The present invention relates to a method for producing a gearbox, with which a pinion and a worm gear are supported in a housing, and a gearbox produced using this method, according to the preamble of the independent claims.
Publication WO 00/33445 makes known an electric actuator, in the case of which a gearbox is located inside a housing that includes two joinable housing shells. Via a worm located on the armature shaft, an electric motor drives a worm gear that is non-rotatably connected with a pinion. The pinion, in turn, drives a further gear stage that is operatively connected with a driven pinion. The worm gear and the pinion are integral in design, i.e., they are designed as a single gearbox component that is located on a support bolt fastened in the housing. A single-part gearbox component of this type can be made out of plastic or metal, e.g., using an injection-molding method.
A disadvantage of such a single-component design of the worm gear with the pinion is that, due to manufacturing tolerances, after it is installed in the housing, a certain amount of axial play of the worm gear-pinion unit results, or it becomes jammed inside the housing. The efficiency and service life of the gearbox are reduced as a result. If the worm gear-pinion unit—which is composed of several parts—is not joined or injection-molded exactly before it is installed in the housing, concentricity tolerances of the worm gear and the pinion also result, which can result in even more noise being produced.
The inventive manufacturing procedure and the inventive gearbox with the characterizing features of the independent claims have the advantage that, by designing the worm gear and the pinion as separate components, they can be connected with each other when the housing is joined such that the production-related axial tolerances of the housing parts and the gearbox components are compensated. Axial play is effectively prevented as a result, and the pinion—which is connected with the worm gear—is also effectively prevented from becoming jammed inside the housing. As a result, the tolerance requirements for the production of the gearbox do not have to be so high. The parts can therefore be manufactured less expensively while maintaining the same level of product quality (due to axial tolerance compensation). According to the present invention, in this production method, the worm gear and the pinion are positioned, as individual parts, between the two housing parts using an axial guide. When the two housing parts are joined, the pinion is pressed axially into the recess of the worm gear until the housing is securely closed. Due to the form-fit interference connection between the pinion and the worm gear, it is therefore possible to reliably transfer the driving torque from the worm gear to the pinion.
Advantageous refinements and improvements of the features indicated in the independent claims are made possible by the measures listed in the subclaims. It is an advantage, for example, when the worm gear and the pinion are guided radially onto a support bolt that is located between the housing parts. This effectively prevents the pinion from tilting when it is pressed into the recess of the worm gear. The tolerance-insensitive connection of the worm gear with the pinion is guided radially onto the support bolt such that uniform concentricity of these gearbox components is attained, noise is reduced, and service life is extended.
When each of the two housing parts has an axial stop face against which the pinion and the worm gear bear via their end faces, axial play can be eliminated nearly entirely, and the pinion and the worm gear can be rotated simultaneously between the housing parts with minimal frictional loss. This results in a long service life and minimal noise produced by the gearbox.
To make it easier to press the pinion axially into the recesses in the worm gear, the recess includes various axial regions which are penetrated, in succession, by the end face of the pinion. In the conical transition region, the pinion is centered relative to the recess and is then pressed into the interference region using an axial installation force determined by the interference fit. As a result, the pinion is reliably fixed in position axially in the worm gear for the duration of the operating time.
To transfer torque from the worm gear to the pinion, it is particularly favorable to create a form-fit connection via the outer toothing of the pinion. To this end, the recess has a matching inner profile that has a slightly smaller radius than that of the outer toothing on the pinion. Using a form-fit interference fit of this type, the pinion is secured against axial displacement and rotation relative to the worm gear.
The selection of the ratio of the diameters of the outer toothing of the pinion and the inner toothing of the recesses determines the amount of axial force required to press in the pinion. This axial force must be applied when the two housing parts are joined axially in order to attain a reliable interference fit. Depending on the application of the gearbox, the press fit is selected such that the axial forces that occur during operation do not exceed the axial assembly force required for installation.
With the inventive gearbox that is produced using the inventive method, the pinion and the worm gear are connected with each other using the axial press-in force that is applied to press the outer toothing into the recess when the housing is assembled, without the need for an additional assembly step. The pinion-worm gear unit has the same mechanical stability as a single-part gearbox component, but with the additional advantage that the axial production and assembly tolerances are compensated.
The radial support of the pinion that is connected with the worm gear according to the present invention can be realized via a support bolt in the housing or via a bearing journal that is integrally formed on the pinion and/or worm gear.
When the pinion and/or worm gear are supported using a support bolt that is secured in a housing part, e.g., in a non-rotatable manner, the pinion and/or the worm gear have an axial through-bore via which they are supported directly radially on the support bolt. In the case of the worm gear, the through-bore is integrally formed at the base of the recess, so that, when the pinion is pressed into the recess, the two components are oriented radially relative to each other by the support bolt.
By forming axial bearing journals integrally on the worm gear and/or the pinion, they can be supported directly radially in both housing parts, thereby eliminating the need for the support bolt. The radial centering that occurs when the pinion is pressed into the worm gear takes place via the shape of the recess.
If the recess has, e.g., a conical transition region with a certain axial expansion, when the pinion is inserted into the recess, the pinion is centered exactly and is then pressed into an interference region of the recess, the axial expansion of which is selected such that a reliable press fit is created.
To ensure that the axial tolerances between the pinion-worm gear unit and the housing are fully compensated, the recess is designed to be so deep that its base surface has a certain clearance from the end face of the pinion after the housing parts have been fully joined.
Various exemplary embodiments of an inventive gearbox and its production method are presented in the drawing and are described in greater detail in the description below.
This is depicted in
In one variation, radial clearance-fitting region 54 can also be designed conical with transition region 58, as shown in
It should be noted that, with regard for the exemplary embodiments presented in the figures and the description, many different combinations of the individual features are possible. For example, the radial support of worm gear 26 and pinion 34 inside housing 12 can be varied. The inventive connection between pinion 34 and worm gear 26 can be used for various gearbox types, e.g., a multistaged gearbox 10, while the number and design of the housing parts and the gearbox components are adapted to the particular application. Pinion 34 can be connected with worm gear 26 in an exclusively non-positive manner, or via a combination of a non-positive connection and a form-fit connection. To this end, the specific design of pinion 34 on end-face end 38, or inner profile 34 of recess 42 can be adapted accordingly. Pinion 34 is preferably made of a harder material, e.g., metal, which is pressed into a softer material, e.g., plastic, of worm gear 26. Inventive gearbox 10 is preferably used to displace movable parts in a motor vehicle—seat parts in particular—but it is not limited to these types of applications.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 047 184.3 | Sep 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/53984 | 8/12/2005 | WO | 00 | 1/26/2007 |