Embodiments of the present invention relate to a method for preventing corrosion in a subsea or onshore or offshore component. The method of embodiments of the present invention can be used for preventing corrosion in a component of a subsea or onshore or offshore turbo-machine.
Materials like carbon steel, low-alloy steel and stainless steel are normally used when building components which operate in subsea or onshore or offshore environments. If such environments comprise wet carbon dioxide (CO2), carbon steel and low-alloy steel will be affected by corrosion damages. Moreover, if such environments comprise chlorides, stainless steel will be affected by pitting corrosion damages.
It is therefore an object of the present invention to provide an improved manufacturing method for preventing corrosion, which could avoid the above inconveniencies by: efficiently solving the corrosion problem in most of the humid environments containing aggressive contaminants such as chlorides, CO2 and Hydrogen Sulphide (H2S), and at the same time by using less costly materials.
It is a further object of embodiments of the present invention to provide an improved manufacturing method for preventing corrosion on the internal and external surfaces of subsea or onshore or offshore components of complex shape, for example the casing of a motor-compressor.
The present invention accomplishes such an object by providing a method for preventing corrosion in a component of a turbo-machine having a metal substrate made of carbon steel, low alloy steel or stainless steel, wherein the method includes: a first deposition step of depositing a first metallic layer on said substrate by electroplating; a second deposition step of depositing at least a second layer of a nickel alloy on said first layer by electroless plating; at least one thermal treatment step after said deposition steps, said thermal treatment being applied at a temperature and for a time depending on the overall thickness of said layers, the value of said temperature being directly proportional to said thickness, the value of said time being inversely proportional to said temperature.
According to a further feature of the first embodiment, the method further includes a third deposition step of depositing a third metallic layer on said second layer by electroplating and a fourth deposition step of depositing a fourth layer of said nickel alloy on said third layer by electroless plating.
According to a further feature of the first embodiment, the value of the overall thickness of said layers is between 70 μm and 300 μm.
The solution of the present invention, by providing a multi-layer coating consisting of a nickel-based coating and having the above specified thickness, allows an efficient protection of the core metal substrate. The thermal treatment included in the method allow to achieve a resistant and structurally homogeneous coating having optimum values of ductility (1.000% to 1.025%) and hardness (HV100=600 to HV100=650).
The electroless nickel plating process provide cost saving by providing an anti-corrosion coating less expensive than stainless steel and more costly alloys (for example nickel-based alloys like Inconel 625, Inconel 718) and by permitting the use of a less expensive material in the core metal substrate, for example carbon or low alloy steel.
The electroless plating process can be easily applied to components of any shape, in particular of complex shape.
The present invention accomplishes the above object also by providing a turbo-machine including a component comprising a metal substrate made of carbon steel, low alloy steel or stainless steel, and a coating including nickel on said substrate, said coating comprising at least a first metallic layer deposited by electroplating and at least a second layer of a nickel alloy deposited by electroless plating, a third metallic layer deposited by electroplating and a fourth layer of a nickel alloy deposited by electroless plating, the thickness of said coating being between 70 μm and 300 μm, said coating having a hardness value between 600 HV100 and 650 HV100 and a ductility value between 1.000% and 1.025%.
Particularly, albeit not exclusively, the turbomachine of the present invention consists in a motor-compressor comprising a casing having a coating on the internal and/or external surfaces obtained with the method of the present invention.
Further, the present invention accomplishes the above object also by providing a plant for extracting a liquid and/or gaseous hydrocarbon mixture including a wellhead, a pipeline and a turbo-machine as previously described, wherein said pipeline directly connects said turbo-machine to said wellhead. The anti-corrosive properties of the turbo-machine according to the present invention permit to avoid the use of scrubbers and filter systems upstream the turbo-machine, for preventing corrosive substances from reaching the turbo-machine.
Other object feature and advantages of the present invention will become evident from the following description of the embodiments of the invention taken in conjunction with the following drawings, wherein:
With reference to the attached figures, a method for preventing corrosion in a component 1 of a turbo-machine 201 is overall indicated with 100. The component 1 has a metal substrate 5 made of carbon steel, low alloy steel or stainless steel.
In the embodiment in
According to the embodiments in
Particularly, albeit not exclusively, the method of the present invention can be successfully applied to other components for subsea applications or operating in other type of humid environment, particularly when carbon dioxide (CO2) and/or hydrogen sulphide (H2S) and/or chlorides are present, provided that the method 100 comprises at least a first deposition step 110, a second deposition step 120 and a final thermal treatment step 140, as detailed in the following.
The first deposition step 110 consists in depositing a first layer 2a of metallic nickel on the metal substrate 5 by electroplating.
The first layer 2a is known in the art as nickel strike and has a thickness comprised between 1 to 10 μm, providing activation for the following second step 120
The second deposition step 120 consists in depositing a second layer 2b of a nickel alloy on the first layer 2a by electroless nickel plating (also known as ENP).
According to an embodiment of the present invention, the nickel alloy used in the second deposition step 120 of the method 100 consists of a nickel-phosphorous alloy.
According to a more specific embodiment of the present invention, the nickel-phosphorous alloy used in the second deposition step 120 includes 9 to 11% of phosphorous.
According to other embodiments of the present invention, different nickel alloys are used, for example a nickel and boron alloy.
According to an embodiment of the present invention (
The thickness of the second portion 21b of the second layer 2b is equal or greater than the double of the second layer, i.e. equal or greater than 20 μm.
According to another embodiment of the present invention, the method 100 includes further steps of depositing further layers of the nickel alloy by electroless nickel plating, each layer having a thickness greater than the thickness of the previous one.
According to another embodiment of the present invention (
According to another embodiment of the present invention (whose results are not shown), the third and fourth deposition steps 130, 135 can be repeated more than one time in order to obtain a multilayer structure wherein each electroless-plating layer is deposited over a respective electroplating nickel layer.
At the end of the electroless nickel plating, a nickel-based coating 2 on the metal substrate 5 is obtained.
As described above, according to different embodiments of the present invention, the coating 2 may include one or more ENP layers.
In the embodiment of
In the embodiment of
In all cases the overall thickness of the coating 2 is between 70 μm and 300 μm.
With reference to
According to other embodiments of the present invention, the coating 2 is applied also on the outer side or on both the inner and the outer sides.
After the deposition steps 110, 120, 130, 135 the method 100 includes a final thermal treatment step 140 applied by exposing the coating 2 to a heating environment, for example in heat treatment oven, at a temperature T and for a time t. The execution of the thermal treatment step 140 allows to get the desorption of the hydrogen incorporated in the coating during the electroplating process. Moreover, through the thermal treatment step 140 the layers of the coating 2, are made more resistant, adherent to each other and structurally homogeneous.
The values of temperature and time data T,t are comprised between 100° C. and 300° C. and between 2 h and 6 h, respectively. The values of temperature and time depend on the overall thickness of the coating 2, the value of said temperature T being directly proportional to the thickness of the nickel coating 2, the value of said time t being inversely proportional to the thickness of the temperature.
In one embodiment of the method 100 the values of temperature T and of time t are dependent on the value of the overall thickness of the nickel coating 2, according to the following table:
The above heat treatment allows to reach an hardness value between 600 HV100 and 650 HV100 and a ductility value between 1.000% and 1.025% in the nickel-based coating 2. The hardness of the coating 2 improves resistance to erosion or abrasion from solid particulate which may flow in the turbo-machine 201, in contact with the coating 2.
The best hardness and ductility results are obtained when the thickness of the coating 2 is between 150 μm and 300 μm.
According to other embodiments of the present invention, more than one final thermal treatment step are applied, provided that the above characteristics are reached in the coating 2.
With reference to
All the embodiments of the present invention allow to accomplish the object and advantages cited above.
In addition the present invention allows to reach further advantages. In particular, the method above described allows to avoid the presence of through porosity in the coating.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other example are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
CO2012A0015 | Apr 2012 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/057287 | 4/8/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/153020 | 10/17/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4597448 | Baugh | Jul 1986 | A |
4721436 | Lepert | Jan 1988 | A |
6146774 | Okamoto et al. | Nov 2000 | A |
20070054126 | Yasui et al. | Mar 2007 | A1 |
20090286104 | Tysoe | Nov 2009 | A1 |
20110286855 | Cappuccini | Nov 2011 | A1 |
20120055335 | Mateman | Mar 2012 | A1 |
20120247223 | Sawchuk et al. | Oct 2012 | A1 |
20120268074 | Cooley et al. | Oct 2012 | A1 |
20130170922 | Persson | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2305411 | Jan 1999 | CN |
1442508 | Sep 2003 | CN |
102005046799 | Apr 2007 | DE |
2014792 | Jan 2009 | EP |
2058417 | May 2009 | EP |
2014792 | Jun 2009 | EP |
58156691 | Sep 1983 | JP |
6445769 | Mar 1989 | JP |
03267381 | Nov 1991 | JP |
0473427 | Mar 1992 | JP |
04254591 | Sep 1992 | JP |
05320948 | Dec 1993 | JP |
071077 | Jan 1995 | JP |
0893692 | Apr 1996 | JP |
10317156 | Dec 1998 | JP |
2006161109 | Jun 2006 | JP |
2007071031 | Mar 2007 | JP |
2007108152 | Apr 2007 | JP |
2008009059 | Jan 2008 | JP |
2008155581 | Jul 2008 | JP |
2008214699 | Sep 2008 | JP |
2013530352 | Jul 2013 | JP |
2014525219 | Sep 2014 | JP |
9831849 | Jul 1998 | WO |
9958741 | Nov 1999 | WO |
2005059204 | Jun 2005 | WO |
Entry |
---|
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201380019338.5 dated Apr. 1, 2016. |
International Search Report and Written Opinion dated May 30, 2014 which was issued in connection with PCT Patent Application No. PCT/EP13/057287 which was filed on Apr. 8, 2013. |
Italian Search Report and Written Opinion dated Dec. 18, 2012 which was issued in connection with the Italian Patent Application No. CO2012A000015 which was filed on Apr. 12, 2012. |
Unofficial English Translation of Japanese Office Action issued in connection with corresponding JP Application No. 2015504918 dated Jan. 24, 2017. |
Unofficial English Translation of Japanese Search Report Action issued in connection with corresponding JP Application No. 2015504918 dated Feb. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
20150322962 A1 | Nov 2015 | US |