This invention relates to surface processing of a power transmission component and, more particularly, to methods of surface processing that minimize dimensional alteration and the identification of alloys that possess properties and microstructures conducive to surface processing in such a way that the processed alloy possesses desirable surface and core properties that render it particularly effective in applications that demand superior properties such as power transmission components. Absent the combination of alloy selection and processing that are taught herein, such superior properties would be unavailable.
For iron-based metal alloy components, such as power transmission components, it is often desirable to form a hardened surface case around the core of the component to enhance component performance. The hardened surface case provides wear and corrosion resistance while the core provides toughness and impact resistance.
There are various conventional methods for forming a hardened surface case on a power transmission component fabricated from a steel alloy. One conventional method, nitriding, utilizes gas, salt bath or plasma processing. The nitriding process introduces nitrogen to the surface of the component at an elevated temperature. The nitrogen reacts with the steel alloy to form the hardened surface case while the core of the component may retain the original hardness, strength, and toughness characteristics of the steel alloy. This conventional process provides a hardened surface case, however, the elevated temperatures of the nitriding process may over-temper the core and diminish its properties and/or induce dimensional distortion of the component such that additional grinding or dimensionalizing steps are required to bring the component into dimensional tolerance.
Accordingly, it is desirable to identify a class of alloys for a surface processing method that minimizes dimensional alteration of a power transmission component and essentially eliminates dimensionalizing processes subsequent to the case hardening process.
The surface processing method and power transmission component according to the present invention includes transforming a surface region into a hardened surface region at a temperature less than a tempering temperature of the metal alloy. The Fe-based metal alloy includes between 1.5 wt % and 15 wt % Ni, between 5 wt % and 30 wt % Co, up to 1.0 wt % C, and up to 15 wt % of a carbide-forming element, such as Mo, Cr, W, or V and combinations thereof, that can react with the C to form a metal carbide precipitate of the form M2C. A high current density ion implantation, also known as high intensity plasma ion processing, process is one technique that may be used to transform the surface region into a hardened surface region. The temperature, vacuum pressure, precursor gas flow and ratio, time of processing, and bias voltages are controlled during the high current density ion implantation nitriding process to provide a hardened surface having a gradual transition in nitrogen concentration. A temperature below the heat treating temperature of the metal alloy is utilized during the high current density ion implantation nitriding to maintain the crystal structure and metal alloy dimensions through the process.
A coating deposited on the hardened surface region of the metal alloy provides lubricity and wear resistance. The deposited coating is an amorphous hydrogenated carbon or other coating including a metal or transition metal. Alternatively, the deposited coating may be a hard or ultra-hard transition-metal compound, such as a carbide, boride, nitride, or oxide or mixture thereof, deposited by a vapor-deposition method such as physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma-assisted chemical vapor deposition (PACVD). An intermediate coating may be deposited between the coating and the hardened surface region to promote adhesion between the coating and hardened surface region. The intermediate coating is the transition metal as is included in the amorphous hydrogenated carbon coating.
The metal alloy and high current density ion implantation surface processing method according to the present invention minimize dimensional alteration of a power transmission component and essentially eliminate subsequent dimensionalizing processes.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
The composition of the metal alloy 10 is essentially a Ni—Co secondary hardening martensitic steel, which provides high strength and high toughness. That is, the ultimate tensile strength of the metal alloy 10 is greater than about 170 ksi and the yield stress is greater than about 140 ksi and in some examples the ultimate tensile strength is approximately 285 ksi and the yield stress is about 250 ksi. High strength and high toughness provide desirable performance in such applications as power transmission components. Conventional vacuum melting and remelting practices are used and may include the use of gettering elements including, for example, rare earth metals, Mg, Ca, Si, Mn and combinations thereof, to remove impurity elements from the metal alloy 10 and achieve high strength and high toughness. Impurity elements such as S, P, O, and N present in trace amounts may detract from the strength and toughness.
Preferably, the alloy content of the metal alloy 10 and the tempering temperature satisfy the thermodynamic condition that the alloy carbide, M2C where M is a metallic carbide-forming element, is more stable than Fe3C (a relatively coarse precursor carbide), such that Fe3C will dissolve and M2C alloy carbides precipitate. The M2C alloy carbide-forming elements contribute to the high strength and high toughness of the metal alloy 10 by forming a fine dispersion of M2C precipitates that produce secondary hardening during a conventional precipitation-heat process prior to any surface processing. The preferred alloy carbide-forming elements include Mo and Cr, which combine with carbon in the metal alloy 10 to form M2C. Preferably, the metal alloy 10 includes between 1.5 wt % and 15 wt % Ni, between 5 wt % and 30 wt % Co, up to 1.0 wt % C, and up to 15 wt % of a carbide-forming element, such as Mo, Cr, W, or V and combinations thereof, which can react with the C to form metal carbide precipitates of the form M2C. It is to be understood that the metal alloy 10 may include any one or more of the preferred alloy carbide-forming elements.
The carbide-forming elements provide strength and toughness advantages because they form a fine dispersion of M2C. Certain other possible alloying elements such as Al, V, W, Si, Cr, may also form other compounds such as nitride compounds. These alloying elements and the carbide-forming elements influence the strength, toughness, and surface hardenability of the metal alloy 10.
Typically, metal alloy 10 is hardened by heat treating above ˜1500° F. in the austenite phase region (austenitizing) to re-solution carbides etc. It is then quenched and refrigerated at approximately −100° F. to transform the austenite structure to martensite. The latter is a very hard, brittle, metastable phase having a body centered tetragonal (BCT) crystal structure because of the entrapped carbon atoms. Hence, at this stage, the core 12 and surface region 14 of the metal alloy 10 have a generally equivalent tetragonal crystal structure 16 (
As illustrated in
The high current density ion implantation nitriding process is conducted in an appropriate reactor, an example of which is illustrated schematically in
Heating the metal alloy 10 to a temperature above the heat treating temperature may alter the incumbent crystal structure 16, relieve residual stresses in the metal alloy 10, otherwise undesirably alter the microstructure and properties of the core, and undesirably alter the dimensions of the metal alloy 10. By utilizing a temperature that is below the heat treating temperature of the metal alloy 10, the strength, toughness, incumbent crystal structure 16, and dimensions of the metal alloy 10 are maintained through the high current density ion implantation and process. Subsequent processes to dimensionalize the metal alloy 10 or a power transmission component formed from the metal alloy 10 are eliminated. For the preferred metal alloy 10 composition, the heat treating temperature is between 700° F. and about 1000° F. For other compositions, the heat treating temperature may be different.
The chamber 36 includes a vacuum pump 40 which maintains a vacuum in the chamber 36 of the reactor 34. A sample bias device 42 provides a bias voltage of between 200V and 1500V to the cathode 38. Preferably, the bias voltage is between 700V and 1000V. A thermocouple 44 attached to the cathode 38 detects the cathode 38 temperature and a cooling system 46 provides cooling capability to control the chamber 36 temperature. The chamber 36 is in fluid communication with precursor gases in storage tanks 48. The precursor gas storage tanks 48 may include gases such as nitrogen, hydrogen, and methane, although it should be noted that these gases are not all necessarily utilized during the high current density ion implantation nitriding process. The conduit 50 connects the precursor gas storage tanks 48 to the inner chamber 40 and includes a gas metering device 52 to control the gas flow from the gas storage tanks 48. A plasma discharge voltage device at the filament 54 provides an ionizing voltage to a filament 56, which ionizes incoming gas from the conduit 50. The plasma discharge voltage at the filament is preferably between 30V and 150V and even more preferably is about 100V. It is to be understood that the configuration of the reactor 34 is not meant to be limiting and that alternative configurations of high current density ion implantation reactors as well as reactors utilizing alternative surface processing processes may be used.
The temperature, vacuum pressure in the chamber 36, precursor gas flow and ratio, time of processing, filament bias voltage, and sample bias voltage are controlled during the high current density ion implantation nitriding process to provide a hardened surface region 28 (
Under the preferred conditions, nitrogen from the nitrogen atmosphere 26 (
Preferably, the hardened surface region 28 has a gradual transition in nitrogen concentration over a depth D between an outer surface 30 of the hardened surface region 28 and an inner portion 32 of the hardened surface region 28.
The line 62 in
Additionally, alloying elements such as Al, V, W, Si, and Cr may be present in the metal alloy 10. Nitride compounds containing the alloying elements may form during the high current density ion implantation nitriding process. The presence of the nitride compounds is generally detrimental to the mechanical properties of the metal alloy 10 and are particularly detrimental in a complex with iron nitride compounds that may be formed under certain high current density ion implantation nitriding processing conditions, however, the presence of these alloying elements may be required to acquire other characteristics in the metal alloy 10.
The deposited coating 84 is a solid lubricious coating such as an amorphous hydrogenated carbon, although other coatings may be used. The amorphous hydrogenated carbon coating has a biaxial residual stress less than 800 MPa in compression at room temperature, is thermally stable at temperatures over 400° F., and has an abrasive wear rate less than 3×10−15 m3m−1N−1 in a slurry of Al2O3. The amorphous hydrogenated carbon coating may include a metal or transition metal such as titanium, chromium, tungsten or other transition metal to alter the lubricious characteristics of the coating 84.
Referring to
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.