This application claims the priority, under 35 U.S.C. § 119, of German application DE 10 2018 216 927.6, filed Oct. 2, 2018; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a method having the features of the independent claim.
The invention is in the technical area of the graphics industry and in particular therein in the area of finishing printed products and/or producing high-grade finished and thus high-quality printed products.
Diverse methods for finishing printed products are known from the prior art, thus, for example, (spot) lacquering, the so-called “drip off” method, or embossing.
A method for creating three-dimensional patterns in coatings is known from published, non-prosecuted German patent application DE 10 2010 054 528 A1, corresponding to U.S. Pat. No. 8,993,103. A device and a method for producing a structured surface on a printing stock are known from published, European patent application EP 2 902 201 A2. A method for producing a valuable document and a device for carrying out the method are known from published, non-prosecuted German patent application DE 10 2013 021 180 A1.
The market for high-end finished and high-quality printed products always demands further improvements and also innovations to distinguish oneself from the competition with such printed products, for example, in the field of packages for luxury articles.
Aside from this field, prior art for conveying printing stock is known, for example, from published, non-prosecuted German patent application DE 10 2006 021 314 A1, corresponding to U.S. patent publication No. 2006/0266237. This describes a so-called “jacket” for guiding printing stock. The jacket contains a rough surface structure and therefore can create flaws, so-called “white dots”, in the printed product. The document teaches applying an auxiliary liquid to the jacket, which assists the reclosing of the flaws.
It is therefore a problem of the invention to provide a method improved over the prior art, which enables in particular printed products of high quality to be produced.
This problem is solved according to the invention by a method having the feature combination of the independent method claim. Advantageous and therefore preferred refinements of the invention result from the dependent claims and also from the description and the drawings. The features of the invention, the refinements of the invention, and the exemplary embodiments of the invention also represent advantageous refinements of the invention in combination with one another.
The invention relates to a method for producing a printed product, having the following steps: transferring a first fluid onto at least one section of a printing stock; applying a second fluid—which has a dewetting effect on the first fluid—to a form configured as a relief printing form, for example, a flexographic printing form, or embossing form; and transferring the second fluid at at least some points of the section.
The invention advantageously enables printed products of high quality to be produced. A defined structure (“embossed pattern”) can be created and preferably fixed by curing using the invention in a simple and reliable manner, which does not have any perceptible flaws, in particular due to uncontrolled running of the pattern before the fixing.
The dewetting effect can preferably be achieved as follows: The first fluid is provided having a surface tension in the range of 30 to 40 mN/m and particularly preferably in the range between 30 and 35 mN/m. The second fluid is preferably provided having a surface tension in the range of 18 to 30 mN/m and particularly preferably in the range between 20 and 25 mN/m. The difference of the surface tensions of the provided fluids is preferably selected to be as large as possible in this case and is preferably selected in the range between 8 and 12 mN/m. A sufficient stabilization of the created structure can be achieved in this way.
The method according to the invention offers the advantage over the known “drip off” method that the created structure is more defined and stable, in particular if embossing is performed under compression. The advantage exists over published, non-prosecuted German patent application DE 10 2010 054 528 A1 that the transfer of the second fluid at the points of the section of the printing stock and thus the structuring of the first fluid takes place in one step. The advantage exists over published European patent application EP 2 902 201 A2 that hardly any material application is performed by the second fluid. The difference exists in relation to published, non-prosecuted German patent application DE 10 2013 021 180 A1 that the transfer is performed using raised structures. The invention differs in principle from published, non-prosecuted German patent application DE 10 2006 021 314 A1, because according to the invention, running of the created, in particular embossed structure is to be avoided, while on the contrary the running is promoted in the prior art.
A further advantage of the invention can be seen in that the dewetting effect of the second fluid prevents the form for transferring the second fluid from being soiled and/or contaminated with the first fluid during the production of printed products and the quality of the produced printed products suffering as a result.
Preferred refinements of the invention can be distinguished by one or more of the feature combinations listed hereafter.
The second fluid is transferred while the first fluid is not yet or not substantially dried and/or cured.
The second fluid is pressed or embossed into the first fluid under compression.
The second fluid touches the printing stock at the points of the section and displaces the first fluid therein.
The second fluid reduces or prevents flowing back of the first fluid at the points of the section.
The second fluid structures the first fluid in accordance with a structure of the form.
The first fluid is transferred over the entire area in the section.
The first fluid is dried and/or cured after the transfer of the second fluid. The second fluid can also be dried and/or cured. The first and the second fluid can be dried and/or cured, preferably jointly, after the transfer of the second fluid.
The first fluid and/or the second fluid is provided as a lacquer.
The printing stock is printed before the transfer of the first fluid.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method for producing a printed product, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly to
In method step A, the printing stock 1b is provided, for example, paper, cardboard, paperboard, plastic film, or metal foil (each preferably as a sheet or alternatively as a web). The provision can preferably take place as a sheet stack in a non-illustrated feeder of the printing press 6. Alternatively, a metal plate can also be provided.
In optional method step B, the printing stock 1b is optionally printed. The printing preferably takes place in at least one printing mechanism 8 of the printing press 6, preferably in four offset printing mechanisms (CMYK printing method). After the printing, drying and/or curing can take place, for example, in a drying mechanism (not shown) directly after the printing mechanism, preferably in a UV drying mechanism.
In method step C, a first fluid 2 and a second fluid 3 are provided. The first fluid is preferably provided as a lacquer and is preferably provided in a first lacquering mechanism 9 of the printing press 6. The second fluid is preferably also provided as a lacquer and is preferably provided in a second lacquering mechanism 14 of the printing press.
The first fluid 2 is preferably provided as a UV-curable lacquer (“UV lacquer”), for example, as the lacquer sold under the name “Saphira U8730”. UV lacquer has the advantage here that it only loses little volume (upon curing) and the structure introduced according to the invention and/or corresponding embossing effects are therefore more distinctive.
The first fluid 2 can be a clear lacquer, a flexographic ink, a metallic lacquer, a lacquer having effect pigments, a fluorescent lacquer, a matte lacquer, or a colored lacquer.
In method step D, the first fluid 2 is transferred onto at least one section 4 of the printing stock 1b. The transfer is preferably performed by the first lacquering mechanism 9 and/or by a first cylinder 10 and a first counter cylinder 11 of the mechanism. The mechanism 9 can be a so-called Anicolor mechanism and the transfer can be performed by a flexographic form. Alternatively, the mechanism can be an offset, gravure, screen, or inkjet mechanism. Furthermore, the first fluid can alternatively be applied via roller coating or spray lacquering.
In
In optional method step E, radiation is optionally applied to the first fluid 2. This is preferably performed in at least one drying mechanism 12 of the printing press 6. The quality of the printed product 1a can possibly be improved by the application. For example, an excessively thin lacquer (as the first fluid 2) can be slightly dried and thus can become able to be better formed/embossed. Or, for example, a UV lacquer (as the first fluid) can be slightly heated and thus made more uniform. If such measures are not required, the method can also be carried out in a printing press 6 without drying mechanisms 12.
In method step F, the second fluid 3 is applied to a form 13. In this case, this is preferably a relief printing form, for example, a flexographic form, or an embossing form. The form 13 is preferably accommodated on a second cylinder 15 of a second lacquering mechanism 14 of the printing press 6. In
In method step G, the second fluid 3 (applied to the form 13) is transferred at at least some points 5 of the section 4 to the printing stock 1b. The transfer preferably takes place in a gap between the second cylinder 15 and a second counter cylinder 16. The method step of the transfer is recognizable in the middle and bottom images in
The second fluid 3 is preferably transferred while the first fluid 2 is not yet or not yet substantially dried and/or cured and therefore can still be formed. The second fluid is thus preferably transferred through the still “wet” first fluid up to the printing stock.
The second fluid 3 is preferably pressed or embossed under compression into the first fluid 2, wherein the first fluid is preferably displaced, so that the second fluid preferably reaches the printing stock 1b or its surface.
The second fluid 3 preferably prevents or reduces flowing back of the first fluid 2, at least at the points 5. In this way, the layer made of first fluid is preferably structured in accordance with the structure of the form 13 and/or in accordance with the protrusions 17. This structure is advantageously substantially maintained (also in the temporary wet state of the first fluid).
The flowing back of the first fluid 2 is prevented according to the invention in that the second fluid 3 is used which has a dewetting effect on the first fluid. If, for example, “Saphira U8730” is used as the first fluid, a UV-curable lacquer, in particular for flexographic printing, for example, the lacquer sold under the name “Saphira U8780”, can thus be used as the second fluid. The dewetting effect is substantially based on the different surface tensions of the first and the second fluid, wherein the surface tension of the first fluid is selected as greater than that of the second fluid. Examples: “Saphira U8730” has a measured surface tension between 30 and 32 mN/m and “Saphira U8780” of approximately 22 mN/m.
The second fluid 3 can be uncolored or colored and optionally also pigmented. The second fluid can be considered to be a dewetting fluid and/or a stabilization fluid and can be denoted accordingly.
Preferably, a layer thickness of 1 to 5 μm, particularly preferably of 2 to 3 μm, of the second fluid 3 is created on the printing stock 1b.
In
In method step H, the first fluid 2 is dried or cured after the transfer of the second fluid 3 (after method step G) and in this way the structuring (the “embossed image”) is fixed. This is preferably performed by a dryer 18 during the further transportation of the printing stock 1b (for example, in a delivery unit (not shown in its entirety) of the printing press 6). Thermal drying can be performed (IR and/or hot air) and/or curing can be performed using UV. The second fluid 3 is preferably also dried and/or cured, particularly preferably by means of the same dryer.
When reading the claim language, the following definitions apply. When the claim language recites A and/or B it means A alone, B alone or A and B. When the claim language recites at least one of A and B it means A alone, B alone or A and B. When the claim language recites at least one of A or B it means A alone, B alone or A and B.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 216 927.6 | Oct 2018 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1907094 | Smith | May 1933 | A |
3355312 | Coney | Nov 1967 | A |
5324546 | Crutchley | Jun 1994 | A |
6546872 | Huffer et al. | Apr 2003 | B1 |
7856926 | Thal | Dec 2010 | B2 |
8372731 | Li et al. | Feb 2013 | B2 |
8471879 | Kanazawa | Jun 2013 | B2 |
8993103 | Clauter et al. | Mar 2015 | B2 |
20060026637 | Gatto et al. | Feb 2006 | A1 |
20110111118 | Schmitt-Lewen et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
101034667 | Sep 2007 | CN |
103660650 | Mar 2014 | CN |
107443943 | Dec 2017 | CN |
10362054 | Jul 2005 | DE |
102006021314 | Dec 2006 | DE |
102010047926 | May 2011 | DE |
102010054528 | Jun 2012 | DE |
102013021180 | Jun 2015 | DE |
1211095 | Jun 2002 | EP |
2902201 | Aug 2015 | EP |
2002225413 | Aug 2002 | JP |
2007518594 | Jul 2007 | JP |
2008037100 | Feb 2008 | JP |
2014128949 | Jul 2014 | JP |
2015063113 | Apr 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20200101780 A1 | Apr 2020 | US |