Field of the Invention
The invention relates to a method for producing a formed part furnished with a through hole and to a device for carrying out the method.
Description of Related Art
Such a method is known for example from DE 31 47 897 A1. According to that document, identical annular metal parts are produced without cutting from a metallic rod material by swaging and the resulting deformation of an end portion of the rod material to form a disc, followed by axial perforation of the disc with a punch having the same cross-sectional shape as the (uncompressed) rod material, and separation from the disc of the disc core that is perforated by the punch. The disc core and the uncompressed rod material portion together constitute an integral part and the starting point for a subsequent process cycle until there is no longer enough rod material remaining to form any more formed parts and the remainder is lost as waste.
When the disc core is perforated, the shear and tensile stresses generated give rise to an undesirable fracture surface with cracks and possibly buns on the peripheral edge of the hole in the disc formed thereby, possibly necessitating reworking of the formed parts.
An object of the invention is therefore to improve a method of the type described above in such manner that the formed parts produced thereby require substantially less reworking, if any. In addition, no burrs or other deformations that would hinder the subsequent processing steps should occur at the separation sites of the rod material.
In the present context, the term “rod material” or “raw material” is understood to mean any material form having a pronounced lengthwise extension and a cross-section of any dimension that is, however, constant over the lengthwise extension. In particular, this definition thus applies to bars, rods and wires of all sizes. Circular cross sections represent the standard, but the invention is not limited thereto. The description “rod-shaped” is to be construed analogously. The term “disc” in the present context is understood to refer to any body shape whose cross sectional dimensions are amplified relative to the rod material or raw material. Flat discs having a particularly circular outer conformation represent the standard, but the invention is not limited thereto.
The essence of the invention consists in the following: In a method for producing a formed part furnished with a through hole, a rod material is advanced by a defined length in the direction of its lengthwise extension into a forming die, the inner circumferential wall of which defines the outer circumference of the annular formed part to be produced, through a stationary guide having the same cross sectional shape as the rod material, and the rod material is then immobilised axially. The portion of the rod material located inside the forming die is penetrated axially and at the same time impact extruded by at least one dishing tool, wherein the displaced material flows between the at least one dishing tool and the inner circumferential wall of the forming die. The formed part that is created in this manner and is located inside the forming die, is rotated coaxially relative to the rest of the rod material together with the forming die surrounding it and the at least one dishing tool, and the formed part is thus separated from the rest of the rod material. The formed part is then transported away.
The dishing operation and the separation of the formed part by torsion not only yields cleanly conformed formed parts, but no burrs or other deformations that would impede further processing are created on the rest of the rod material.
For the purposes of providing blanks for a subsequent forming process, for example in a cold impact extrusion process, a method for separating such blanks from rod or raw material without cutting is known from DE 25 46 819 A1, in which method the material to be separated is clamped securely in coaxial chucks on either side of the desired parting plane, and the two chucks are then counter-rotated with respect to one another, wherein the blank is sheared off from the remainder of the material. To facilitate the torsional shearing operation, the material may also be notched in the area of the parting plane.
A very similar method for separating blanks from a rod material is known from DE 29 16 031 A1. In this case, the material to be separated is also immobilised in collets or form-locking torque application elements on either side of the desired parting plane, and these devices are also rotated relative to one another. In a preferred embodiment, the torsional shearing force is supplemented by an additional shearing force that assists in shearing off the blank. The additional shearing force is derived from the torsion due to the fact that the axes of rotation of the two collets or torque application elements are aligned slightly eccentrically relative to the rod material.
Neither the method of DE 25 46 819 A1 nor that of DE 29 16 031 A1 addresses the separation of a formed part that is already essentially complete.
In an advantageous variant of the method according to the invention, the end portion of the rod material that is located inside the forming die after the rod material has been advanced into the forming die is axially swaged by at least one swaging tool while the rod material is axially immobilised, and is thus shaped into a disc whose circumference is defined by the forming die and which is subsequently penetrated axially by the at least one dishing tool.
According to a preferred embodiment of the method according to the invention, the at least one dishing tool only penetrates the disc as far as about 98-99% of its axial thickness, so that before it is separated the formed part initially remains attached to the rod material via a thin circumferential fin, which is finally sheared off by torsion. In this way, a particularly clean separation is achieved, that is to say with very little deformation, and no burrs are created on the remainder of the rod material.
In order to be able to apply to the formed part the torque necessary for separating the formed part by torsion, there must be an adequate frictional or positive lock between the forming die and the formed part located therein on the one hand and between the formed part and the dishing tool on the other hand. If a frictional lock is applied, this may be assured or improved according to an advantageous embodiment of the invention in that the forming die is constructed somewhat elastically in the radial direction. This elasticity may be adapted to particular requirements by selection of a suitable material or other provisions.
It may be particularly practical and advantageous if the formed part is subjected to an axial compression force while it is being separated from the rest of the rod material. The magnitude of the axial compression force is advantageously selected such that it assures sufficient mould filling in the edge areas of the forming die, and in the case of rotationally symmetrical formed parts the frictional force applied to the adjacent walls is of the forming die and the dishing tool is sufficient to enable the formed part to be separated by torsion.
In the method described in the cited document DE 31 47 897 A1, the rod material is held between two forging dies, which are responsible for the advance of the rod material and the swaging thereof. In this way, the length of the rod material, and thus also the number of formed parts that can be produced from a length of rod material are limited, and the unusable remainders of the rod material are lost as waste. According to a further advantageous configuration of the method according to the invention, this problem is avoided by the use of a stationary clamping arrangement to brace the rod material and secure it positionally during the deformation, and preferably also during the dishing operation and the separation operation, which clamping arrangement engages with the circumference of the rod material. In this way, the length of the rod material is not limited by a second forging die, so that long rods or practically endless rod material, which is supplied from coils for example, may also be processed, and accordingly almost no significant waste is created.
For similar reasons, the rod material is also advantageously advanced by an advancing mechanism that engages with the circumference of the rod material and can be opened and closed and is movable backwards and forwards in the longitudinal direction by driving means.
After the formed part has been separated from the rest of the rod material, it is transported away from the forming area of the forming device, and conveyed for example to a further processing stage. According to a preferred embodiment, the formed part is transported away in the forming die itself, and only removed from the forming die afterwards. To transport the formed part away in the forming die, the forming die together with the formed part is preferably moved away from the rod material, first in the lengthwise direction of the rod material and then perpendicularly to this direction. This enables a simpler construction of the entire device.
A device suitable for carrying out the method according to the invention includes advancing means and immobilising means for a rod material, a guide for the rod material, a forming die and penetration means for axially penetrating the part of the rod material that is located inside the forming die. The device is also equipped with a drive means with which the forming die, together with the rod material portion located therein, which becomes a formed part following its axial penetration, and the rest of the rod material are rotatable relative to each other, wherein the formed part can be separated from the rest of the rod material by torsion shearing.
In an advantageous design variant, the device according to the invention has at least one swaging tool for axially swaging and forming an end portion of the rod material located in the forming die.
According to an advantageous embodiment, the penetration means include a dishing tool, which is equipped with a dishing punch and a dishing sleeve surrounding the punch, via which axial compression force is applicable to the formed part inside the forming die.
The immobilising means for the rod material advantageously comprise a stationary clamping arrangement that engages with the circumference of the rod material and can be opened and closed. In this context, it is particularly expedient if the clamping arrangement is equipped with a guide tube, the interior dimensions of which are adapted to the exterior cross sectional shape of the rod material, and clamping jaws arranged parallel to the axis and disposed about the circumference thereof, which clamping jaws are movable essentially without freeplay but radially inwards and outwards in axis-parallel slots in the guide tube such that they may be brought to bear on the rod material by the application of external force. In this context, the surfaces of the clamping jaws facing towards the rod material are preferably furnished with friction enhancing structures, particularly ribs. With this preferred configuration of the clamping arrangement, it is ensured that adequate clamping pressure may be applied even if the thickness of the rod material is inconsistent, and at the same time material is prevented from being forced out from between the clamping jaws due to the compressive stress that is created in the rod material during forming, since such might lead to malfunctions or even jamming of the onward transportation of the rod material.
To facilitate insertion and removal of the rod start or rod end, particularly for thick rods, the guide tube of the clamping arrangement may be constructed in separate parts. For example, a guide tube constructed of two halves, each equipped with two clamping jaws, is conceivable. For inserting and removing the rod start or rod end, the two halves of the tube are moved apart and afterwards pressed together again gapless, to that the guide tube is fully closed during production.
According to a further advantageous configuration of the device according to the invention, the device is equipped with a die carousel in which two or more forming dies are accommodated. With this die carousel, the forming die containing the formed part is able to be transported away from the forming area and replaced with an empty forming die for the next forming operation easily and efficiently.
Alternatively, linear die transport mechanisms are also conceivable.
The method according to the invention and the device according to the invention are both usable throughout the entire temperature range for cold to hot forming.
In the following, the method and device according to the invention will be described in greater detail with reference to the accompanying drawings and on the basis of an embodiment thereof. The drawings show:
The following is a purely exemplary description of the production of flat, annular formed parts using rod material or raw material having a circular cross section.
The following applies for the description below: If reference numbers are shown in a figure for the purposes of illustrative clarity, but these reference numbers are not referred to in the text of the description associated directly with the figure, reference is made to the explanation thereof in previous or subsequent passages of the description. Conversely, in order to avoid presenting too much detail in a given figure, reference numbers of lesser importance for the understanding are not shown in all figures. For this purpose, reference is made respectively to the other figures.
Stationary guide 3 has a full-length, in this example cylindrical, guide aperture having essentially the same cross-sectional shape as the rod material R that is to be processed, and essentially serves as a guide therefor.
Advancing mechanism 1 as well as swaging tool 5 and dishing tool 6 are axially displaceable by drive means represented symbolically in the drawings by double arrows 10, 50 and 60 (
Forming die 4 is designed in the form of a sleeve, and the interior dimensions thereof correspond to the exterior cross-sectional shape of the formed part to be produced. The diameter of its interior space is larger than the diameter of rod material R. Forming die 4 is axially displaceable, as is indicated symbolically by a double arrow 41 in
Dishing tool 6 comprises a dishing punch 61 and a dishing sleeve 62 that is slidable over it coaxially. Dishing punch 61 has essentially the same cross-sectional shape, particularly the same diameter as the rod material R. The external cross-sectional shape of dishing sleeve 62 essentially corresponds to the interior cross-sectional shape of sleeve-shaped forming die 4. The frontal faces 61a and 62a of dishing punch 61 and dishing sleeve 62 respectively are formed flat here. The relative displacement of dishing sleeve 62 on dishing punch 61 is effected via a drive unit (
Advancing mechanism 1 has for example two opposing clamping jaws that are adjusted to the external shape of rod material R and can be pressed radially against the rod material (closed) and lifted radially away from the rod material (opened). The advancing mechanism is opened and closed by means of a drive unit that is symbolised in the drawings only by a double arrow 11 (
Similarly, in a simple embodiment clamping arrangement 2 may preferably be furnished with multiple clamping jaws disposed around rod material R, which together form a kind of chuck, which may also be closed and opened via a drive unit that is indicated symbolically in the drawing only with a double arrow 21 (
Advancing mechanism 1, clamping arrangement 2, stationary guide 3, the movable, sleeve-like forming die 4, swaging tool 5 and dishing tool 6 are parts of a superordinated forming machine that is equipped in known manner with the driving means for producing the movement sequences still to be described of the device parts indicated, and for generating the requisite forces. This does not need to be explained further to a person skilled in the art.
The method according to the invention is performed in a repeating cycle.
Before the very first method step, and in preparation therefor, rod material R is inserted through open advancing mechanism 1 and open clamping arrangement 2 into stationary guide 3 until the leading frontal face thereof is flush with frontal face 3a (
With clamping device 2 open, rod material R is now advanced by a predefined distance using the advancing mechanism 1 so that the leading end R1 of rod material R protrudes into forming die 4 (
Then, clamping arrangement 2 is closed so that rod material R is fixed axially and is also prevented from rotating (
Then, swaging tool 5 is forced against rod material R so that the leading end R1 of the rod material is compressed into a disc S (
The next operation is to change dies, and swaging tool 5 is replaced with dishing tool 6 (
In the next step, dishing tool 6 is moved axially towards rod material R (
According to an important aspect of the invention, forming die 4 is constructed so as no to be slightly radially elastic by selection of a suitable material or other measures. As a result, a strong frictional connection is created between forming die 4 and formed part F under pressure on the one hand, and formed part F and dishing punch 61 on the other hand. This strong frictional connection is extremely important for the subsequent process steps.
First, dishing punch 61 is retracted a short way, wherein dishing sleeve 62 remains stationary and is exposed to the compression force (
Then, formed part F is separated from the rest of rod material R (
In the next step, dishing tool 6 travels back to its starting position (
Finally, a die changing operation is also carried out, in which dishing tool 6 is replaced by swaging tool 5 (
In a last step of the method, advancing mechanism 1 is opened and retracted axially by the length of a stroke, then closed again (
As was indicated previously, swaging tool 5 and dishing tool 6 on one side and forming dies 4 on the other side are advantageously disposed in carousels.
As was also mentioned previously, in principle clamping arrangement 2 may be designed in the manner of a chuck, wherein multiple clamping segments engage with the rod material along its circumference. However, chucks of this kind present certain difficulties. In order to be able to apply full clamping force, it is necessary to provide a small gap between the clamping segments, since otherwise the possibility of inconsistent thickness of the rod material, which cannot be ruled out, prevents a defined clamping force from being applied in case the jaws come into contact with each other. In the swaging and dishing operations described above, however, a stress condition is created in the material, extending relatively far in front of the forming zone and forcing this material into the gap that is left between the clamping segments. The material that is squeezed between the longitudinally divided clamping segments is able to impede or even prevent the onward transport of the rod material.
This difficulty, which is particularly critical in hot forming methods, is addressed by the preferred configuration of clamping arrangement 2 as described in the following.
According to this preferred embodiment, clamping arrangement 2 comprises a guide tube 22, the interior dimensions of which match the outer cross-sectional shape of rod material R, and clamping jaws 23 disposed about the circumference and parallel with the axis thereof, which clamping jaws are movable practically without freeplay but radially inwards and outwards in axis-parallel slots 24 in the guide tube 22 such that they may be brought to bear radially on rod material R by the application of external force. The surfaces of the clamping jaws 23 facing towards the rod material R are furnished with friction enhancing structures, for example ribs 25, to increase the clamping effect. With this preferred configuration of the clamping arrangement, the clamping path of the jaws is unrestricted and since the jaws fit practically without freeplay into the slits in the guide tube, it is not possible for a gap to be left through which the material might be forced out.
Number | Date | Country | Kind |
---|---|---|---|
1831/09 | Nov 2009 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2010/000301 | 11/26/2010 | WO | 00 | 5/23/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/063542 | 6/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3648351 | Kibler | Mar 1972 | A |
4435973 | Nakazawa | Mar 1984 | A |
5259819 | Lee | Nov 1993 | A |
20070051156 | Adachi et al. | Mar 2007 | A1 |
20070180723 | Morgan | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
1071610 | May 1993 | CN |
101232960 | Jul 2008 | CN |
2546819 | Apr 1976 | DE |
2916031 | Oct 1980 | DE |
3147897 | Jun 1983 | DE |
0764484 | Mar 1997 | EP |
2221127 | Aug 2010 | EP |
1477693 | Jun 1977 | GB |
1477693 | Jun 1977 | GB |
2047585 | Dec 1980 | GB |
55120441 | Sep 1980 | JP |
57100835 | Jun 1982 | JP |
5950945 | Mar 1984 | JP |
62084849 | Apr 1987 | JP |
6284849 | May 1987 | JP |
20019554 | Jan 2001 | JP |
2009202230 | Sep 2009 | JP |
Entry |
---|
JP 62084849 Abstract Translation; JP 62084849 Human Translation Dated Jan. 2015. |
Number | Date | Country | |
---|---|---|---|
20120266643 A1 | Oct 2012 | US |