The accompanying drawings illustrate embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.
The illustrative embodiments of the present application describe printer systems and methods that provide both a secure printing mode and a non-secure printing mode using the same printing device. In the secure mode, a value mark must be printed in the secure image and it must be compatible with the particular secure mark format to be a valid secure value image. For example, 2D barcode symbologies are known and have published formatting rules for valid readable barcodes.
Barcode symbologies used in value printing applications typically have redundancy features to tolerate some errors in printing or other distortion, but will also have areas that are more sensitive to errors. As an illustrative example, the 2D DATAMATRIX barcode often used in secure postage value printing systems has a required format. The barcode may be scaled to a certain extent and still be read and it may have certain cells distorted and be readable. However, certain regions such as the “L finder” and “timing” regions are more susceptible to errors and can be used to render an otherwise valid barcode unreadable.
The illustrative embodiments described herein show a thermal postage printer, but other printing technologies and other value printing applications may be used with the teachings of the application. In a secure mode, the secure image includes at least one value mark. In the non-secure mode described herein, disabled regions are defined and enforced on the image such that the printing of a valid value mark would not be possible in the non-secure mode.
Referring to
Referring to
The printer 1 includes a printer controller 3, such as, for example, a special purpose processor or ASIC, to control operation of the printer 1. The ASIC 3 includes a processing core and logic specific to the secure value printing mode. A memory device 4 is included for storing instruction data and application data and will include a print buffer so that rendered print graphics may then be sent to the print drivers 5, 5′, 5″ for printing using the thermal printhead elements 6, 6′, 6″.
The printer controller handles any thermal printing adjustments required for the print data. The printhead 6. 6′, 6″ is typically a linear array of thermal heating elements. The print drivers 5, 5′, 5″ each drive one or more printhead elements and typically will be configured to drive 64 elements of the 256 element array. The printer controller 3 may be used to provide the logic to switch between the secure printing mode and the non-secure printing mode. For example, when the printer 1 is not connected to a collocated processor, it may be assumed that the system can only be used for the value printing functions. Accordingly, in an illustrative embodiment in stand alone mode, the printer 1 may only be used in secure mode for printing custom postage labels. In a connected configuration, if the collocated processor is running an authenticated postage printing application, the printer controller 3 allows the collocated processor 20 to run in secure mode. However, if the collocated processor is running a non-authenticated application, the printer allows only non-secure mode printing.
In an alternative embodiment, even the non-secure applications must be authenticated and then the printer controller 3 will trust the collocated processor and application to enforce the required restrictions for the enabled non-secure print mode.
Referring to
Referring to
Referring to
Referring to
The label media comprises a paper substrate or polypropylene thermal media substrate such as the Mitsubishi K61S-ce 32 level direct gray-scale thermal media. The individual labels 510, 530 are approximately 33.6 mm wide and 33 mm high (including the adhesive backing material as the label media portion that is removed and used as a stamp is approximately 30.2 mm high as shown by the height from scallop to scallop). The thermal media is a gray-scale thermal label that is fed across a thermal printhead that includes a linear array of heating elements. The media has a width that is approximately 1.5 inches wide. The media described is for illustrative purposes. In alternatives, the thermal media may be of a different width as appropriate, may be coated, may be a color media and may be in a different format such as a roll media.
Referring to
Alternatively, additional regions may be used to create a set of disabled regions. In yet another alternative, the disabled region may be implemented by forcing a fill of those disabled regions of the print buffer with zero values. As can be appreciated, when using the print buffer forced fill approach, the enforced disabled regions may be sections of the image that are not bands across the entire image such as by regions defined by x-y coordinates of the image.
Two-dimensional bar codes typically utilize a defined encoding format having certain known absolute or relative physical formatting rules and symbologies so that bar code readers can read the bar code so that the embedded information may be decoded. There are many standard Two-dimensional bar codes formats including the DATAMATRIX bar code that have some error checking and redundancy, but may also have regions that are more vulnerable to failure. For example, the DATAMATRIX bar code format includes an “L finder” region and a “timing pattern” region that may be more sensitive to failures than data regions of the bar code. A single damaged or missing thermal element that is located in an area that prints a sensitive region such as the “timing pattern” region may disproportionately negatively affect the accurate readability of the postage value printer meter. Accordingly, the knowledge of the requirements of the valid barcode are used to facilitate the least obstructive enforced disabled regions in a non-secure print mode. As shown here, the disabled region is approximately.
Referring to
As can be appreciated, the enforced white bands will preclude the printing of valid DATAMATRIX 2D barcodes and other stamp images in the non-secure print mode. The number and position of the white bands 630 can be varied to permit multiple acceptable formats in the non-secure print mode. For example, label 610 is printed with a first enforced white space template having three enforced white band regions 630. That allows a four line address label having four lines of text 640. A DATAMATRIX barcode cannot be printed in that mode. Similarly, label 620 is printed using a second template of enforced disabled regions here defined as two white bands 630. In this case, a three line text address label may be utilized with three lines of text 640. As can be appreciated, the DATAMATRIX barcode cannot be printed in that space due to the white bands. Here the white bands are approximately 5 elements wide, but other configurations may be used.
The controlling program may allow a user to select between available templates such as those used in labels 610 and 620 or may instead rely upon the authenticated non-secure application program to create a non-secure image with sufficient disabled regions to defeat the printing of a valid value mark such as the DATAMATRIX barcode. Accordingly, the application may package the enforced disabled region data with the label data. As described above, the white regions or in an illustrative embodiment, the more specific implementation of white bands may be implemented by disabling certain heating elements or by filling those regions of the print image buffer with zero values.
Referring to
Referring to
The labels described above are suitable for use with various direct thermal printers. For example, a thermal printer incorporating the Kyocera KSB320BA printhead available from Kyocera Industrial Ceramics Corp. of Vancouver, Wash. may be utilized. Furthermore, the STAMPEXPRESSIONS printer from Pitney Bowes Inc. of Stamford, Conn. may be utilized.
Referring to
Commonly-owned, co-pending U.S. patent application Ser. No. 11/172,182, filed Jun. 30, 2005 and entitled Control Panel Label For A Postage Printing Device is incorporated by reference herein in its entirety and describes systems and methods for processing customized postage that alternatively may be advantageously utilized with the systems and methods described herein. Additionally, commonly-owned, co-pending U.S. patent application Ser. No. 11/016,493, filed Dec. 17, 2004 and entitled, Thermal Printer Temperature Management, is incorporated by reference herein in its entirety and describes certain thermal printers that alternatively may advantageously be utilized with the systems and methods described herein. Furthermore, commonly-owned, co-pending U.S. patent application Ser. No. 11/018,707, filed Dec. 21, 2004 and entitled, Label Stock For Thermal Printer, is incorporated by reference herein in its entirety and describes certain thermal printer label stock that alternatively may advantageously be utilized with the systems and methods described herein. Commonly-owned, co-pending U.S. patent application Ser. No. 11/415,307, filed May 1, 2006 and entitled Apparatus and Materials for Two-Stage Printing of Value Indicia is incorporated by reference herein in its entirety and describes systems and methods for processing customized postage that alternatively may be advantageously utilized with the systems and methods described herein. Commonly-owned, co-pending U.S. patent application Ser. No. 11/479,739, filed Jun. 30, 2006 and entitled “Signaling labels and fluorescent ink compositions” is incorporated by reference herein in its entirety and describes methods and systems that alternatively may advantageously be utilized with the systems and methods described herein.
In an alternative applicable to any of the embodiments herein, the printing technology utilized may be replaced including replacing the direct thermal technology described with inkjet, bubble jet, LED, laser, ribbon thermal, dye sub or other appropriate printing technology. For example, the embodiments may instead use a modified DM series postage meter available from PITNEY BOWES of Stamford Conn. configured to use ink jet printing and nozzles.
While several illustrative embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. The embodiments are illustrative and not intended to present an exhaustive list of possible configurations. Where alternative elements are described, they are understood to fully describe alternative embodiments without repeating common elements whether or not expressly stated to so relate. Similarly, alternatives described for elements used in more than one embodiment are understood to describe alternative embodiments for each of the described embodiments having that element. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.
This application is related to commonly owned, co-pending patent application Ser. No. 11/228,597, entitled “Method and System for Printing Secure Value Documents and Non-Secure Documents Utilizing the Same Printing Device,” filed Sep. 16, 2005, which is incorporated herein by reference.