison comprises predicting the CDR3H structure of a clonotype according to the transcriptome sequence information, and comparing the predicted CDR3H structure of the clonotype with the CDR3H structure of the antibody or the fragment thereof.
  • 22. The method of any one of the preceding claims, wherein the method further comprises expressing the antigen-binding unit in a host cell.
  • 23. The method of any one of the preceding claims, wherein the method further comprises purifying the antigen-binding unit.
  • 24. The method of any one of the preceding claims, wherein the method further comprises evaluating the ability of the antigen-binding unit to bind to the antigen.
  • 25. The method of any one of the preceding claims, wherein at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the antigen-binding unit binds to the antigen at a rate higher than the rate of dissociation from the antigen.
  • 26. The method of any one of the preceding claims, wherein at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the antigen-binding unit binds to the antigen at an equilibrium dissociation constant (KD) of less than 100 nM, less than 50 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 4 nM, less than 3 nM, less than 2 nM, less than 1 nM, less than 0.5 nM, less than 0.1 nM, less than 0.05 nM, or less than 0.01 nM.
  • 27. A method for preparing an antigen-binding unit against a predetermined antigen, comprising identifying the antigen-binding unit against the antigen according to the method of any one of the preceding claims, expressing the antigen-binding unit in a host cell, and harvesting and purifying the antigen-binding unit.
Priority Claims (1)
Number Date Country Kind
202010403873.2 May 2020 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2021/093305 5/12/2021 WO