This application claims the benefit of People's Republic of China application Serial No. 201110185404.9, filed Jul. 4, 2011, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a user equipment (UE) processing method and a femtocell system, and more particularly to a method for processing UE connection under a mixed mode and a femtocell system.
2. Description of the Related Art
In a mobile communication system (such as a 3G network), a femtocell links user equipments (UE) located within a household or a small zone via an air interface, and further links the UE to a network of an operator via a broadband network so as to achieve mobile data offloading. In this manner, indoor communication quality is improved, and voice and data services may be provided at a lower cost.
The femtocell, such as a home node-B (HNB) and a home evolved node-B (HeNB), provides wireless coverage for the UE located within a household. The femtocell provides a connection service to the UE. According to the 3GPP standard, the femtocell provides three connection modes, namely, the open mode, the mixed mode and the closed mode. Under the open mode, every UE is unconditionally allowed to connect to the femtocell. Under the mixed mode, some UEs can be connected to the femtocell with higher priority, and other UEs can be connected to the femtocell with lower priority. Under the closed mode, connection service is provided to specified UE(s) only.
The mixed mode is an important mode for the femtocell. However, the connection under the mixed mode is still lacking of agreed protocols, and details for implementing priority are not yet provided.
The invention is directed to user equipment (UE) processing method under a mixed mode and a femtocell system.
According to one embodiment of the present invention, a method for processing UE connection under a mixed mode for use in a femtocell is provided. The method includes the following steps. A connection request is received from a low priority UE under a mixed mode. Whether the measurement results corresponding to the femtocell satisfy threshold settings is determined in response to the connection request, wherein the measurement results include a path loss corresponding to the femtocell. If the measurement results satisfy the threshold settings, then the low priority UE is allowed to be connected to the femtocell.
According to one embodiment of the present invention, a femtocell system for processing the connection of a UE is provided. The femtocell system includes a mobile communication unit and a processing unit. The processing unit is coupled to the mobile communication unit for controlling the mobile communication unit to operate under at least one mobile communication mode. Under the mixed mode, the processing unit receives a connection request from a low priority UE. The processing unit, in response to the connection request, determines whether the measurement results corresponding to the femtocell satisfy threshold settings, wherein the measurement results include a path loss corresponding to the femtocell. If the measurement results satisfy the threshold settings, then the processing unit controls the mobile communication unit to allow the low priority UE to be connected to the femtocell.
In one embodiment, suitable resource allocation, such as the allocation of power and code resource, is provided after the low priority UE is connected to the femtocell under the mixed mode.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiment(s). The following description is made with reference to the accompanying drawings.
Detailed descriptions with appended drawings are disclosed below for elaborating the operations and structures in terms of exemplary embodiments.
Embodiments of a user equipment (UE) processing method under a mixed mode and a femtocell are disclosed below. In one embodiment, the femtocell processes a connection request sent by a low priority UE under a mixed mode. The quality of the signal is used as a criterion for determining whether to allow the connection of the low priority UE. Furthermore, after the low priority UE is connected to the femtocell, resource allocation under a mixed mode is performed. Furthermore, an embodiment of a femtocell with a mixed mode is provided.
Under the mixed mode, the femtocell needs to process the UE connection request of both high priority UE and low priority UE (or the low priority UE may be regarded as a non-prioritized UE). Under the mixed mode, the femtocell should prioritize the connection request of the high priority UE and accordingly allocate more resources to the high priority UE even when the signal quality is poor. The UE is conformed to the 3GPP standard, such as a UE for WCDMA or TD-SCDMA. Examples of the UE include communication devices such as a smart phone, a tablet PC, an e-book and so on.
In response to the request of high priority UE, the femtocell needs o make suitable allocation for resource saving. According to one embodiment, when a low priority UE requests connection, the femtocell adopts signal quality as a criterion for determining whether to allow the connection request of the low priority UE, wherein the criterion of the signal quality also includes the amount of path loss. As illustrated in
The implementation of using the signal quality as a criterion for determining whether to allow the low priority UE to connect to the femtocell as shown in step 20 elaborates the subsequent processing of resource allocation and saving. In one embodiment, step S20 may include step S123 so as to determine whether the measurement results corresponding to the femtocell satisfy the threshold settings, wherein the connection request carries the measurement results corresponding to the femtocell. The measurement results for the femtocell may be indicated by using, for example, an information element (IE) of measured results on random access channel (RACH) of a radio resource control (RRC) connection request according to the 3GPP standard. According to the 3GPP standard, the IE of the measurement results carried by the RCC connection request includes an Ec/N0 value of a common pilot channel (CPICH) corresponding to a particular cell (e.g., the femtocell), a received signal code power (RSCP) value from the CPICH, and a path loss value. The above three values respectively are the dB value indicating signal quality, the dBm value indicating signal strength, and the dB value indicating path loss.
When the signal quality is good enough (that is, the measurement results corresponding to the femtocell satisfy the threshold settings; e.g., the Ec/N0 value, the RSCP value, and the path loss value satisfy respective thresholds), will the low priority UE be linked to the femtocell. For example, if the path loss value of the measurement results is less than a path loss threshold (such as less than 60 dB), then the low priority UE is allowed to connect to the femtocell, as shown in step S40. The threshold settings, such as the above three thresholds, may be set according to the resource allocation of the femtocell or the needs of the bearers allocated to the UE, or obtained from the core network. If the signal quality is not good enough (that is, the measurement results corresponding to the femtocell do not satisfy the threshold settings), then the femtocell does not allow the connection of the low priority UE. For example, if the path loss value is greater than a path loss threshold (such as greater than 60 dB), then the connection request of the low priority UE is rejected, as shown in step S125. Particularly, if the path loss does not satisfy a path loss threshold of the threshold settings, a message is sent to inform that the connection request of the low priority UE is rejected, as shown in step S125. That the path loss does not satisfy the path loss threshold has a physical meaning that the distance between the UE and the femtocell has been over a specific distance, and the femtocell will need to increase its output power if the connection request of the UE is allowed. Under such circumstance, the femtocell will reject the connection request of the low priority UE so as to avoid wasting more resources. In other words, such approach reserves the resources for the high priority UE.
In one embodiment, step S20 may be implemented to include such as step S121, so as to determine whether the connection request carries measurement results corresponding to the femtocell. If not, as shown in step S131, a measurement control request is sent to the low priority UE so as to obtain the path loss corresponding to the femtocell. In step S133, whether the path loss satisfies a path loss threshold of the threshold settings is determined. If not, then the process proceeds to step S135 so as to release the link.
The method for processing the connection request of low priority UE as shown in
As shown in
Referring to
Referring to
Since the above RRC connection request does not carry measurement results, the FRRM unit sends an RRC measurement control request to the FL1 unit, as in step S305. In step S310, the FL1 unit sends the RRC measurement control message to the user equipment UE. In step S315, the user equipment UE sends an RRC measurement report to the FL1 unit. In step S320, the FL1 unit transmits the RRC measurement report to the FRRM unit. As shown in step S325, the FRRM unit sends a threshold acquisition message to the core network OAM. As shown in step S330, the core network OAM sends threshold settings message to the FRRM. As shown in step S340, the FRRM unit determines whether the measurement results corresponding to the femtocell satisfy the threshold settings. If the path loss in the measurement results does not satisfy a path loss threshold, then a message is sent to inform the low priority UE that the connection request is rejected. As shown in step S345, the FRRM unit sends an RRC connection release message through a dedicated control channel (DCCH). As shown in step S350, the RRC connection release message is transmitted to the user equipment UE through the FL1 unit. In other words, the RRC connection request is rejected.
The RRC protocol is taken as an example of protocol for used in the above embodiments. However, the RRC protocol, as it is established, has nothing to do with the method for processing the connection request of low priority UE under a mixed mode, and the protocols for processing connection as shown in
Referring again to
Various embodiments regarding the allocation of power resource are discussed below. The allocation of power resource has two scenarios, namely the uplink transmission and the downlink transmission.
In terms of downlink transmission, the transmission power of the femtocell is to be controlled so that the burden is alleviated and more resources may be reserved to the high priority UE. Consequently, the transmission power of the entire radio link tends to be set conservatively. In one embodiment, step S161 may include the following steps. The upper limit of the transmission power of the femtocell is controlled to be substantially a maximum downlink power MAX_DL_Power, wherein the maximum downlink power MAX_DL_Power is determined according to the maximum allowed path loss MAX_Pathloss, and the maximum allowed path loss MAX_Pathloss may have different values for low priority UE and for high priority UE. Thus, the maximum allowed path loss for low priority UE is designated as MAX_Pathloss_Low_UE, and the maximum allowed path loss for high priority UE is designated as MAX_Pathloss_High_UE. In one embodiment, the maximum downlink power MAX_DL_Power is determined according to the MAX_Pathloss, the received total wideband power offset RTWP_offset, and the UE optimized uplink reception level UE_optimized_UL_RX_Level. For example, the maximum downlink power MAX_DL_Power can be expressed as:
MAX—DL_Power=MAX_Pathloss+RTWP_offset+UE_optimized—UL—RX_Level. (formula 1)
Since the values of the maximum allowed path loss may be different for low priority UE and high priority UE, the corresponding values of maximum downlink power MAX_DL_Power need to be set separately.
In the above example, the maximum downlink power MAX_DL_Power is determined based on the maximum allowed path loss MAX_Pathloss while the MAX_Pathloss_Low_UE or the MAX_Pathloss_High_UE may be assigned or adjusted. Therefore, the values of the MAX_DL_Power corresponding to the UE with different priority levels can be obtained by adjusting the value of the MAX_Pathloss_Low_UE or MAX_Pathloss_High_UE so as to avoid wasting power resource of the femtocell. In another example, when the user equipment UE is near the femtocell, the value of the MAX_Pathloss_Low_UE or MAX_Pathloss_High_UE may be adjusted for the femtocell to reduce output power. Thus, in some embodiments, by assigning or adjusting the volume of the MAX_Pathloss, the user equipment UE may allocate power resource of the femtocell more flexibly and effectively. As an example, for system operation or femtocell installation, the operator may set the quantity of the MAX_Pathloss_Low_UE or MAX_Pathloss_High_UE with respect to the radio coverage zone of the femtocell. For example, the MAX_Pathloss_Low_UE is set to 70 dB, and the MAX_Pathloss_High_UE is set to 95 dB.
In terms of uplink transmission, since the interference problem needs to be considered, the maximum allowed uplink transmission power MAX_UL_TX_Power for low priority UE is set so that its interference to other UE is minimized. In one embodiment, step S161 may further include the following steps. A message is sent to inform the low priority UE to set the maximum allowed uplink transmission power for low priority UE, wherein the maximum allowed uplink transmission power MAX_UL_TX_Power is determined according to the maximum allowed path loss for low priority UE MAX_Pathloss_Low_UE. In one embodiment, the maximum allowed uplink transmission power MAX_UL_TX_Power is determined according to MAX_Pathloss_Low_UE, the RTWP_offset, and the femtocell optimized uplink reception level Femtocell_optimized_UL_RX_Level. For example, the maximum uplink power MAX_UL_TX_Power for low priority UE can be expressed as:
MAX—UL—TX_Power=MAX_Pathloss_Low—UE+RTWP_offset+Femtocell_optimized—UL—RX_Level (formula 2)
In the above example, the maximum uplink power MAX_UL_TX_Power is determined according to the maximum allowed path loss for low priority UE MAX_Pathloss_Low_UE. Like the above example, the maximum uplink power MAX_UL_TX_Power for high priority UE is determined according to the maximum allowed path loss for high priority UE MAX_Pathloss_High_UE. The MAX_Pathloss_Low_UE or the MAX_Pathloss_High_UE may be assigned or adjusted. Therefore, the value of the MAX_UL_TX_Power corresponding to the UE with different priority level can be obtained by adjusting the value of the MAX_Pathloss_Low_UE or MAX_Pathloss_High_UE so as to avoid wasting power resource of the user equipment UE. In another example, when the user equipment UE is near the femtocell, the value of the MAX_Pathloss_Low_UE or MAX_Pathloss_High_UE may be adjusted for the user equipment UE to reduce output power. In the above embodiment, by assigning or adjusting the value of the MAX_Pathloss, the user equipment UE can allocate power resource more flexibly and effectively.
With respect to demodulation performance, the femtocell and the user equipment UE are different. The femtocell has better demodulation performance, and is able to demodulate the signal having lower quality. When transmitting a signal to the user equipment UE, the femtocell needs to transmit the signal with higher power in order for the user equipment UE to demodulate the signal received from the femtocell. Regarding the downlink power allocation as indicated in the embodiment of formula 1, the item UE_optimized_UL_RX_Level indicates that the demodulation performance of the user equipment UE needs to be concerned. Regarding the uplink power allocation as indicated in the embodiment of formula 2, the item Femtocell_optimized_UL_RX_Level indicates that the demodulation performance of the femtocell needs to be concerned. Since the user equipment UE (that is, an electronic device such as a smart phone, a tablet PC and so on) linked to the femtocell already satisfies the path loss threshold, in the above embodiment of power resource allocation, the allocation of the uplink power and downlink power is determined according to the maximum allowed path loss for low priority UE MAX_Pathloss_Low_UE. Thus, unnecessary power loss is avoided, the user equipment UE can make good use of its limited power, and battery duration is prolonged. For high priority UE, unnecessary power loss can also be avoided in the above embodiment of power resource allocation.
Various embodiments of code resource allocation are disclosed below. The allocation of code resource has two scenarios, namely, the uplink transmission and the downlink transmission. In the mixed mode, in order to reserve more resources for high priority UE, the allocation of code resource for low priority UE is restrictive, and packet service (PS) with lower speed bearers can be assigned.
For example, for low priority UE, the highest data rate for the uplink bearer is 64 Kbps. As shown in
The femtocell prioritizes the UE with higher priority. After a high priority UE is connected to the femtocell, the processing unit allocates a bearer having larger bandwidth to the high priority UE. For example, if the high priority UE supports R4, uplink and downlink packet services with larger bandwidths, such as 128 Kbps uplink packet service and 384 Kbps downlink packet service, may be allocated to the high priority UE. If the high priority UE supports R5, the 128 Kbps uplink packet service and the HSDPA downlink packet service may be allocated to the high priority UE.
The mobile communication unit 110 may be regarded as an analog front end for wireless signal transmitting and receiving, and includes, for example, an antenna 111, a power amplification unit 113, and a transceiver unit 115. The antenna 111 is coupled to the power amplification unit 113, and the transceiver unit 115 is coupled to the power amplification unit 113. In other embodiments, the mobile communication unit 110 may be implemented with different elements or structure to correspond with at least one mobile communication mode (such as 2G, 3G or 4G) to be adopted. Thus, the elements of the mobile communication unit 110 are not limited to the examples above. For example, a 3G femtocell H(e)NB, such as a home node-B (HNB) and a home evolved node-B (HeNB), is capable of monitoring the universal mobile telecommunications system (UMTS) channel for detecting a base station nearby and a 2G channel. Thus, when the user equipment UE leaves the femtocell zone, the user equipment UE may perform suitable network switching. Thus, in the present example, the mobile communication unit 110 includes an analog front end corresponding to the UMTS channel and the 2G channel.
The processing unit 120 is coupled to the mobile communication unit 110 for controlling the mobile communication unit 110 to operate under at least one mobile communication mode (such as 2G, 3G or 4G mode). Under the mixed mode, the processing unit 120 receives a connection request from a low priority UE. In response to the connection request, the processing unit 120 determines whether the measurement results corresponding to the femtocell satisfy the threshold settings. The measurement results include the path loss corresponding to the femtocell. If the measurement results satisfy the threshold settings, then the processing unit 120 controls the mobile communication unit 110 to allow the low priority UE to be connected to the femtocell.
In one embodiment, after the low priority UE is connected to the femtocell, the processing unit controls the upper limit of the transmission power of the mobile communication unit to be substantially a maximum downlink power. In one embodiment, after the low priority UE is connected to the femtocell, the processing unit controls the mobile communication unit to send a message to inform the low priority UE to set the maximum allowed uplink transmission power for low priority UE.
In one alternate embodiment, after the low priority UE is connected to the femtocell, the processing unit, according to the version of the mobile communication technology supported by the low priority UE, controls the mobile communication unit to provide an uplink bearer and a downlink bearer to the low priority UE with respect to the packet service.
In other embodiments, the femtocell prioritizes UEs with higher priority. After a high priority UE is connected to the femtocell, the processing unit of the femtocell allocates bearers having larger bandwidth to the high priority UE.
Thus, the femtocell system 100 may be used for implementing the method for processing UE connection under the mixed mode, as disclosed in above embodiments, by using software, hardware, or firmware.
For example, the processing unit 120 can be realized by such as a micro-control unit (MCU), a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC) or a system on chip (SoC).
As indicated in
In one embodiment, the femtocell system 100 needs a broadband network for linking the UE to a network of an operator. Therefore the femtocell system 100 further includes a network unit 130 providing an interface between the femtocell system 100 and a broadband website. In one alternate embodiment, the network unit 130 provides an interface between the femtocell system 100 and a femtocell gateway. Thus, the elements of the femtocell system 100 may be added or omitted to fit the design needs, and the structure of the femtocell system 100 is not limited to the above exemplification.
In other embodiments, the 3G protocols, such as WCDMA or TD-SCDMA, or even the 4G mobile communication standards may be implemented according to the above embodiments to meet actual requirements.
The disclosure provides many embodiments of a method for processing UE connection under a mixed mode and a femtocell. In one embodiment, the femtocell processes a connection request of a low priority UE under a mixed mode for allowing the low priority UE, whose signal quality conforms to the threshold, to be connected to the femtocell, such that resources may be allocated more effectively. Furthermore, in some embodiments, power resource or code resource is effectively allocated after the low priority UE is connected to the femtocell. In addition, a number of embodiments of the femtocell under a mixed mode are disclosed and different methods for processing the UE having different priority levels under a mixed mode are provided.
While the invention has been described by way of example and in terms of the embodiment(s), it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
201110185404.9 | Jul 2011 | CN | national |