The present invention relates to a method for producing a highly heat-resistant barrel provided with a twist profile, in particular for small-caliber automatic weapons.
Barrels of small-caliber automatic weapons known in the art have a substantially shorter service life when there are intense firing cycles involving the use of hardcore ammunition which lead to a high degree of barrel heating (up to 500° C.). The high pressing forces which the hardcore projectile exerts on the inner wall of the barrel in each case and the drop in heat resistance due to the intense firing rhythm mean that the inner region of the corresponding barrel is plastically deformed. This results in the polygonal geometry or the field height of the respective twist profile being insufficient for reliable twist transmission to the projectile, meaning that the projectile yaws or moves sideways on the flight path due to a lack of speed and the required accuracy, range and effect of the projectile are lost.
One possible way of eliminating this disadvantage is disclosed in DE 10 2016 111 571 A1, which corresponds to WO 2017220348, which are incorporated herein by reference. This proposes that the height of the fields relative to the sides of the fields should be reduced by an amount that leads to the surface of the fields being formed by two areas which form an obtuse angle.
It is therefore an object of the present invention to specify a cost-effective method of producing a barrel in which substantial plasticization of the inner barrel wall, and therefore of the twisting profile, is avoided when hardcore ammunition is being fired, particularly with an intense firing rhythm.
The invention is substantially based on the basic idea of raising the hot-yield point from 640 MPa (conventional quenched and tempered steel with the designation 32CrMoV12-10), for example, to over 1000 MPa with an increase in temperature of the barrel to 500° C. and thereby achieving sufficient barrel strength, even at high temperatures. The consequence of this is that the material has a substantially higher yield point than 1000 MPa at room temperature.
However, materials with a high yield point (>1000 MPa) do not allow the use of a cost-effective method for the application of twist, such as hammering over a mandrel or extrusion.
Despite this, the invention envisages the use of cost-effective hammering or extrusion. This is possible when the production sequence is reversed. The profiling first takes place at a low strength level. The twist profile of the barrel is not introduced into a barrel blank, the material of which is already at its final strength due to quenching and tempering, but into one that has a lower strength level (approx. 800-1000 MPa). Only after the twist profile has been applied by extrusion or hammering does the quenching and tempering (or final quenching and tempering) of the steel to a predefined strength value >1000 MPa and the further mechanical processing of the barrel blank provided with the twist profile take place.
Because the twist profile can be influenced by the subsequent quenching and tempering process, changes in the barrel blank initially caused by quenching and tempering must be initially determined and then taken into account during the twist profiling (by means of a preliminary working dimension). As is generally known, the material undergoes volume changes during quenching and tempering which results in smaller caliber diameters after quenching and tempering. In the case of extrusion or hammering, the field/groove diameter selected must be less than 1/100 mm larger, in order to comply with the diameter tolerances. Where necessary, the field diameter can also be slightly mechanically reworked.
The quenching and tempering of the barrel blank which follows the twist profiling preferably takes place in a vacuum, in order to avoid scaling of the inner surface of the barrel. Insofar as required, the quenched and tempered barrel may be provided with an erosion protection layer in the form of hard chromium plating, for example.
Further details and advantages of the invention result from the following exemplary embodiment.
In this exemplary embodiment, in order to produce a barrel for an MG3 machine gun, heat-resistant steel with 0.25-0.35% C, 3-5% Cr, and 1-3% Mo is used. This steel is initially rough-machined into a barrel blank.
The inner barrel surface is then provided with the desired twist profile (in this case a field/groove profile) by extrusion, taking account of the previously determined rough-machining dimension.
The barrel blank provided with the twist profile is then quenched and tempered to the desired yield point of >1300 MPa by means of vacuum tempering. This initially involved heating the barrel blank to austenitization temperature with subsequent rapid cooling followed by tempering treatment to operational strength.
Following the quenching and tempering of the barrel blank, the mechanical finishing process finally takes place. An erosion protection layer, e.g. technical hard chromium plating, can be applied where necessary.
The invention is not of course limited to the exemplary embodiment described above. Hence, for example, another suitable high-alloy steel can be used. Moreover, the quenching and tempering of the barrel blank can take place in multiple sections, so that twist profiling takes place after a first quenching and tempering (preliminary quenching and tempering) with a yield point ≤1000 MPa and final tempering to a value >1000 MPa only takes place subsequently.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 123 278.0 | Sep 2018 | DE | national |
This nonprovisional application is a continuation of International Application No. PCT/EP2019/072857, which was filed on Aug. 27, 2019 and which claims priority to German Patent Application No. 10 2018 123 278.0, which was filed in Germany on Sep. 21, 2018 and which are both herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2019/072857 | Aug 2019 | US |
Child | 17208614 | US |