Method for producing a piston for an internal combustion engine

Information

  • Patent Grant
  • 10252366
  • Patent Number
    10,252,366
  • Date Filed
    Wednesday, July 10, 2013
    11 years ago
  • Date Issued
    Tuesday, April 9, 2019
    5 years ago
Abstract
In a method for producing a piston (10) for an internal combustion engine, a melt treatment is performed at least in regions in particular in the region of a combustion chamber depression (14), the depth of said melt treatment being varied in the circumferential direction.
Description
BACKGROUND OF THE INVENTION
1. Technical Field

The invention relates to a method for producing a piston for an internal combustion engine.


2. Related Art

The development of internal combustion engines is increasingly heading in the direction of smaller and yet higher-performance engines. High thermal and mechanical loads on the piston result therefrom, in particular in the region of the combustion chamber cavity.


To increase the loading capacity in this region of a piston, it is known from DE 30 40 572 A1, for example, to subject regions of the combustion chamber cavity to a remelt treatment to refine the structure and increase resistance to thermal or mechanical changes.


Similar methods are evident from DE 42 05 307 C1, JP 59-108849 A and CN 20 20 12408 U.


SUMMARY OF THE INVENTION

The invention is based on the object of improving, in view of efficiency while continuously fulfilling the requirements, a method for producing a piston for an internal combustion engine, in which the piston is subjected in regions to a remelt treatment.


In accordance therewith, within the framework of a method of producing a piston for an internal combustion engine, in which a remelt treatment is performed at least in regions, in particular in the region of the combustion chamber cavity, the depth thereof is altered in the circumferential direction. In other words, the resulting piston comprises zones remelted at least in regions. Within these zones, different remelt depths are found in the circumferential direction. The invention thus does not relate to different remelt depths which result in that in the circumferential direction, several “paths” of remelted structures are generated next to each other, which are more deeply remelted in a core region than in rim regions such that despite an arrangement of the individual paths as close as possible to one another, differences in depth remain in that direction in which the paths are arranged next to each other. Furthermore, the abovementioned prior art in places gives the impression that the remelt depth in directions perpendicular to the circumferential direction is less at the rim than in a central region.


In contrast to this, according to the invention the remelt depth is changed in a novel manner in the circumferential direction such that regions are found in the circumferential direction in which remelting occurred with a greater depth than in other regions. By this, in less loaded regions a lesser remelt depth can be set than in higher loaded regions such that in an advantageous manner the total heat input is decreased and the thermal ageing of the piston as a whole is reduced by the remelt process. Since a possible parameter which decreases the remelt depth is the current strength, the energy demand can be reduced. A further possible parameter is the rotational speed which at places can be increased with a lesser remelt depth. This leads to a reduction of the overall required remelt time and contributes to a reduction in costs. It is added that the remelt treatment is preferably performed by a welding process such that in particular the weld seam geometry and/or depth can be altered in the circumferential direction.


As was already indicated, the remelt depth can be varied by altering the parameters of current strength, voltage, distance of a welding electrode from the surface and/or the feed rate.


Since a combustion chamber cavity rim and/or bottom is/are (a) particularly loaded region(s), it is preferably these regions that are subjected to a remelt treatment by the method according to the invention.


In view of the regions in which a greater remelt depth is set, it is preferred at present to provide these in a plane which contains the axis of the piston pin. In particular, at present it is preferred to set the remelt depth at its greatest in this region and at its least in the direction perpendicular thereto, and to graduate the transitions between these points. The method according to the invention furthermore offers particular advantages with pistons having cooling channels, in particular if a combustion chamber cavity is offset towards the piston axis. In this case, the distance between the combustion chamber cavity and the cooling channel varies along the circumference, and in regions in which the remaining distance is particularly short, the remelt depth can be set in an advantageous manner to be less to prevent melting through to the cooling channel. The use of a remelt treatment on such pistons at said critical points in certain situations is only possible with this.





BRIEF DESCRIPTION OF THE DRAWINGS

Hereinafter, preferred embodiment examples will be explained in more detail by means of the drawings. These show:



FIG. 1 a sectional view of a piston perpendicular to the piston pin axis;



FIG. 2 a sectional view of a piston through the piston pin axis; and



FIG. 3 a representation of the remelt depth along the circumference.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

In FIG. 1, in a section perpendicular to the piston pin axis, a piston 10 is represented, which exemplarily comprises a cooling channel 12 and a combustion chamber cavity 14. With 16, those regions are indicated in which, to increase the loading capacity, a remelt treatment with a certain depth was performed.


In comparison with FIG. 2, it is shown that these regions 18 in the sectional plane, which contains the piston pin axis 20, are configured to be deeper. In other words, the remelted zone extends into deeper regions starting from the surface. By this, a particular loading capacity is achieved in the particularly loaded regions in the vicinity of the plane which contains the piston pin axis.


A preferred course of the remelt depth 22 along the circumference is evident from FIG. 3. The remelt depth 22 is, preferably in the region of the plane 24 which contains the piston pin axis, at the greatest and perpendicular thereto at the least, the transitions between said extremes being configured so as to be graduated.

Claims
  • 1. A method for producing a piston for an internal combustion engine, including loading a piston, finding a combustion chamber cavity, finding regions in the circumferential direction of the combustion chamber cavity, setting a less remelt depth in less loaded regions than in higher loaded regions such that the total heat input is decreased and the thermal aging of the piston as a whole is reduced by a remelt treatment, performing the remelt treatment performed by a welding process altering the parameters of at least one of current strength, voltage, distance of a welding electrode from a surface of the piston and the feed rate at least in regions of the piston, altering a depth of the remelt treatment in a circumferential direction so that the depth is greater in at least one circumferential location of the remelt treatment relative to the depth in other circumferential locations of the remelt treatment, wherein an angular relationship between a minimum thickness position of one of the at least one circumferential locations and a maximum thickness position of one of the other circumferential locations are perpendicular or acute-angular wherein the piston is made with the combustion chamber cavity and wherein the remelt treatment is performed in the region of the combustion chamber cavity.
  • 2. The method according to claim 1, wherein the remelt treatment is performed on a rim of a combustion chamber cavity of the piston.
  • 3. The method according to claim 2, wherein the remelt treatment is performed deeper in a region of a plane which contains a piston pin axis.
  • 4. The method according to claim 2, including forming the piston with a cooling channel.
  • 5. The method according to claim 2, wherein the remelt treatment is performed on a bottom of a combustion chamber cavity of the piston.
  • 6. The method according to claim 1 wherein the step of altering the depth of the remelt treatment in the circumferential direction is further defined as altering the depth of the remelt treatment in the circumferential direction such that at least one portion of the remelt treatment has a first depth which is at least twice a second depth of another portion of the remelt treatment.
  • 7. The method according to claim 1 wherein the step of altering the depth of the remelting treatment in the circumferential direction is further defined as continuously increasing the depth of the remelt treatment in the circumferential direction from a first location with a minimum depth to a second location with a maximum depth and continuously decreasing the depth of the remelt treatment from the second location to a third location with the minimum depth and continuously increasing the depth of the remelt treatment from the third location to a fourth location with the maximum depth and continuously decreasing the depth of the remelt treatment from the fourth location to the first location.
Priority Claims (1)
Number Date Country Kind
10 2012 212 791 Jul 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/064566 7/10/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/012826 1/23/2014 WO A
US Referenced Citations (29)
Number Name Date Kind
3670089 Paton Jun 1972 A
3759148 Geffroy Sep 1973 A
3807014 Hummel Apr 1974 A
3933143 Gurtler Jan 1976 A
4360956 Hiller Nov 1982 A
4382169 Rabkin May 1983 A
4447275 Hiraoka May 1984 A
4483286 Herrmann Nov 1984 A
4720312 Fukuizumi Jan 1988 A
4761192 Saga Aug 1988 A
4971003 Suzuki Nov 1990 A
5048398 Pfeiffenberger Sep 1991 A
5446258 Mordike Aug 1995 A
5611143 Graf Mar 1997 A
8181623 Kemnitz May 2012 B2
8667945 Sasaki Mar 2014 B2
20010003227 Feikus Jun 2001 A1
20040129243 Robelet Jul 2004 A1
20040194307 Barnes Oct 2004 A1
20080078339 Obermeier Apr 2008 A1
20080223211 Maier Sep 2008 A1
20090000470 Reichstein Jan 2009 A1
20100154940 Luft Jun 2010 A1
20100232870 Golya Sep 2010 A1
20120180749 Kopchick Jul 2012 A1
20120187110 Schaller Jul 2012 A1
20130263814 Gniesmer Oct 2013 A1
20130340700 Donahue Dec 2013 A1
20140190010 Baberg Jul 2014 A1
Foreign Referenced Citations (9)
Number Date Country
202012408 Oct 2011 CN
3040572 May 1982 DE
4205307 01 Aug 1993 DE
102007044696 Jan 2009 DE
S59108849 Jun 1984 JP
03-043648 Feb 1991 JP
03043648 Feb 1991 JP
2008488 Feb 1994 RU
2148750 May 2000 RU
Non-Patent Literature Citations (1)
Entry
N.A. Olshanskaya,Tom 1, Under the Editorship of Tzioy Draktechn Sciences; 1978.
Related Publications (1)
Number Date Country
20150174679 A1 Jun 2015 US