This Application is a 371 of PCT/JP2014/004342 filed on Aug. 22, 2014, application which is incorporated herein by reference.
The present invention relates to an improvement of a method for processing a Zn-based plated component, in which plastic working is performed on a Zn-based plated steel sheet coated with a Zn-containing metal as a raw material to form a workpiece (i.e., a Zn-based plated component) having a predetermined shape.
Conventionally, it has been common to perform plastic working on a cold-rolled steel sheet to form a shape having predetermined dimensions, and thereafter perform Zn plating (post-Zn plating) to produce a component. However, for the recent automobile components, home electrical appliances and the like, for the purpose of enhancing corrosion resistance and durability of the component, and achieving cost reduction by omission of steps, it is increasingly the case that a Zn-based plated steel sheet obtained by coating Zn or a Zn alloy on a steel sheet is used as a raw material, and a component is produced by performing plastic working on the steel sheet.
As used herein, a steel sheet obtained by plating Zn or a Zn-containing alloy on the surface of a steel sheet is referred to as a Zn-based plated steel sheet.
Here, the plated layer of the Zn-based plated steel sheet is inferior in ductility to the underlying steel sheet, and therefore, cracks may occur in the plated layer when plastic working is performed on the plated steel sheet used as the raw material. In general, the cracks in the plated layer are more prominent in bulging processing in which a stronger tensile stress is likely to be exerted on the plated layer than in drawing processing. Then, when such cracks in the plated layer, or in other words, working cracks occur, the plated layer is divided. As a result, the underlying steel sheet is exposed from the gaps between the divided plated layers, which may lead to deterioration in the corrosion resistance of the workpiece. When the plated layer is a Zn-based plated layer and the degree of working cracks is slight, deterioration in the corrosion resistance is inconspicuous because of the sacrificial protection effect of the Zn-based plated layer even if the underlying steel sheet is exposed. However, when the degree of the working cracks is significant, red rust occurs from the exposed portion of the underlying steel sheet to degrade the external appearance, or corrosion advances from the exposed portion of the underlying steel sheet to reduce the thickness of the underlying steel sheet, which may cause a decrease in the strength of the workpiece.
Therefore, as a method for suppressing the deterioration in the corrosion resistance of the worked portion, it is possible to use, as a raw material, a Zn—Al—Mg-based plated steel sheet coated with a Zn—Al—Mg-based alloy having excellent corrosion resistance. However, this cannot prevent working cracks, so that it is difficult to prevent the occurrence of red rust.
As a processing method capable of suppressing working cracks in the plated layer, PTL 1 discloses a processing method in which a Zn-based plated steel sheet is heated and held in a temperature range of not less than 50° C. and not more than 150° C., to process the Zn-based plated steel sheet into a target shape. This processing method is intended to heat and hold the Zn-based plated steel sheet so as to apply processing to the plated layer in a state in which the ductility thereof is increased, thereby suppressing working cracks (cracks) in the plated layer.
[PTL 1] Japanese Patent No. 4919427
However, with the processing method of PTL 1, the plated layer cannot follow the plastic deformation of the underlying steel sheet unless the elongation percentage is limited to less than 20%, so that the area percentage of working cracks (cracks) exceeds 5%. In addition, this method requires preparation of a heating device, so that the problem of an increased cost for investment in plant and equipment arises. Furthermore, a heating time for heating the Zn-based plated steel sheet to a certain temperature is required. This reduces the production efficiency, and the resulting cost increase is inevitable.
Therefore, it is an object of the present invention to provide a processing method of a workpiece that uses a Zn-based plated steel sheet as a raw material, and that can enhance the corrosion resistance of the workpiece by reducing the occurrence of red rust resulting from working cracks in a plated layer, without introducing a significant investment in plant and equipment or deterioration in the production efficiency.
To solve the object, a processing method according to the present invention further performs, after performing plastic working on a Zn-based plated steel sheet 1 as a raw material to produce a workpiece 2 having a predetermined shape, pressurization processing by applying reduction to the worked portion in a sheet thickness direction such that a plated layer 3 is rolled.
When reduction is applied in the sheet thickness direction to the plated layer 3 suffering from working cracks 4 caused by plastic working to perform pressurization processing such that the plated layer 3 is rolled, the plated layer 3 collapses in the sheet thickness direction and expands in the in-plane direction of the plated layer 3. As a result, the interval between the plated layers 3 adjacent to each other via a gap formed by the working cracks 4 is narrowed, which facilitates the sacrificial protection function of the Zn-based plated metal and suppresses the deterioration in the corrosion resistance of the workpiece 2.
The reduction in the sheet thickness direction for the purpose of performing pressurization processing on the plated layer 3 needs to apply a stress sufficient to allow the plated layer 3 to expand in the in-plane direction, or in other words, to allow the plated layer 3 to be rolled. Accordingly, as long as such a stress can be applied, the reduction can be performed for a plurality of times in a divided manner depending on the shape of the worked portion, or may be performed also as restriking (additional working) for finishing the workpiece 2 into a predetermined shape that is more accurate.
With the processing method of the Zn-based plated component according to the present invention, the interval between the plated layers adjacent via a gap formed by working cracks is narrowed, which facilitates the sacrificial protection function of the Zn-based plated metal and suppresses deterioration in the corrosion resistance of the workpiece. That is, applying reduction to the plated layer in the sheet thickness direction can achieve the same effect as that is achieved by a reduced level of the working cracks in the plated layer.
In addition, when a Zn—Al—Mg-based plated steel sheet coated with a Zn—Al—Mg-based alloy having excellent corrosion resistance is used as the raw material, the sacrificial protection effect is exerted further strongly, so that it is possible to enhance the ability to suppress the occurrence of red rust.
Accordingly, it is possible to provide a processing method of a workpiece that uses a Zn-based plated steel sheet as a raw material, and that can enhance the corrosion resistance of the workpiece by reducing the occurrence of red rust resulting from the working cracks in the plated layer, without introducing a significant investment in plant and equipment or deterioration in the production efficiency.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
In
In
To make the interval between the working cracks 4 small, in the present invention, reduction is applied to the worked portion in the sheet thickness direction by using a pressurization punch 8 and a pressurization die 9, as shown in (c) of
Regarding the pressurization using the pressurization punch 8 and the pressurization die 9, pressurization for simply deforming the plated layer 3 may be performed when the workpiece 2 has been finished into a predetermined shape, and the shape of the workpiece 2 itself will not be changed. In the case of restriking the workpiece 2 so as to be finished into a predetermined shape, pressurization processing on the plated layer 3 can also be performed simultaneously with the restriking.
The use of a Zn—Al—Mg-based plated steel sheet, which is a plated steel sheet coated with a plated metal containing Zn, Al and Mg, as the Zn-based plated steel sheet 1 can further enhance the sacrificial protection effect. With the Zn—Al—Mg-based plated steel sheet, when the underlying steel sheet 7 is exposed by the working cracks 4, the plated metal around the working cracks 4 is eluted, and the eluted components cause a dense Zn corrosion product containing Mg to cover the underlying steel sheet 7 around the working cracks 4, thereby suppressing corrosion. The Mg-containing Zn corrosion product has a higher protective performance than the Zn corrosion product of the Zn-plated steel sheet, and thus can achieve a stronger sacrificial protection effect.
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the examples.
Using a Zn—Al (6 wt %)—Mg (3 wt %) alloy-plated steel sheet having a sheet thickness of 1.2 mm and a plating deposition amount per side of 140 g/m2 as a raw material, bulging processing and pressurization on the worked portion were performed by the steps shown in
The punch 5 used for the bulging processing has a columnar shape having a diameter of 200 mm and a shoulder portion having a radius of curvature of 10 mm. Meanwhile, the die 6 has an inner diameter of 203 mm and a shoulder portion having a radius of curvature of 10 mm. The blank holder 12 has an inner diameter of 202 mm. Then, as shown in (b) of
Then, pressurization processing was performed on a worked portion of the workpiece 2. As shown in (c) of
Then, the pressurization force of the pressurization processing was set to three levels, namely, 30 kN, 40 kN, and 60 kN, and the pressurization direction was set to a direction from up to down on the paper plane relative to the head portion 10 of the workpiece 2, as indicated by the outlined arrow shown in (c) of
Here, in (c) of
The states of the working cracks in the plated layer 3 in the above-described pressurization processing before and after pressurization are shown in
It can be seen in the drawing that, as a result of performing pressurization processing, the interval between adjacent working cracks 4 in the plated layer 3 has been narrowed.
In addition, before and after performing pressurization of the worked portion, the state of the working cracks 4 in the plated layer 3 at the head portion 10 of the workpiece 2 was observed at a magnification of 200× by an optical microscope, and the area ratio (=the underlying steel sheet exposure percentage) of the area in which the underlying steel sheet 7 was exposed by the working cracks 4 in the plated layer 3 relative to an observed area of 5 mm2 was evaluated.
The changes in the underlying steel sheet exposure percentage caused by pressurization are shown in
Further, the workpiece 2 before pressurization and the workpiece 2 pressurized at 30 kN were subjected to a neutral salt spray cycle test, and were evaluated for the corrosion resistance. The conditions for the neutral salt spray cycle test are those shown in
As a result of the above-described 100-cycle test, red rust occurred from the head portion in the workpiece 2 that had not undergone pressurization. However, no red rust occurred from the head portion of the workpiece 2 in which the head portion was pressurized at 30 kN, so that it was confirmed that the processing method according to the present invention can suppress deterioration in the corrosion resistance of the Zn-based plated workpiece 2.
The processing method of a Zn-based plated workpiece according to the present invention is useful to suppress deterioration in the corrosion resistance, attributed to working cracks in a plated layer caused by plastic working, of a workpiece using a Zn-based plated steel sheet as a raw material, and to maintain good corrosion resistance.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/004342 | 8/22/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/027293 | 2/25/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20120186705 | Sikora | Jul 2012 | A1 |
20170043386 | Nakagaito et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2495352 | Sep 2012 | EP |
3135394 | Mar 2017 | EP |
01079382 | Mar 1989 | JP |
H02175007 | Jul 1990 | JP |
2004149850 | May 2004 | JP |
2007327104 | Dec 2007 | JP |
2009-082992 | Apr 2009 | JP |
4919427 | Feb 2012 | JP |
10-2014-0081623 | Jul 2014 | KR |
2016013666 | Jan 2017 | MX |
Entry |
---|
Translated WIPO written Opinion of PCT/JP2014/004342; dated Nov. 18, 2014. |
Translation of JP 2004-149850 from JPO; Sep. 2018. |
Translation of JP 2007-327104 from JPO; Sep. 2018. |
Office Action dated Mar. 1, 2018 from the corresponding Korean Patent Application No. 10-2017-7004779. |
European Search Report dated Jul. 28, 2017 from corresponding European Application No. 14900014.3. |
European Office Action dated Sep. 4, 2017 from corresponding European Application No. 14900014.3. |
International Search Report dated Nov. 18, 2014 for Application No. PCT/JP2014/004342 and English translation. |
Office Action dated Jul. 13, 2018 from corresponding Chinese Patent Application No. CN 201480081394.6. |
“Section VII Pressure processing repair method”, Foundation for Operation and Repair of Vehicle Tractor, Department of Agricultural Machinery, Tsinghua University, Zhenjiang Agricultural Machinery College, p. 299, with publication date of Dec. 31, 1961, and an English translation. |
Number | Date | Country | |
---|---|---|---|
20170266708 A1 | Sep 2017 | US |