Embodiments of the invention relate to a method for producing a branch for a surgical instrument and an instrument having at least one branch provided by means of the method.
Document EP 2 554 132 discloses an instrument for the coagulation of biological tissue between two branches of a tool of a surgical instrument. Each branch comprises an electrode support, which is connected to a thin, plate-shaped electrode via a plurality of punctiform welded connections. The electrode support can have a plastic housing.
Furthermore, US 2011/0073246 A1 discloses an instrument having branches comprising a plastic-metal composite part. This is formed by an electrode plate having a U-bent edge, which has circumferential recesses or holes. Plastic is injected beneath the electrode plate and extends over the edge of the electrode plate.
Furthermore, WO 02/080785 A1 relates to the anchoring of electrode plates in an electrically insulating substrate for branches of a medical instrument. The electrode plate can have an offset edge, which is in form-locked engagement with the plastic substrate.
When designing medical instruments for coagulating tissue, it should be ensured that the tongs-like tool is precisely designed and can apply relatively high pressure on biological tissue. Additional restrictions, such as sterility, sterilizability, heat resistance, electrical insulation of the electrode plates, thermal insulation of the electrode plates with respect to the surrounding tissue, etc., must also be taken into consideration.
Proceeding therefrom, the object of embodiments of the invention is to specify a concept for producing improved branches for producing high-quality medical instruments.
In an embodiment of the invention, a metal part is initially provided, which has a support section and a functional section, which are intended to be electrically insulated from one another on the finished branch, but which are initially connected to one another as one piece via an electrically conductive connecting web. This metal part is encapsulated in plastic via injection-molding, wherein at least one surface region of the functional section can be left exposed, which is preferably the case. Preferably, the connecting web is also left at least partially exposed. The plastic establishes a mechanical connection between the support section and the functional section, i.e., it touches both sections and thereby forms a bonded and/or form-locked connection. Once said mechanical connection has been established, the connecting web is removed. In this case, if the connecting web was also encapsulated in plastic via injection molding, the plastic can also be partially removed. If the connecting web was left exposed, it can be removed without the surface of the plastic being penetrated. The connecting web can be removed by means of cutting, breaking off, grinding, laser cutting, or any other suitable separating method.
After the connecting web or connecting webs are removed, the support section and the functional section are electrically separated from one another. Due to the plastic connection, however, they remain fixedly interconnected and thereby form a largely gap-free, compact component. Given that there is no metallic connection between functional sections, support sections, these are not only electrically insulated from one another, but the heat transfer between the functional section and the support section is reduced.
In an another embodiment, the metal part is provided in a primary shaping process for example in an additive production process, for example by adding liquid metal droplets locally to an existing metal part in order to build up the metal part. As an alternative, the metal part can be produced in a casting process, for example a precision-casting process or metal injection molding (MIM). In a preferred embodiment, the metal part is provided by means of a powder metallurgical production process, for example by means of selective laser melting of metal powder. The metal part is created layer-by-layer via laser melting in a bed of metal powder. Complicated geometries having numerous undercuts, narrow gaps, and the like can be produced in this manner. Other 3D printing methods can also be used to manufacture metal parts.
The functional section of the branch can be an electrode plate, a lever arm, or any other type of section, which must be electrically and/or thermally separated from the support section, but which is connected thereto in a mechanical or form-locked manner and/or a bonded manner.
The functional section and the support section are preferably provided such that they form a gap with one another. This gap is preferably completely filled with a material, for example a plastic. In the gap, holding structures can be formed on the functional section and/or on the support section, said holding structures extending in the direction toward the respective other section, but not coming into contact therewith. The holding structures are preferably undercut structures, for example hook shapes, T-structures, mushroom head structures, hammerhead structures, or the like. This makes it possible, in particular, to anchor the section having an exposed surface region, in particular the functional section, in the plastic in a form-locked manner. The support section can comprise such structures or can be entirely encased in plastic, whereby in turn the plastic is anchored on the support section in a form-locked manner. The material used to connect the functional section and the support section can comprise components that enable a bonded connection between the functional section and the support section. It is thereby possible to connect the functional section and the support section to one another in a form-locked and/or bonded manner.
The electrosurgical instrument according to an embodiment of the invention comprises at least one branch, which has a support section and a functional section, which are made of metal having the same composition and structure, and which are fixedly interconnected via a body, preferably a plastic body. The reason why the composition and structure of the metal are the same is preferably because the support section and the functional section were jointly produced in a single primary shaping process, wherein connection webs were provided during the production of the support section and the functional section, which were removed after the gap was filled and/or the metal part was encapsulated with the connection material, for example the plastic, via injection molding. The support section and the functional section are therefore parts of a component that was previously a seamless, single component.
The functional section, which can be an electrode plate, a lever arm, or the like, is embedded together with the support section in a body and is anchored therein in a form-locked and/or bonded manner. Holding structures can be provided therefor, for example projections extending into the gap. One or more such projections can be arranged on the side of the functional section facing the holding section. In addition or as an alternative thereto, one or more such projections can be arranged on the side of the holding section facing the functional section. At least one of the projections preferably has an undercut. It is thereby ensured that a secure, loadable connection, which is resistant to changes in temperature, exists between the functional section and the support section even after the connecting webs have been removed.
Further details of advantageous embodiments of the invention are the object of the drawing, the description, or claims.
In one embodiment, the branch 11 is a plastic-metal composite part. It includes a support section 15 and at least one, in the present case two functional sections 16, 17. The support section 15 comprises an elongate finger 18, which is illustrated with dashed lines in
In the present exemplary embodiment, the functional section 16 is formed by an electrode plate 21, which is intended to be brought into contact with the biological tissue to be coagulated. The electrode plate 21 has a functional surface, which can be flat or, as illustrated in
The functional section 16 can be provided with a holding structure 23, which is designed for example in the form of one or more projections 24. Such projections 24 preferably extend away from the side of the functional section 16 facing the support section 15, in the direction of the support section 15. The projections 24 can be continuous or can have an enlarged cross section at one or more points with increasing spacing from the functional section 16.
The further functional section 17 of the branch 11 is a lever 28, for example, which is connected to the support section 15 in a mechanically fixed manner, but without electrical contact. The lever 28 extends in the direction opposite the finger 18, as viewed from the hinge opening 19. The lever 28 is used to introduce forces into the branch 11 in order to move said branch for example in the closing direction, in order to grip tissue. As necessary the lever 28 can also have an exposed surface region, for example as the functional surface, which is not encapsulated in plastic via injection-molding.
The design of the functional section 17 emerges, in particular, from
In one embodiment, the branch 11 is produced as follows:
Initially a metal part 33 is provided, as shown in
After the plastic jacket 26 has cured, the connecting webs 34 to 39 are removed. Depending on the material properties, said connecting webs can be cut off, broken off, torn off, or removed by any other means, for example by laser processing, punching, grinding, or milling. This applies for embodiments of the method, in which the connecting webs 34 to 39 are located outside of the material jacket 26, and in methods that leave material on the connecting webs 34 to 39.
The branch 11, according to an embodiment of the invention, is created by means of an additive 3D production process for producing a metal part 33, which comprises at least two sections, namely a support section 15 and a functional section 16, 17. The metal part 33 is a single-pieced part, in which the support section 15 and the functional section 16, 17 are seamlessly interconnected by means of corresponding connecting webs 34, 35. After the material 26 is applied, the connecting webs are removed. The thusly produced branch 11 is dimensionally accurate, compact, and has excellent electrical and thermal and mechanical properties.
Number | Date | Country | Kind |
---|---|---|---|
14179742 | Aug 2014 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5462622 | Small | Oct 1995 | A |
20080195093 | Couture | Aug 2008 | A1 |
20090082767 | Unger et al. | Mar 2009 | A1 |
20100268067 | Razzaque | Oct 2010 | A1 |
20110073246 | Brandt et al. | Mar 2011 | A1 |
20110288369 | Ginnebaugh | Nov 2011 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120259331 | Garrison | Oct 2012 | A1 |
20140100568 | Garrison | Apr 2014 | A1 |
20140353869 | Goodman | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2011226904 | Apr 2012 | AU |
2011226904 | Apr 2012 | AU |
2013230575 | Sep 2014 | AU |
PI 1107044 | Jan 2016 | BR |
2 754 243 | Apr 2012 | CA |
2 865 579 | Sep 2013 | CA |
102525639 | Jul 2012 | CN |
103717162 | Apr 2014 | CN |
104302239 | Jan 2015 | CN |
102525639 | Nov 2015 | CN |
105055020 | Nov 2015 | CN |
2 301 467 | Mar 2011 | EP |
2 436 330 | Apr 2012 | EP |
2 510 896 | Oct 2012 | EP |
2554132 | Feb 2013 | EP |
2 436 330 | Nov 2013 | EP |
2 671 528 | Dec 2013 | EP |
2 807 988 | Dec 2014 | EP |
2 822 495 | Jan 2015 | EP |
2 822 495 | Oct 2015 | EP |
2 671 528 | Jul 2016 | EP |
3 045 135 | Jul 2016 | EP |
5-291746 | Nov 1993 | JP |
H 09-223428 | Aug 1997 | JP |
9-260013 | Oct 1997 | JP |
2002-301162 | Oct 2002 | JP |
2006-247972 | Sep 2006 | JP |
2012-75906 | Apr 2012 | JP |
2013141606 | Jul 2013 | JP |
5789470 | Oct 2015 | JP |
10-2012-0035129 | Apr 2012 | KR |
2 234 282 | Jan 2004 | RU |
WO 02080785 | Oct 2002 | WO |
WO 2013134044 | Sep 2013 | WO |
Entry |
---|
Frazier, William E., “Metal Additive Manufacturing: A Review,” Journal of Materials Engineering and Performance, vol. 23(6), Jun. 2014, pp. 1917-1928. (Year: 2014). |
Number | Date | Country | |
---|---|---|---|
20160030105 A1 | Feb 2016 | US |