The present invention relates to a method for producing a fibre composite component, in particular for aerospace, to a moulding core for producing such a fibre composite component, and to a fibre composite component having at least one stringer, which is produced by such moulding core and/or such a method.
Although it can be applied to any desired fibre composite components, the present invention and the problem on which it based will be explained in more detail in the following text with reference to flat, stringer-reinforced carbon fibre plastic (CFP) components, for example skin shells for an aircraft.
It is generally known that CFP skin shells can be reinforced with CFP stringers in order to withstand high loads in aircraft, with as little additional weight as possible. In this case, a distinction is essentially drawn between two types of stringers: T stringers and Ω stringers.
T stringers have a cross section composed of a base and a stem. The base forms the connection surface to the skin shell. The use of skin shells reinforced by T stringers is widespread in aircraft construction.
Ω stringers have an approximately top-hat-shaped profile, whose ends are connected to the skin shell. Ω stringers can either be adhesively bonded to the likewise cured shell when in the cured state themselves, or they can be cured at the same time as the shell using a wet-in-wet process. The latter is desirable because this is better from the process engineering point of view. However, supporting cores or moulding cores are required for wet-in-wet production of skin shells reinforced with Ω stringers, in order to fix and support the dimensionally unstable fibre semi-finished products in the desired Ω shape during the production process. Skin shells with Ω stringers have the advantage over T stringers that the infiltration capability during an infusion process for introduction of a matrix, for example of an epoxy resin, into the fibre semi-finished products is better. Infusion processes may be more cost-effective than other known methods for producing fibre composite components, such as the prepreg process, because this allows the use of lower-cost fibre semi-finished products.
However, one problem that arises in the production of Ω stringers is that the material used at present for the supporting core or moulding core is costly and can be removed only with difficulty after the formation of the Ω stringers, so that the material which remains in the stringers disadvantageously contributes to the total weight of the aircraft.
Against this background, the present invention is based on the object of providing a lower-cost and lighter-weight fibre composite component, in particular for aerospace.
According to the invention, this object is achieved by a method having the features of Patent Claim 1, a moulding core having the features of Patent Claim 12, and/or by a fibre composite component having the features of Patent Claim 23.
A method is accordingly provided for producing a fibre composite component, in particular for aviation and spaceflight, having the following method steps: a moulding core is formed, having a predetermined number of hollow bodies for defining an external geometry of the moulding core, with the hollow bodies being designed such that they extend in the longitudinal direction of the moulding core and can expand elastically at least in their lateral direction; at least one fibre semi-finished product (3) is placed, at least in places, on the moulding core (4) that is formed, in order to shape at least one moulding section (14) of the fibre composite component (1) to be produced; and heat and/or pressure are/is applied to the at least one moulding section (14) in order to produce the fibre composite component (1).
When the moulding core is used in an appropriate manner, these hollow bodies have an internal pressure applied to them, as a result of which they expand in the lateral direction and form the moulding core with the external geometry. For removal from the mould, the internal pressure is changed such that, for example, the cross section of the moulding core is reduced again. This advantageously allows the moulding core to be removed easily. A further advantage is that the moulding core is reusable.
Furthermore, a moulding core is provided for producing a fibre composite component, in particular a stringer on a base part, having a core material composed of plastic and having a predetermined number of hollow bodies, with the hollow bodies extending in the longitudinal direction of the moulding core and having the capability to expand elastically at least in their lateral direction.
Furthermore, a fibre composite component is provided having at least one stringer, in particular for aviation and spaceflight, which is produced by means of the moulding core according to the invention and/or the method according to the invention.
The present invention therefore has the advantage over the initially mentioned approaches that the fibre composite component can be produced by means of a low-cost moulding core. Instead of a conventional costly core material which remains in the component, it is advantageously possible to use a reusable moulding core, whose shape can be varied in a simple manner by application of an internal pressure, such that it can easily be removed from the mould. In consequence, the moulding core no longer contributes to the component weight.
Advantageous refinements, developments and improvements of the invention can be found in the dependent claims and in the description in conjunction with the drawings.
With a moulding core such as this, it is preferable for the hollow bodies to be fixed to one another, and for the moulding core formed in this way to be provided with a flexible outer layer in order to smooth the contour of the outer surfaces of the moulding core. This advantageously smooths the outer surfaces of the moulding core. The flexibility of the outer layer means that the hollow bodies can expand and contract flexibly in the lateral direction, in a simple manner.
One alternative embodiment provides for the outer layer to be applied such that it completely surrounds the hollow bodies 7, and forms their fixing to one another.
In one preferred refinement, the moulding core is completely surrounded by a core sleeve which, on removal from the mould, results in advantageous separation between the moulding section and the surfaces of the moulding core. Furthermore, the core sleeve prevents the pressure medium, for example air, from being able to escape into the fibre composite component in the event of any leakage from a small tube. At the same time, this prevents damage and adverse effects to the moulding core, thus ensuring that it can be reused.
According to one preferred embodiment of the invention, reinforcing means are arranged inside or outside the core sleeve in the area of transitions, which have to be formed with sharp edges, in the external geometry of the moulding core to be formed. These reinforcing means, in particular corner profile parts, have the advantage that they form the sharp edges and corners, and the moulding core can be provided with rounded areas, which can be produced easily, in this region.
A separating layer is preferably applied to the core sleeve and prevents adhesion of the fibre semi-finished product and/or of a matrix to the core sleeve. This makes it easier to remove the core sleeve after the at least partial curing of the section of the fibre composite component created by means of the moulding core.
Fibre semi-finished products include fabric, tissue and fibre mats. These are provided with a matrix, for example an epoxy resin, and are then cured, for example in an autoclave.
According to a further preferred development of the invention, the moulding core is arranged on a base part composed of fibre composite semi-finished products, and/or is at least partially surrounded by fibre semi-finished products in order to form at least one moulding section of the fibre composite component. This advantageously allows base parts, for example skin shells, pressure cups etc., to be formed with Ω stringers. Alternatively or additionally, separate fibre composite components may also be produced, which are produced with their shape being defined entirely by the moulding core.
During the production of an Ω stringer, for example, the core sleeve is removed from the mould in the longitudinal direction of the stringer when removing it from the mould. In consequence, the core then no longer contributes to the total weight of the aircraft.
The invention will be explained in more detail in the following text with reference to the exemplary embodiment which is illustrated in the schematic figures of the drawing, in which:
Identical and functionally identical elements have been provided with the same reference symbols in all of the figures of the drawing, unless stated to the contrary.
This example has two moulding cores 4, although the number is not restricted to this. The two moulding cores 4, whose production will be explained further below, are provided with an approximately trapezoidal cross section, with their base 5 resting on a base component 2.
Fibre semi-finished products 3 are placed down on the moulding cores 4. The fibre semi-finished products 3 in this case rest with a central section on the outer surface of the moulding cores 4, and with their ends on the base component 2, for example on an aircraft skin. Two moulding sections 14 of the fibre composite component 1 are thus formed.
Various manufacturing methods can be used to process the fibre composite material. The so-called infusion process is preferably chosen, in order to introduce a matrix, that is to say for example epoxy resin, into the fibre semi-finished products. The prepreg process may, however, be used just as well in this case.
A further step that of curing the base component 2 together with the moulding cores 4 and the fibre semi-finished product in an autoclave or oven under the influence of heat and pressure, using a curing cycle which will not be explained in any more detail, thus resulting in the production of a complete fibre composite component 1.
First of all, the production of the moulding cores 4 will be described with reference to
The moulding core 4, whose construction will be described in detail further below, has a cross section 6 which is introduced into a mould 8 and is changed in this mould to the desired shape, in this case an approximately trapezoidal shape. In this example, the moulding core 4 is surrounded by a core sleeve 9, which completely surrounds the moulding core 4 and is suitable, in terms of temperature and pressure, for its production process and its further treatment and processing. The core sleeve 9 is manufactured from a plastic, in particular a polyamide and/or a PTFE plastic. Its inside 11 rests directly on the surfaces of the moulding core 4, with its outside 10 in this example being coated with a separating (mold release) layer (not shown), which may also comprise an additional sleeve. The separating layer is used to correctly separate the moulding core 4 from the moulding section 14 during removal from the mould.
The moulding core 4 is composed of individual hollow bodies 7, as is illustrated in
The outside of the moulding core 4 that is formed from the individual hollow bodies 7 is then provided with an outer layer 16, which contributes to smoothing its contour, and forms smooth surfaces for the moulding core 4, for example using the mould 8 (
In
The outer layer 16 is composed of a sufficiently flexible material, for example a suitable elastic plastic, which will reliably withstand the process temperatures that occur.
The outer layer can also be applied thicker in subareas, such that an otherwise fixed corner angle of 60° can be varied with certain limits.
The outer layer 16 can also be applied such that it completely surrounds the hollow bodies 7, and forms their fixing to one another. One example of a core such as this, which at the same time has a corner angle other than 60°, is illustrated in
The moulding core 4 produced in this way is removed from the mould 8 and is applied to the base component 2 as described above. This state is illustrated in
The fibre composite component 1 produced after a curing cycle, which will not be explained in any more detail, is illustrated in
In this example, the right-hand ends of the moulding bodies 7 are closed by closures 19, and the other, opposite ends of the hollow bodies 7 are each connected to a connecting apparatus 17. This connection may be configured such that the connections are plugged onto the ends of the hollow bodies 7 or, as is shown in
The core sleeve 9, which has a circumference that is slightly larger than the circumference of the moulding core 4, is then pushed over it.
An internal pressure is applied via the connecting apparatus to the hollow bodies 7, expanding the hollow bodies 7 in their lateral direction, thus forming the desired external geometry of the moulding core 4. This is done before production of the moulding section 14, as explained above. The resultant enlargement of the circumference results in it being located tightly around the moulding core 4. The core sleeve 9 is clamped by the internal pressure applied during expansion of the moulding core 4.
The operation of this method is governed by the correct combination of a high internal pressure of, for example, 10 bar, which, however, still allows elastic, reversible, lateral expansion of the hollow bodies 7 at the curing temperature of, for example, 180° C., and a sufficiently small wall thickness for the hollow bodies 7 of, for example, 0.05 mm. Another critical factor in this case is the material, with a suitable compromise of the modulus of elasticity, low creepage tendency at the curing temperature with good resistance properties over time, and sufficiently good ductility. Possible materials in this case include, in particular, thermoplastics from the group of aromatic polysulphides and polysulphones, such as PSU, PPS or PES. These offer good long-term temperature resistance, with little creepage tendency, at temperatures such as these.
In this example, 35 hollow bodies 7 were used, each having a diameter of 5 mm. Reversible expansions of between 2 and 3% in the height and the width of the moulding core can be achieved with the data example quoted above. Each hollow body 7 has a pressure connection and a closure. Pressure connections (connecting apparatuses 17) are also possible on both sides.
During removal from the mould, the hollow bodies 7 have an internal pressure applied to them via the connecting apparatus such that the hollow bodies 7 return to their original extent, that is to say they contract and are detached from the wall and from the separating flexible tube. A negative pressure can also be applied, which leads to further contraction of the core, with the individual small tubes collapsing even further and, for example, collapsing such that they are flat. This makes it possible to very greatly reduce the cross section.
The moulding core 4 which has been shrunk down in this way can be removed from the cured moulding section 14, and can be reused. The core sleeve 9 can then likewise be removed, and this can particularly advantageously be done easily and also when a separating layer is present. The fibre composite component 1 can now be processed further. If reinforcing means 13 are present, these are likewise also removed, or remain in the fibre composite component 1.
A method is therefore provided for producing a fibre composite component, a corresponding moulding core and a corresponding fibre composite component, which can achieve a considerable material cost reduction in comparison to the prior art with remaining core materials. The moulding core can be removed completely, thus making it possible to reduce the weight of the fibre composite component, in comparison to the prior art.
The invention is not restricted to the specific method illustrated in the figures for producing a fibre composite component for aerospace.
For example, the idea of the present invention is also applicable to fibre composite components in the field of sporting equipment and motor sports.
Furthermore, the geometry of the moulding core, in particular the wall thickness and diameter of the small tubes as well as their arrangement, can be modified in many ways.
Furthermore, a plurality of moulding cores can also be used in order to form a moulding core which is surrounded by fibre composite mats. The aim in this case is to provide a more complex geometry by means of the multiplicity of moulding cores. This allows more complex fibre composite components to be produced.
One alternative embodiment provides for the outer layer to be applied thicker in subareas, so that it is possible to vary the otherwise fixed core angle of 60° within certain limits.
The cross sections of the hollow bodies 7 need not necessarily be circular, when in the unpressurized state. Their diameters may likewise be different, in order in this way to create different corner radii.
The internal pressure must be regulated in order to ensure reproducible cross-sectional expansion.
The wall thickness of the hollow bodies 7 may also differ.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 031 334.8 | Jul 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/056788 | 7/5/2007 | WO | 00 | 12/8/2010 |