Claims
- 1. A method for preparing a compound, including resolved enantiomers and/or diastereomers, hydrates, salts, solvates and mixtures thereof, the compound having a straight or branched aliphatic hydrocarbon structure of formula I: ##STR108## wherein: n is an integer from one to four;
- m is an integer from four to twenty;
- independently, R.sub.1 and R.sub.2 are hydrogen, a straight or branched chain alkyl, alkenyl or alkynyl of up to twenty carbon atoms in length or --(CH.sub.2).sub.w R.sub.5, w being an integer from one to twenty and R.sub.5 being an hydroxyl, halo, C.sub.1-8 alkoxyl group or a substituted or unsubstituted carbocycle or heterocycle; or
- jointly R.sub.1 and R.sub.2 form a substituted or unsubstituted, saturated or unsaturated heterocycle having from four to eight carbon atoms, N being a hetero atom;
- R.sub.3 is hydrogen or C.sub.1-3 ; or
- jointly one of R.sub.1 or R.sub.2 and R.sub.3 form a substituted or unsubstituted linking carbon chain, having from one to four carbon atoms, joining the O and N in a cyclic structure, an integer sum equal to n+a number of carbon atoms in the linking carbon chain being less than six;
- a total sum of carbon atoms comprising R.sub.1 or R.sub.2, (CH.sub.2).sub.n and (CH.sub.2).sub.m does not exceed forty; and
- R.sub.4 is a terminal moiety comprising a carbocycle or heterocycle having one ring or two-fused rings, each ring having five or six ring atoms, wherein a ring atom of the terminal moiety is attached to a terminal carbon atom of (CH.sub.2).sub.m, the method comprising:
- reacting a terminal moiety-containing compound with a suitable base, solvent and substituted olefin to obtain an intermediate product, the intermediate product having a composite structure of the terminal moiety-containing compound and substituted olefin; either:
- A) converting the intermediate product to a terminal moiety-containing epoxide in a reaction with organic peracid; or
- B) first, converting the intermediate product to a corresponding diol in a reaction with a suitable oxidizing agent; second, reacting the corresponding diol using a halogenating agent in the presence of an organic acid to obtain a haloester; and third, converting the haloester to a terminal moiety-containing epoxide by reaction of the haloester and a basic ester-hydrolyzing reagent; and
- reacting the terminal moiety-containing epoxide with a substituted or unsubstituted amine to obtain the compound.
- 2. The method of claim 1, wherein the substituted olefin has at least one additional functional moiety which may be displaced in a chemical reaction with the terminal moiety-containing compound.
- 3. The method of claim 2, wherein the first reacting step further comprises:
- chemically converting the terminal moiety-containing compound to a terminal moiety-containing anion.
- 4. The method of claim 3, wherein the terminal moiety-containing anion is reacted with the substituted olefin, displacing the at least one functional moiety to obtain the intermediate product.
- 5. The method of claim 1, wherein the suitable base is selected from the group consisting of sodium hydride, sodium amide, sodium alkoxide, lithium hydride, potassium hydride, lithium amide, sodium amide and potassium amide.
- 6. The method of claim 1, wherein the solvent is selected from the group consisting of dimethylsulfoxide, dimethylformamide, or an alcohol.
- 7. The method of claim 1, wherein the substituted olefin comprises a chain structure corresponding to (CH.sub.2).sub.m.
- 8. The method of claim 7, wherein the substituted olefin is an .omega.-substituted olefin.
- 9. The method of claim 1, wherein the substituted olefin is a halo-substituted olefin.
- 10. The method of claim 1, wherein the organic peracid is selected from the group consisting of 3-chloroperoxybenzoic acid, peracetic acid and trifluoroperacetic acid.
- 11. The method of claim 1, wherein the oxidizing agent is osmium tetroxide.
- 12. The method of claim 1, wherein converting the intermediate product to a corresponding diol further comprises reacting the intermediate product with a catalytic amount of the oxidizing agent in the presence of a regenerating agent.
- 13. The method of claim 12, wherein the regenerating agent is 4-methylmorpholine-N-oxide or trimethylamine-N-oxide.
- 14. The method of claim 1, wherein the halogenating agent is selected from the group consisting of hydrogen bromide and hydrogen chloride.
- 15. The method of claim 1, wherein the organic acid is selected from the group consisting of acetic acid and propionic acid.
- 16. The method of claim 1, wherein the ester-hydrolyzing agent is selected from the group consisting of a metal alkoxide and metal hydroxide.
- 17. The method of claim 16, wherein the metal alkoxide is selected from the group consisting of sodium methoxide, ethoxide, isopropoxide and pentoxide.
- 18. The method of claim 16, wherein the metal hydroxide is sodium hydroxide.
- 19. The method of claim 1, wherein reacting the terminal moiety-containing epoxide with a substituted or unsubstituted amine comprises either:
- A) heating the terminal moiety-containing epoxide in the presence of an amine, having amine substituents present in the compound; or
- B) reacting the terminal moiety-containing epoxide with an amine, having substituents present in the compound, with a reaction activator in a solvent.
- 20. The method of claim 19, wherein the reaction activator is lithium perchlorate.
- 21. The method of claim 19, wherein the solvent is selected from the group consisting of dimethylsulfoxide, dimethylformamide, or an alcohol.
- 22. The method of claim 19, wherein the substituted or unsubstituted amine has a molecular structure corresponding to ##STR109##
Parent Case Info
This is a Division of U.S. application Ser. No. 08/303,842, filed Sep. 8, 1994, which is a Continuation-in-Part of application Ser. Nos. 08/152,650, filed Nov. 12, 1993 and 08/164,081, filed Dec. 8, 1993, which are Continuation-in-Part Applications of application Ser. No. 08/040,820, filed Mar. 31, 1993, now abandoned.
US Referenced Citations (12)
Foreign Referenced Citations (9)
Number |
Date |
Country |
113102 |
Jul 1984 |
EPX |
132366 |
Jan 1985 |
EPX |
335723 |
Oct 1989 |
EPX |
2000943 |
Sep 1969 |
FRX |
2659241 |
Jul 1978 |
DEX |
8096087 |
Jun 1983 |
JPX |
256428 |
Feb 1990 |
JPX |
1356789 |
Jun 1974 |
GBX |
2096606 |
Oct 1982 |
GBX |
Non-Patent Literature Citations (5)
Entry |
Bianco et al., Blood, 76:Supplement 1 (522), p. 133a, "Pentoxifylline (PTX) and GM-CSF Decrease Tumor Necrosis Factor-ALPHA (TNF-.alpha.) Levels in Patients Undergoing Allogeneic Bone Marrow Transplantation (BMT)," 1991. |
Davis et al., Applied Environment Microbial., 48:2, pp. 327-331, "Microbial Models of Mammalian Metabolism: Microbial Reduction and Oxidation of Pentoxifylline," Aug. 1984. |
Fuhrer et al., J. Med. Chem., vol. 27, pp. 831-836, ".beta.-Adrenergic Blocking Agents: Substituted Phenylalkanolamines. Effect of Side-Chain Length on .beta.-Blocking Potency in Vitro", 1984. |
Golding et al., "Reaction between Vicinal Diols and Hydrogen . . . ," J. Chem. Soc. Perkin Trans. 1, 1973, pp. 1214-1220. |
Carey et al., Advanced Organic Chemistry, 3rd Ed., Part B: Reactions and Synthesis, 1990, pp. 625-626. |
Related Publications (1)
|
Number |
Date |
Country |
|
164081 |
Dec 1993 |
|
Divisions (1)
|
Number |
Date |
Country |
Parent |
303842 |
Sep 1994 |
|
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
152650 |
Nov 1993 |
|
Parent |
40820 |
Mar 1993 |
|
Parent |
40820 |
|
|