The present invention generally relates to a method for producing composite webs and to security devices prepared from such composite webs.
Security devices (e.g., security threads, strips and patches) are used widely in security documents such as banknotes, passports and other high value documents. Typically, they are incorporated into the security document during manufacture although in some cases they are adhered onto a surface of the document after manufacture of the document itself.
Efforts to increase the security of these devices have included the use of high value materials such as liquid crystal color shift materials, which are inherently complex and specialized. These high value materials are typically applied as a film or thin layer on a surface of a continuous polymeric web substrate during continuous web manufacturing processes. Many times, however, the high value material is hidden or obscured in areas on the web surface by the application of additional materials (e.g., printed information).
The present inventor has developed a method for reducing the amount of high value materials used in the manufacture of security devices, and thus the cost of manufacture, while avoiding degradation or obscuration of the high value material. By way of the inventive method, the high value material is applied to only a part of the security device, leaving remaining parts of the device available for one or more additional materials that do not impact upon the effect of the high value material. In an exemplary embodiment, the inventive method allows for a 50% reduction in the amount of high value materials used in the manufacture of these security devices.
The term “high value materials”, as used herein, is intended to mean special materials typically in the form of films (or film-like materials) that have a high value due to their inherent specialization and complexity. Examples of such high value materials include, but are not limited to, liquid crystal color shift films, dielectric layer color shift films, diffraction grating films, holographic films, micro-optic film materials that project synthetic images, and the like.
The present invention specifically provides a method for producing a composite web for making composite security devices, the method comprising:
The resulting continuous composite web may then be slit into a number of composite security threads or strips, with each composite thread or strip having one of the narrow width high value threads or strips adhered to a surface thereof, the high value thread or strip positioned between, or aligned with one of the composite thread's or strip's longitudinal borders or edges.
The present invention further provides a composite security device, as described above.
Also provided are sheet materials that are made from or employ the inventive composite security device, as well as documents made from these materials. The term “documents”, as used herein designates documents of any kind having financial value, such as banknotes or currency, and the like, or identity documents, such as passports, ID cards, driving licenses, and the like, or non-secure documents, such as labels. The inventive optical system is also contemplated for use with consumer goods as well as bags or packaging used with consumer goods.
Other features and advantages of the invention will be apparent to one of ordinary skill from the following detailed description and accompanying drawings. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The present disclosure may be better understood with reference to the following drawings. Matching reference numerals designate corresponding parts throughout the drawings, and components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. While exemplary embodiments are disclosed in connection with the drawings, there is no intent to limit the present disclosure to the embodiment or embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications and equivalents.
Particular features of the disclosed invention are illustrated by reference to the accompanying drawings in which:
The composite security device of the present invention makes use of a reduced amount of high value materials while avoiding any impact (e.g., degradation, obscuration) by other security features on the effect demonstrated by these high value materials.
It is noted that while the composite security device of the present invention is described herein mainly as a security thread or strip, it is not so limited. As will be readily appreciated by those skilled in the art, the method for producing the inventive composite security device can be modified to accommodate different sizes, shapes, and configurations (patterns, designs, arrangements) of these composite devices. For example, a small strip of high value film or film-like material (e.g., a 2 millimeter (mm) wide strip) could be applied to a much larger stripe (e.g., a 10 mm wide stripe). A patch (e.g., a 25 mm×25 mm square patch) could likewise include a high value strip somewhere within its boundaries. The edge boundaries of the high value strip as well as the stripe and patch are not limited to straight edges. These edges could incorporate specific curved designs to add to the complexity of the inventive composite security device.
As described above, the composite security device of the present invention basically comprises:
The first polymer film may be positioned on either a top or bottom surface of the second polymer film. When adhered to the bottom surface, the second polymer film may have one or more regions which provide visual access (e.g., transparent regions) to the underlying first polymer film, with the design of these regions adding to the level of security demonstrated by the inventive composite security device.
The first polymer film (FPF) constitutes or embodies at least one high value material. Such a so-called “high value” polymer film, in one exemplary embodiment, constitutes a thin-layer element with color shift effect. Such thin-layer elements are made up of one or more thin layers having at least one region that exhibits a color shift effect. The region(s) exhibits a spectral shift and hence a visual color shift that varies with the viewing angle. The amount of color shift is dependent on the materials used to form the layer(s) and the thickness of the layer(s). Moreover, color shift components may, at certain wavelengths, exhibit the property of higher reflectance with increased viewing angle.
The thin-layer element may be at least partially coated with, imprinted or embossed, or formed from a color shifting pigment (e.g., liquid crystal flakes), ink (e.g., liquid crystal color shifting ink), foil, or bulk material, and in an exemplary embodiment, is a color shift film (CSF).
Color shifting inks are available from SICPA Securink Corporation, SICPA Product Security LLC, 8000 Research Way, Springfield, Va. 22153, while liquid crystal materials are available from BASF Corporation North America, 100 Campus Drive, Florham Park, N.J. 07932.
CSFs are available from JDS Uniphase Corporation, 430 North McCarthy Boulevard, Milpitas, Calif. 95035 (“JDS Uniphase Corp.”), under the trade designation Color Shift Film, and from Giesecke & Devrient GmbH, Prinzregentenstrasse 159, D-81677, Munich, Germany under the trade designation Color A/Color B Color Shift Foil.
In another exemplary embodiment, the “high value” polymer film is a micro-optic film material that projects synthetic images. These materials generally comprise (a) a light-transmitting polymeric substrate, (b) an arrangement of micro-sized image icons located on or within the polymeric substrate, and (c) an arrangement of focusing elements (e.g., microlenses). The image icon and focusing element arrangements are configured such that when the arrangement of image icons is viewed through the arrangement of focusing elements, one or more synthetic images are projected. These projected images may show a number of different optical effects. Material constructions capable of presenting such effects are described in U.S. Pat. No. 7,333,268 to Steenblik et al., U.S. Pat. No. 7,468,842 to Steenblik et al., U.S. Pat. No. 7,738,175 to Steenblik et al., U.S. Pat. No. 7,830,627 to Commander et al., U.S. Pat. No. 8,149,511 to Kaule et al.; U.S. Patent Application Publication No. 2010/0177094 to Kaule et al.; U.S. Patent Application Publication No. 2010/0182221 to Kaule et al.; European Patent No. EP 2 162 294 B1 to Kaule et al.; and European Patent Application No. 08759342.2 (or European Publication No. 2164713) to Kaule.
In a further embodiment, the “high value” polymer film is a holographic film material, which is available from JDS Uniphase Corp.
One or more additional security features, which like the second security feature(s) may be of the same or lesser value than the “high value” material(s), may also be applied to one or more layers or surfaces of the FPF. By way of example, metal and/or magnetic graphic indicia in the form of letters, numbers, symbols, or bar codes may be printed on one or opposing surfaces of the FPF. When printed on the back side of the FPF, these indicia become covert indicia that are hidden from view in the fully assembled composite security device. By way of further example, pigments that are white in visible light and that emit a color other than white under ultraviolet (UV) illumination may be incorporated in one or more layers or surfaces of the FPF.
In addition, an adhesive (e.g., a thermally activated adhesive) may be applied to a surface of the FPF to facilitate bonding to the SPF.
Preferred widths or diameters of the FPF range from about 1 to about 5 mm (more preferred, from about 2 mm to about 3 mm), while preferred thicknesses range from about 8 to about 20 microns (more preferred, from about 10 to about 12 microns).
The SPF, which is positioned above or below the FPF in the inventive composite security device, may constitute or embody one or more overt and/or covert second security features, or may have these second security features applied as a coating to one or opposing surfaces. As mentioned above, the SPF has a width or diameter greater than the width or diameter of the FPF.
As previously noted, the second security feature(s) may be of the same or lesser value than the “high value” material(s). As will be readily appreciated by those skilled in the art, sometimes it may be desirable to combine two expensive materials which cannot be manufactured at the same time onto a single device. For example, it may be desirable for the FPF and the SPF to both constitute CSFs, with each CSF exhibiting a different color shift spectrum. It may also be desirable for the FPF to constitute a micro-optic film material, and for the SPF to constitute a film coated with an optically variable material (e.g., a polymeric liquid crystal). It may also be desirable for the FPF and/or the SPF to employ two or more “high value” materials such as a CSF with optically variable regions.
The SPF, in one exemplary embodiment, constitutes or embodies one or more second security features having a value less than the value of the “high value” material(s). One such example is a film material embodying UV illuminated pigments or dyes, infrared (IR) absorbing/reflecting materials, or the like.
The SPF, in another exemplary embodiment, constitutes or embodies one or more second security features having a value similar to the value of the “high value” material(s). For example, the SPF may constitute a CSF optionally with optically variable regions, as noted above, or it may constitute a diffraction grating film, a holographic film, or the like.
Preferred thicknesses for the SPF in these embodiments range from about 8 to about 12 microns, while more preferred thicknesses range from about 9 to about 11 microns.
The SPF may also be coated with one or more second security features in the form of materials having a value less than or similar to the “high value” material(s). In such embodiments, the SPF serves as a “carrier” film that may be formed using (a) one or more essentially colorless materials including, but not limited to, polymers such as polycarbonate, polyester, polyethylene, polyethylene napthalate, polyethylene terephthalate, polypropylene, polyvinylidene chloride, and the like, or (b) one or more colored or opaque materials (e.g., white films such as those prepared by adding titanium dioxide (TiO2) to one or more of the above listed polymers).
Contemplated materials, which are suitable for coating or depositing onto one or opposing surfaces of the SPF “carrier” film, include, but are not limited to, metal or metallic materials such as aluminum indicia (e.g., aluminum indicia made using a resist and etch technique, which may optionally utilize a transparent pigment in a resist layer that matches one of the colors in an overlying CSF), magnetic materials, liquid crystal pigments, UV illuminated pigments or dyes and/or IR absorbing/reflecting materials (e.g., fluorescent pigments in bar patterns), and the like.
As will be readily appreciated by those skilled in the art, when second security features are applied to a surface of the SPF in those areas that will be occupied by the FPF (i.e., the slit FPF sub-webs), these features become covert features that are hidden from view in the fully assembled composite security device.
Preferred thicknesses for the SPF “carrier” film range from about 7 to about 12 microns, while more preferred thicknesses range from about 8 to about 10 microns. The materials are coated onto the SPF “carrier” film at thicknesses ranging from about 1 to about 5 microns (preferably, from about 2 to about 3 microns).
In addition, and as noted for the FPF, an adhesive (e.g., a thermally activated adhesive) may also be applied to a surface of the SPF to facilitate bonding to the FPF.
The preferred width or diameter of the SPF ranges from about 4 to about 25 mm, more preferably, from about 5 to about 8 mm.
Other layers contemplated for use with the composite security device of the present invention include sealing or obscuring layers, outer protective layers, and adhesive layers that facilitate incorporation of the inventive composite device into or onto secure or non-secure documents.
The method for preparing the inventive composite security devices in the form of security threads or strips comprises:
In one exemplary embodiment of the inventive method, a web of CSF is printed with text or other indicia and then slit, in line, into 3 mm wide threads. The slit threads are then positioned at a distance apart of 6 mm on a second metalized web that has optionally been demetalized using a tinted resist to match one of the color shift range of colors. In addition, magnetic bar code is optionally incorporated between each slit thread and the second metalized web. An obscuring layer (e.g., camouflage white (TiO2 or other light scattering material) layer) is optionally applied to the back side of the second metalized web with fluorescent pigments in bar patterns. The entire construction is then over-laminated with a clear polymer layer for protection. The composite web is then slit to a width of 6 mm and spooled.
Referring now to
In
In
In
In
In
In
The inventive composite security thread 10 may be prepared in a web/sheet-based continuous manufacturing process, which is implemented using a lamination nip, into which two webs (FPF or “Web A”, SPF or “Web B”) are simultaneously introduced and precisely guided one above the other.
Generally speaking, and in an exemplary embodiment, a web constituting or embodying a “high value” material (Web A) is unwound and optionally one or more operations may then be performed on the web. For example, and as best shown in
Similarly, simultaneously introduced Web B, which is a web constituting or including a material of the same or lesser value than the “high value” material, is unwound and optionally one or more operations (as noted above) may then be performed on this web.
Upon completion of any operations on Web A, this web is precisely aligned to a tolerance ranging from about 0.1 to about 0.2 mm on an axis perpendicular to the machine or running direction of the converting machine and directed toward downstream slitting and lamination operations.
In particular, Web A is presented to a slitting machine (e.g., a Box Knife Shear slitting machine available from Independent Machine Company, 2 Stewart Place, Fairfield, N.J. 07004) employing a series of slitting knives (e.g., rotary knives, fixed blades), where it is divided into a plurality of sub-webs.
The sub-webs are then processed through a mechanical apparatus (e.g., a laminator available from Faustel, Inc., W194N11301 McCormick Drive, Germantown, Wis. 53022) that accepts the sub-webs in the same format as they emanate from the slitting machine. As the sub-webs pass through the mechanical apparatus, the mechanical apparatus is automatically adjusted from a compressed mode to an expanded mode which causes the sub-webs to slowly spread to positions roughly aligned with target positions on underlying Web B.
The sub-webs are then optionally further adjusted to ensure full alignment with target positions on underlying Web B using, for example, a series of fixed eyelets or rollers or other apparatus that allows the sub-webs to be routed in a way that positions them at the final expanded width to align correctly with Web B (see
Web B with aligned sub-webs is then directed through a laminating device such as a heated nip or other marrying device that presses or compiles the aligned sub-webs to Web B in a continuous fashion.
As will be readily appreciated by those skilled in the art, the webs are processed under controlled tension conditions, with web tension parameters being set to allow for any sub-webs of Web A which are too loose to become tighter and conversely any sub-webs of Web A which are too tight to become looser.
The composite web that exits the laminating device is then presented to another slitting machine where it is slit and then spooled. This may optionally be done in a separate operation.
The resulting composite threads or strips may be partially incorporated in fibrous sheet materials such as security papers during manufacture by techniques commonly employed in the papermaking industry. For example, the inventive composite security thread or strip may be embedded within a surface, or partially embedded within the body of a finished paper (i.e., windowed paper) by using, for example, a cylinder mold papermaking machine, cylinder vat machine, or similar machine of known type.
The composite thread or strip may also be mounted on a surface of a fibrous or non-fibrous sheet material either during or post manufacture. Mounting of the thread or strip may be achieved by any number of known techniques including: applying a pressure-sensitive adhesive to a surface of the thread or strip and pressing the thread or strip to the surface of the sheet material; and applying a heat activated adhesive to a surface of the thread or strip and applying the thread or strip, using thermal transfer techniques, to the surface of the material.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the exemplary embodiments.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/539,149, filed Sep. 26, 2011, which is incorporated herein in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/056350 | 9/20/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/048875 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5068008 | Crane | Nov 1991 | A |
5567276 | Boehm et al. | Oct 1996 | A |
5631039 | Knight et al. | May 1997 | A |
5688587 | Burchard | Nov 1997 | A |
6299213 | Souparis | Oct 2001 | B1 |
7279234 | Dean | Oct 2007 | B2 |
7333268 | Steenblik et al. | Feb 2008 | B2 |
7468842 | Steenblik et al. | Dec 2008 | B2 |
7738175 | Steenblik et al. | Jun 2010 | B2 |
7830627 | Commander et al. | Nov 2010 | B2 |
8149511 | Kaule et al. | Apr 2012 | B2 |
8400495 | Kaule | Mar 2013 | B2 |
8573651 | Seki | Nov 2013 | B2 |
8632100 | Kaule et al. | Jan 2014 | B2 |
20020160194 | Phillips | Oct 2002 | A1 |
20050040641 | Cote | Feb 2005 | A1 |
20050042449 | Phillips | Feb 2005 | A1 |
20050104364 | Keller | May 2005 | A1 |
20050151368 | Heim | Jul 2005 | A1 |
20080035736 | Tompkin et al. | Feb 2008 | A1 |
20080079257 | Fessl | Apr 2008 | A1 |
20080250954 | Depta | Oct 2008 | A1 |
20100001509 | Whiteman | Jan 2010 | A1 |
20100177094 | Kaule et al. | Jul 2010 | A1 |
20100182221 | Kaule et al. | Jul 2010 | A1 |
20110019283 | Steenblik | Jan 2011 | A1 |
20110095518 | Hoffmuller | Apr 2011 | A1 |
20120074684 | Marchant | Mar 2012 | A1 |
20120193905 | Schilling et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
689680 | Aug 1999 | CH |
102007040865 | Nov 2008 | DE |
0238043 | Sep 1987 | EP |
1273705 | Jan 2003 | EP |
2147156 | Jan 2010 | EP |
2164713 | Mar 2010 | EP |
2162294 | Mar 2012 | EP |
2283203 | May 1995 | GB |
2001-315472 | Nov 2001 | JP |
WO 97019820 | Jun 1997 | WO |
WO 97023856 | Jul 1997 | WO |
WO 9833648 | Aug 1998 | WO |
WO 2002000445 | Jan 2002 | WO |
WO 2003082598 | Oct 2003 | WO |
WO 2005069231 | Jul 2005 | WO |
WO 2005106601 | Nov 2005 | WO |
WO 2006029857 | Mar 2006 | WO |
WO 2008135174 | Nov 2008 | WO |
WO 2009151607 | Dec 2009 | WO |
WO 2011029602 | Mar 2011 | WO |
WO 2011069631 | Jun 2011 | WO |
WO 2011107527 | Sep 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140300096 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61539149 | Sep 2011 | US |