METHOD FOR PRODUCING A PISTON FOR AN INTERNAL COMBUSTION ENGINE

Information

  • Patent Application
  • 20150174679
  • Publication Number
    20150174679
  • Date Filed
    July 10, 2013
    11 years ago
  • Date Published
    June 25, 2015
    9 years ago
Abstract
In a method for producing a piston (10) for an internal combustion engine, a melt treatment is performed at least in regions in particular in the region of a combustion chamber depression (14), the depth of said melt treatment being varied in the circumferential direction.
Description
TECHNICAL FIELD

The invention relates to a method for producing a piston for an internal combustion engine.


The development of internal combustion engines is increasingly heading in the direction of smaller and yet higher-performance engines. High thermal and mechanical loads on the piston result therefrom, in particular in the region of the combustion chamber cavity.


PRIOR ART

To increase the loading capacity in this region of a piston, it is known from DE 30 40 572 A1, for example, to subject regions of the combustion chamber cavity to a remelt treatment to refine the structure and increase resistance to thermal or mechanical changes.


Similar methods are evident from DE 42 05 307 C1, JP 59-108849 A and CN 20 20 12408 U.


REPRESENTATION OF THE INVENTION

The invention is based on the object of improving, in view of efficiency while continuously fulfilling the requirements, a method for producing a piston for an internal combustion engine, in which the piston is subjected in regions to a remelt treatment.


The solution to this object is carried out by the method described in claim 1.


In accordance therewith, within the framework of a method of producing a piston for an internal combustion engine, in which a remelt treatment is performed at least in regions, in particular in the region of the combustion chamber cavity, the depth thereof is altered in the circumferential direction. In other words, the resulting piston comprises zones remelted at least in regions. Within these zones, different remelt depths are found in the circumferential direction. The invention thus does not relate to different remelt depths which result in that in the circumferential direction, several “paths” of remelted structures are generated next to each other, which are more deeply remelted in a core region than in rim regions such that despite an arrangement of the individual paths as close as possible to one another, differences in depth remain in that direction in which the paths are arranged next to each other. Furthermore, the abovementioned prior art in places gives the impression that the remelt depth in directions perpendicular to the circumferential direction is less at the rim than in a central region.


In contrast to this, according to the invention the remelt depth is changed in a novel manner in the circumferential direction such that regions are found in the circumferential direction in which remelting occurred with a greater depth than in other regions. By this, in less loaded regions a lesser remelt depth can be set than in higher loaded regions such that in an advantageous manner the total heat input is decreased and the thermal ageing of the piston as a whole is reduced by the remelt process. Since a possible parameter which decreases the remelt depth is the current strength, the energy demand can be reduced. A further possible parameter is the rotational speed which at places can be increased with a lesser remelt depth. This leads to a reduction of the overall required remelt time and contributes to a reduction in costs. It is added that the remelt treatment is preferably performed by a welding process such that in particular the weld seam geometry and/or depth can be altered in the circumferential direction.


Preferred embodiments of the method according to the invention are described in the further claims.


As was already indicated, the remelt depth can be varied by altering the parameters of current strength, voltage, distance of a welding electrode from the surface and/or the feed rate.


Since a combustion chamber cavity rim and/or bottom is/are (a) particularly loaded region(s), it is preferably these regions that are subjected to a remelt treatment by the method according to the invention.


In view of the regions in which a greater remelt depth is set, it is preferred at present to provide these in a plane which contains the axis of the piston pin. In particular, at present it is preferred to set the remelt depth at its greatest in this region and at its least in the direction perpendicular thereto, and to graduate the transitions between these points. The method according to the invention furthermore offers particular advantages with pistons having cooling channels, in particular if a combustion chamber cavity is offset towards the piston axis. In this case, the distance between the combustion chamber cavity and the cooling channel varies along the circumference, and in regions in which the remaining distance is particularly short, the remelt depth can be set in an advantageous manner to be less to prevent melting through to the cooling channel. The use of a remelt treatment on such pistons at said critical points in certain situations is only possible with this.





BRIEF DESCRIPTION OF THE DRAWINGS

Hereinafter, preferred embodiment examples will be explained in more detail by means of the drawings. These show:



FIG. 1 a sectional view of a piston perpendicular to the piston pin axis;



FIG. 2 a sectional view of a piston through the piston pin axis; and



FIG. 3 a representation of the remelt depth along the circumference.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

In FIG. 1, in a section perpendicular to the piston pin axis, a piston 10 is represented, which exemplarily comprises a cooling channel 12 and a combustion chamber cavity 14. With 16, those regions are indicated in which, to increase the loading capacity, a remelt treatment with a certain depth was performed.


In comparison with FIG. 2, it is shown that these regions 18 in the sectional plane, which contains the piston pin axis 20, are configured to be deeper. In other words, the remelted zone extends into deeper regions starting from the surface. By this, a particular loading capacity is achieved in the particularly loaded regions in the vicinity of the plane which contains the piston pin axis.


A preferred course of the remelt depth 22 along the circumference is evident from FIG. 3. The remelt depth 22 is, preferably in the region of the plane 24 which contains the piston pin axis, at the greatest and perpendicular thereto at the least, the transitions between said extremes being configured so as to be graduated.

Claims
  • 1. A method for producing a piston for an internal combustion engine, in which a remelt treatment, the depth of which is altered in the circumferential direction, is performed at least in regions.
  • 2. The method according to claim 1, wherein at least one of current strength, voltage, feed rate and distance of a welding electrode from the surface are varied.
  • 3. The method according to claim 1, wherein the remelt treatment is performed on a rim of the cavity.
  • 4. The method according to claim 2, wherein the remelt treatment is performed deeper in the region of a plane which contains the piston pin axis.
  • 5. The method according to claim 2, including forming the piston with a cooling channel.
  • 6. The method according to claim 1, wherein the piston is made with a combustion chamber and further wherein the remelt treatment is performed in the region of the combustion chamber.
  • 7. The method according to claim 2, wherein the remelt treatment is performed on a bottom of the combustion chamber cavity.
Priority Claims (1)
Number Date Country Kind
10 2012 212 791.7 Jul 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/064566 7/10/2013 WO 00