No part of the present invention is associated with or was developed under a federally sponsored research program.
A computer program listing appendix submitted on a compact disc (CD-R) is hereby incorporated by reference. The computer program listing provides a full and functioning example of the use of the present invention in the processing of move record information from the game of international chess.
The content of the submitted CD-R is described as follows:
Two copies of the CD-R described above have been submitted. The content of the two copies is identical.
1. Field of the Invention
The present invention relates to computerized devices that automatically record information concerning the moves that human players make while playing board games. In particular, the present invention comprises a method for further processing such move information in order to create a fully accurate and complete game record.
2. Objectives of the Present Invention
It is well known that a good way for a player to improve his play in a board game such as chess or checkers (draughts) is to record personal games for later analysis. Manual recording of games, however, can be distracting to the player and his opponent, and is prone to errors that can make the game record difficult or impossible to interpret at a later time. For this reason, board game devices have been created that attempt to automatically recognize and record the moves of a game while it is being played. Many types of such devices have been created utilizing a wide range of technologies. To accomplish their task, all such devices must be capable of detecting the presence or absence of a playing piece on any possible board location. Some of the devices, however, are further capable of determining the identity of the particular playing piece at each location, and are hereinafter referred to as piece-identity devices. The aforementioned devices that cannot also determine the identity of each playing piece are hereinafter referred to as presence-only devices.
When prior art devices have been used to record games, such as chess, between two human players, it has primarily been for the purpose of displaying the game moves, as they occur, for the benefit of an audience. This use requires that the moves be accurately detected in real time with no chance for ambiguity. Therefore, piece-identity devices are required for that purpose. Such piece-identity devices can also be used to record casual games for later analysis. However, piece-identity devices are presently complex and expensive and may require manual input from the players and/or connection to external computers and external power outlets. Casual players who simply wish to record games for later personal use are not well served by such devices.
Presence-only devices, in contrast, often have the advantage of lower cost and the convenience of portability that derives from battery-powered operation. Presence-only devices, however, can have difficulty in recognizing exactly which move was made in certain ambiguous cases. A particular example of ambiguity can occur in the game of chess during capture moves. In the game of chess, a playing piece may have the option to choose which of multiple opposing pieces it will capture. A presence-only recording device can detect that the capturing piece has left its original square, but it may not detect any other change in the board position. This can happen when the captured piece is replaced so quickly by the capturing piece that the removal of the captured piece was never detected. As a result, a presence-only recording device cannot specify exactly which piece was captured. The present invention was developed to provide a method by which the ambiguities encountered by presence-only devices can be resolved, so that the cost and convenience advantages of such devices can, thereby, be fully realized.
3. Comparison of Prior Art to the Present Invention
Prior art includes a number of presence-only devices that can record the moves of board games such as checkers and chess. Many such devices were created to play one side of a game against a human opponent, and are offered for sale by companies such as Fidelity Electronics, Novag and Saitek.
Prior art presence-only devices use a number of methods for resolving the ambiguities mentioned above when determining which moves have been made by their human opponents. Some devices use pressure sensitive switches under each board square (U.S. Pat. No. 2,434,066). The human player is required to press down on a piece before it is moved, and then to press down on the piece once again after it is placed on the destination square. Specific examples are the Novag Obsidian, the Saitek Mephisto and a device commonly marketed as the USB Roll-up Chess Board.
Still other presence-only devices require that a permanent magnet be placed into the base of each playing piece. The resulting magnetic field is then detected by sensors placed at each playing location (U.S. Pat. Nos. 3,843,132 & 4,981,300, U.K. Patent GB-2,051,589 & German Patent DE-2,932,167). However, to resolve the aforementioned ambiguities, these devices require the user to execute moves in a strict sequence. A capture move in chess, for example, may require that the captured piece be lifted first, followed by the lifting of the capturing piece, followed by the placement of the capturing piece on the square of the captured piece. An example of a device that requires such sequences is the Novag Citrine.
All of the aforementioned prior art suffers from the primary disadvantage of inconvenience to the human players. Pressing switches and executing strict move sequences is unnatural for many players and distracts them from the game. The method of the present invention improves upon the prior art by using sophisticated post-processing of move information in order to resolve move ambiguities. The human players are, thereby, freed from the requirement to follow strict manual move protocols and can make moves in their individual and varied fashions.
The present invention comprises a method which, when embodied as a control program in a general purpose digital computer, transforms that computer into a special purpose device for processing board game move information for the purpose of producing an accurate record of the moves of the game. The move information is received from a device that automatically records the moves of a board game such as chess as the game is played by two human players. Further, the present invention is intended for use with a simpler and less expensive class of board game move-recording devices that are capable of detecting the presence or absence of a game piece on any one of the game board's fixed locations, but which are not further capable of determining the identity of the detected piece. The inability of such devices to determine the identity of the piece on a given board location can lead to ambiguities in the move record. The present invention resolves those ambiguities and, thereby, enables complete and accurate game records to be obtained from the output of those move-recording devices.
The method of the present invention resolves such ambiguities by exhaustively evaluating all possibilities at the point of the ambiguity. For each possible move or result at the point of the ambiguity, the method creates an additional copy of the current game path. The method then selects one game path, from the resulting plurality of paths, to be followed to the end of the game. If the game path selected for further processing does not, in fact, represent the path taken in the actual game, then an impossible position or move will very likely be encountered. Upon encountering an impossible position or move, the method discards the current path and returns to the point at which the path was duplicated and selects another path to follow. Processing continues in this manner until a path is successfully followed to the end of the game. The successful path can then be saved as the final game record.
When a game path has been successfully followed to the end of the game, there is, however, still a small possibility that this game path is not the actual path followed by the game. Untested paths may still remain, and the actual game path may be among them. To handle this case, the method of the present invention can be extended to add the capability to attempt to follow all remaining untested paths to the end of the game. In the unlikely, but possible, event that more than one path is thus successfully followed to the end of the game, the method then provides the human operator the option of manually selecting from among the successful paths.
In the preferred embodiment, the method of the present invention will be embodied in a computing device that is external to the move-recording device. The move-recording device will communicate its move information to the external computing device for processing. In another embodiment, the method of the present invention can be embodied in a computing device that is contained within the move-recording device. In either embodiment, the move information can be processed as it is recorded or it can be processed only after a game is completed. In either case, it is likely that all aforementioned ambiguities will not be resolved until move information at or near the end of the game has been processed.
The present invention applies to a large class of board games in which each playing piece is moved from one fixed location or area of the board to another such fixed location or area, and in which each of the playing pieces may be moved several times during the course of a game. A further trait of the aforementioned class of board games is that each game begins with all of the game pieces located on a fixed configuration of playing locations as established by the rules of each game. Examples of games in this class are checkers (draughts) and international chess and regional chess variations such as Shoji (Japanese chess) and Xiangqi (Chinese chess). The present invention is used in conjunction with a class of devices that record information regarding the moves played between human players in such games. Said class of devices is further described as being capable of detecting when a given game board playing location is occupied by a playing piece, but not being further capable of determining the identity of the particular piece on a given location. Such devices are herein referred to as presence-only recording devices.
Presence-only recording devices typically scan all game board playing locations looking for indications that a previously occupied board location is no longer occupied or that a previously unoccupied location is now occupied. Such scans may occur at fixed or variable time intervals or in response to a player action such as pressing a button on a game timer. All occupancy state changes detected during a scan are added to the end of a time-ordered sequence of data items hereinafter referred to as occupancy-change data items. A preferred format for such data items is subsequently described in references to
As previously mentioned, the present invention comprises a method to further process the occupancy-change data items provided by presence-only recording devices in order to resolve the aforementioned ambiguities, and, thereby, realize the full potential of the advantages of the presence-only recording devices.
For clarity, the following description of the present invention will utilize examples from the game of international chess. However, it should be kept in mind that the present invention is applicable to a large class of board games as mentioned above.
Now referring to
A defining component of game recording device 20 is the game board 26. Game board 26 is typically a planar array of playing locations that is located on, and is readily visible as, the top surface of recording device 20. Game recording device 20 operates by scanning all of its game board playing locations looking for changes in the occupancy of its playing locations. These scans can occur at regular time intervals or can occur at the prompting of an external event such as a player pressing a button on a game timer 60 that is connected to recording device 20. In a preferred embodiment, game recording device 20 is not connected to computer 10 while one or more games between two human players are being recorded by device 20. The connection is made only after the games are completed and the players wish to produce a tangible record of their games. This sequence enables the players to take full advantage of the portability of the recording device 20. It is well recognized that, in another embodiment, the capabilities of computer 10 can be physically located within recording device 20. In that embodiment, the method of the present invention would then be a controlling program within recording device 20, and printer 40 and Internet interface device 50 would connect directly to recording device 20.
Now referring to
The main internal component of game recording device 20 is the Central Processing Unit (CPU) 21. The purpose of CPU 21 is to follow the instructions of the game recording device control program located in Processor Memory 22. Sensor Array 25 consists of a plurality of sensing devices. Typically one sensing device is located under each playing location of Game Board 26 (
Now referring to
String 322 represents the first occupancy-change data item that would be stored after power is applied to a presence-only chess game recording device in which the game pieces were placed on their starting squares before power was applied. The time value of “000” in field 326 is, by convention, the first time value recorded when power is applied to the game recorder. The time field 326 is then immediately followed by field 328 consisting of thirty-two two-digit numbers in the two ranges 01 to 16 and 49 to 64. Those thirty-two numbers are the square numbers for the chess board squares that are occupied at the start of a game. By convention, all game board squares are initialized as unoccupied by the game recording device immediately after power is applied. Therefore, if all chess pieces are in their starting position when power is first applied, the first scan of the piece sensors by a chess game recorder would show a change in the occupancy state of squares 01 to 16 and squares 49 to 64.
String 332 shows an example of an occupancy-change data item that might be recorded following the first move of a chess game. Field 336 indicates that nine (009) time units elapsed since the previous occupancy-change data item was recorded. In this case, the previous data item was the one recorded at time “000” and shown as string 322. Field 338 indicates that chess board squares 13 and 29 changed occupancy state as a result of this first move. Therefore, this first move represents the Pawn move e2 to e4.
The occupancy-change data items given as strings 342 and 352 show the second move of this chess game and illustrate how a single game move may be recorded using more than one consecutive occupancy-change data items. String 342 shows that sixteen (016) time units after the previous data item was recorded the occupancy state of chess square 53 changed. String 352 shows that two (002) time units later the occupancy state of square 37 changed. This sequence indicates that the Black Pawn on square e7 was lifted and, after a short delay, was placed on square e5.
The preceding descriptions of two Pawn moves illustrates that a simple chess move may be fully described in one occupancy-change data item or that same move may be described by two consecutive occupancy-change data items. If a player can start and end a move between consecutive scans by the recording device then all of the move information will appear in one occupancy-change data item. Otherwise, more than one data item will be recorded to describe the move. An extreme example is the Castling move from the game of chess which requires moving both the King and a Rook. If performed quickly, a Castling move could be recorded in a single occupancy-change data item that contains the numbers of four squares—two which became unoccupied and two which became occupied. If performed more slowly, that same move could require the recording of up to four consecutive occupancy-change data items. Determining how the time-ordered sequence of occupancy-change data items should be grouped to describe individual moves is highly dependent on the type of game being recorded, and may require considerable game-specific case analysis. Since such analysis is game-specific, it is not claimed as a capability within the method of the present invention. In fact, it may, at times, be possible for the game-specific analysis to find more than one seemingly valid way to interpret a particular sequence of occupancy-change data items. The method of the present invention handles such ambiguous situations by allowing all seemingly valid interpretations to be considered during the search for the move sequence that was actually played. How this is done is described in the following paragraphs and in more detail in references to the flowcharts of
The method used by the present invention to process the sometimes ambiguous data from presence-only game recording devices is analogous to finding a path through a maze from the entry point (the initial game position) to the exit (the final game position). Each path in this hypothetical maze leads either to the exit or to a dead end (an impossible move or position). Each move in the game is analogous to a turning point in the maze. Most such turning points are unambiguous and offer only one direction for movement. Other turning points, however, require a choice between two or more directions. The previous example of an ambiguous capture in the game of chess is analogous to such a turning point. The method of the present invention will choose one of the available directions. This choice can be made randomly, or, in a preferred embodiment, by using game-specific knowledge to select a likely direction. Once the choice is made, the method leaves a “marker” at the decision point and proceeds through the maze while “laying down a string”. The “string” will record the entire path taken since the marker was placed. In the event that a dead end is subsequently reached, the path is retraced to the most recent marker and an untried direction is chosen. If an untried direction is not available, the path is retraced to the next most recent marker and the process is repeated. By following this procedure in an iterative manner, the exit will eventually be reached.
In order to perform the steps described above in the maze analogy, the method of the present invention must keep track of sufficient information concerning each game path followed. The method satisfies this requirement by creating a separate game record data structure for each game path. The terms “game record” and “game path” will be used interchangeably in the following description.
Now referring to
The Board Position Record 420 is composed of two parts. The first part is an array 422 containing one element for each playing position on the game board. Each such array element contains an identifier for the game piece (if any) that occupies the corresponding playing position. The second part of Board Position Record 420 is a Move Description Record 430 that describes the move that was made from the position corresponding to the Board Position Record 420.
A Move Description Record 430 is further comprised of three parts. The first part is the move type indicator 432 which describes the type of the current move. For chess, the move types would be: non-capturing, capturing, King side castling and Queen side castling. The second part of a Move Description Record 430 is the source square number 434 which gives the starting square for non-capturing and capturing moves. The third part of a Move Description Record 430 is the destination square number 436 which gives the destination square for non-capturing and capturing moves.
The method of the present invention will now be formally described by references to flowcharts. The description will first be given in a general overview format using references to the flowchart of
Now referring to
Once the starting position has been found, the method creates and initializes the first instance of a game record data structure 400 (see references to
The method next begins the processing of individual game moves. This is done by analyzing the occupancy-change data items starting with the first such data item after the starting position is established. If, during the analysis of occupancy-change data items, the end of such data items is encountered 506, then the game record is finalized and output to the user 508 and the method terminates 510. It may often be necessary to examine more than one occupancy-change data item to determine a complete game move 512. For example, in the game of chess, a capture may occur by first lifting the capturing piece from its board square, then lifting the captured piece from its square, and then placing the capturing piece on the square of the captured piece. Such a sequence could result in three separate occupancy-change data items. However, that same sequence could also result in fewer data items depending on the speed at which the player executed the sequence and the frequency at which the move-recording device scanned the game board for changes. To handle such variations, the method of the present invention must be augmented by game-specific case analysis and knowledge of the rules of the particular game to which it is being applied.
Once the game-specific case analysis has consolidated one or more occupancy-change data items into a complete move, the method then determines, by calling on additional game-specific analysis routines, if that move can actually be made from the current game position 514. In chess, for example, if the moving piece is a Knight and yet that piece has moved to a board square that that Knight cannot reach then we have encountered an illegal move or position. In response to such an illegality, the method proceeds to step 516 in order to abandon the current game path and try another. If, however, the move can be made, it is then tested to see if it is ambiguous 526. As previously described, presence-only recording devices for the game of chess can produce ambiguities for certain capture moves and Pawn promotions. The method of the present invention performs the test for ambiguity by, once again, calling on the use of game-specific analysis routines. If the current move is not ambiguous, the method stores that move directly to the primary game record without further processing 530. It then returns to step 506 to continue analyzing subsequent moves. If the move is ambiguous, the method creates one additional copy of the current game record for each possible move or result beyond the first such move or result 528, and then records each one of the plurality of move possibilities to its own individual game record 532. The method, thereby, allows for the eventual following of all possible game paths until the correct path is recognized. The method then selects one game record, from the resulting plurality of game records, to be designated as the primary game record 534 and control returns to step 506 to continue move processing. Processed move results will henceforth be recorded to the designated primary game record until the end of the game is reached or until a subsequent contradiction or ambiguous move results in the selection and/or creation of yet a different primary game record.
If the game record selected as the primary does not, in fact, represent the actual path taken in the game, then an impossible position or move will very likely be encountered at step 514. Upon encountering an impossible position or move, the method determines if the current primary game record is the only game record 516. In the unlikely event that it is the only game record, the user is informed that game record processing was unsuccessful 522 and the method terminates 524. Otherwise, the method discards the current primary game record 518. It then returns to the point in the game when the just-discarded game record was chosen as the primary and selects another game record to be the primary 520. Control then returns to step 506 to continue move processing. Processing continues in this manner until a game record is successfully followed to the end of the game and output at step 508, or until it is determined that no successful game path exists and that result is reported at step 522.
In the interest of additional clarity the method of
Now referring to
Now referring to
Now referring to
Now referring to
When the method of the present invention successfully follows its primary game record to the end of a game, there is a possibility that one or more game records other than the primary game record may still remain. It is also possible that one or more of these remaining records can also be successfully followed to the end of the game. For this reason, a preferred embodiment of the present invention will include an extension to the method given in
Now referring to
Now referring to
It should be noted that the extension shown in
The many features and advantages of the present invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages which fall within the spirit and scope of the invention. The foregoing description is intended to be illustrative of the invention, and is not intended to contain or imply limitations thereupon. Although numerous modifications and variations will occur to those skilled in the art, it is not desired to limit the invention to the exact method and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the present invention.