This Application claims the benefit of German Application No. 10 2015 112 038.0, filed on Jul. 23, 2015 and German Application No. 10 2015 118 935.6 filed Nov. 4, 2015, the contents of which are hereby incorporated by reference in their entirety.
The invention generally relates to a method for producing a spark plug with a center electrode that is tipped with an end piece made of a precious metal. Opposite the center electrode, a counterpart made of precious metal is welded onto the at least one ground electrode. The end piece and the counterpart delimit the spark gap.
Spark plugs for use in gas engines, especially in stationary gas engines are subject to special requirements; in particular, a long service life is demanded. In order to achieve this, it is important for the width and position of the spark gap to have the smallest possible dimensional tolerances. The cause of dimensional variations may reside in the fusing of the center electrode into the insulator, in the shrink-fitting of the insulator in the spark plug shell, in the process of crimping the back end of the spark plug shell, in the welding of the ground electrodes onto the front edge of the spark plug shell, and in the welding of the precious metal pieces onto the ground electrode and onto the center electrode, and bring about dimensional variations in the spark gap, deviations from parallelism of the surfaces bordering the spark gap, and deviations in the alignment of the center electrode and the precious metal counterpart on the ground electrode coaxial to the spark plug center line. Keeping these error sources as small as possible requires great manufacturing effort and is partly responsible for a high price of the spark plugs for gas engines.
An object of the present application is to disclose a way that spark plugs of this type can be produced with less effort without sacrificing dimensional accuracy.
According to one aspect, there is provided a method for producing a spark plug for internal combustion engines, in particular for gas-powered internal combustion engines, having:
a metallic shell that has an open front end and an open back end;
a ceramic insulator, held in the shell, that has a front end and a back end that projects from the back end of the shell;
a center electrode, embedded in the insulator, that has a back end that projects from the back end of the insulator and has a front end that projects from the front end of the insulator; and
having a ground electrode that is attached to the front end of the shell;
wherein an end piece made of a precious metal or a precious metal alloy is attached to the front end of the center electrode, and a counterpart made of a precious metal or a precious metal alloy is attached to the ground electrode opposite the end piece, between which is formed a spark gap that is set to a nominal width;
The method may include the following production steps:
the spark gap is produced initially with a width that is smaller, at least in places, than the nominal width; subsequently, the spark gap is brought to its nominal width by the removal of material from at least one of the two surfaces—of the end piece and of the counterpart—delimiting the spark gap.
It is preferable that the last of these two steps for creating the spark gap be the final step in manufacturing the spark plug, and at the same time, is the manufacturing step that is important for the accuracy of the width of the spark gap. All other manufacturing steps, which in the prior art affect the location, shape and width of the spark gap, have already been completed when the width of the spark gap is created by material-removing processing of the surfaces delimiting the spark gap—in other words, by trimming of the spark gap—so the preceding manufacturing steps are no longer able to adversely affect the accuracy of the spark gap. This has the further advantageous consequence that manufacturing steps that are performed prior to the trimming of the spark gap need not be performed with the same high accuracy as in the prior art in order to achieve an accurate spark gap, because the accuracy thereof is determined by the final manufacturing step of the method, namely by the trimming of the spark gap.
The trimming of the spark gap can be performed with high precision without special effort. In consequence, the use of the method results in improved accuracy while at the same time reducing manufacturing effort.
In order to manufacture a spark plug according to the method, it is possible to initially proceed as in the prior art: the shell of the spark plug, the insulator and the center electrode can be prefabricated separately. The ground electrode can be welded to the shell as usual. An end piece made of a precious metal or a precious metal alloy, for example a precious metal disk, can be welded onto the front end of the center electrode as usual. As counterpart thereto, a counterpart made of a precious metal or a precious metal alloy, for example another precious metal disk, can be welded onto the ground electrode. The center electrode is inserted into the insulator and is fused by one of its sections into the insulator. The insulator equipped with the center electrode can then be inserted into the shell of the spark plug from the back end, for instance pushed forward to a stop and secured by crimping the back end of the shell.
Advantageously, the spark gap is initially produced with a width that is no greater than the nominal width at any part of the spark gap. In this way, it is possible to ensure that the spark gap really obtains its nominal width at every point due to the trimming. If the spark gap is already no wider than the nominal width at the beginning of the trimming process, then the trimming process also does not make it any wider than the nominal width. However, the trimming process does enlarge the spark gap to the nominal width at the places where it had been narrower than the nominal width before the trimming process.
The removal of material from at least one of the two surfaces delimiting the spark gap, that of the end piece on the center electrode and that of the counterpart on the ground electrode, is preferably accomplished through electrical discharge machining. Using electrical discharge machining, the trimming can be accomplished with high accuracy. Moreover, electrical discharge machining is especially well suited for machining precious metal alloys, for example platinum-iridium alloys, which frequently are used for spark plugs and have the disadvantage that they can be mechanically machined only with difficulty because of their very high strength.
In spark plugs whose spark gap is located between the end face of the end piece of the center electrode and the end face of the counterpart facing it, which counterpart is attached to a ground electrode implemented as a front electrode, the nominal width of the spark gap preferably is produced by wire erosion. For this purpose, the tensioned wire for the erosion is guided along the surface of the end piece or of the counterpart to be machined at a distance required for producing the erosive sparkover until the desired width of the spark gap is achieved.
Instead of using wire erosion, the spark gap in a spark plug of this type with a ground electrode implemented as a front electrode can also be trimmed by laser beam cutting, or by water jet cutting. Just like wire erosion, these methods permit not only spark gaps delimited by flat surfaces, but also spark gaps with predefined width delimited by profiled surfaces.
In spark plugs whose spark gap surrounds a lateral surface of the end piece of the center electrode and the ground electrode is an annular electrode that surrounds the lateral surface of the center electrode, the nominal width of the spark gap preferably is produced through sink EDM. Sink EDM can be carried out with an annular electrode that during erosion is moved in the longitudinal direction of the center electrode past its end piece. For this purpose, it is best for the annular electrode required for sink EDM to have a casing with an outer lateral surface and an inner lateral surface, the radial dimensions of which give the casing a thickness that, together with the gap in which the eroding sparks spark over to the surface undergoing erosion of the end piece of the center electrode or of the counterpart on the ground electrode, yields precisely the nominal width of the spark gap. In this way, it is possible to obtain a spark gap that is precisely centered on the longitudinal axis of the center electrode and has the nominal width.
It is possible to proceed analogously in the case of a spark plug in which the lateral surface of the center electrode is located opposite the end of one or more ground electrodes, for example in a spark plug that has two diagonally opposing ground electrodes, or in a spark plug that has three ground electrodes that mutually enclose an angle of 120° and whose counterparts are pointed toward the lateral surface (circumferential surface) of the end piece of the center electrode. In this case, as well, the spark gaps can be trimmed simultaneously through sink EDM with an annular electrode.
The mutually opposing surfaces delimiting the spark gap can be shaped by removal of material in such a manner that ridges are produced that are opposite valleys, and/or valleys are produced that are opposite ridges, while the predefined width of the spark gap is maintained. In particular, the mutually opposing surfaces of the end piece placed on the center electrode and of the counterpart placed on the ground electrode can be designed with a corrugated or zigzag shape. In this way, the electrode consumption occurring in operation of the spark plug can be distributed over a larger area while maintaining the predefined width of the spark gap, thereby extending the service life of the spark plug.
It is useful for the center electrode to be designed as a circular cylinder at its front end in a known manner. The end piece that is welded to the front end of the center electrode also usefully is made in the shape of a circular cylinder and can have the same diameter as the front end of the center electrode, but can also have a different diameter, in particular a smaller diameter. The counterpart that is placed on the ground electrode preferably is also made in the shape of a circular cylinder. A circular cylindrical design of the center electrode, of the end piece attached thereto, and of the counterpart is not a prerequisite for the success sought with the invention, however.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
Like or corresponding parts are labeled with matching reference numbers in the figures.
The spark plug shown in
Welded onto the front end 2 of the shell 1 is a ground electrode 10, which is designed as a front electrode and usefully is made of the same material as the shell 1. The term “front electrode” is meant to express that the ground electrode 10 is designed with a hook shape and its free end section 10a opposes the end face of the end piece 13. The spark plug shown in
The shell 1, the ceramic insulator 4, and the center electrode 7 are prefabricated individually. The end piece 13, which is made of a precious metal or a precious metal alloy, for example platinum or iridium or a platinum alloy or an iridium alloy, in particular of a platinum-based alloy or an iridium-based alloy, is welded onto the front end 8 of the center electrode 7 and includes a surface 25 . The ground electrode 10 is also prefabricated. The counterpart 14, which can be made of the same material as the end piece 13, is welded laterally to the free end section 10a of the ground electrode 10 and includes a surface 26 which, together with the surface 25, delimit the spark gap.
In order to assemble the spark plug, the center electrode 7 is pushed from behind into the insulator 4 to a stop and fixed in place therein. This is not shown in
Together with the center electrode 7 inserted in it, the insulator 4 is pushed from behind into the shell 1 until its front external shoulder strikes an internal shoulder of the shell 1. These two shoulders are usefully conical in design, and in this way contribute to centering of the insulator 4 in the shell 1. In order to fix the insulator 4 in place in the shell 1, the back end 3 of the shell 1 can be crimped inward against a back external shoulder of the insulator 4.
For the sake of completeness, it is mentioned that an external thread 15 can be provided on the front section of the shell 1, with which thread the spark plug can be screwed into a matching threaded bore in the cylinder head of an internal combustion engine. A seal ring 19 can be provided adjacent to the external thread 15.
Once the insulator 4 is fixed in place in the shell 1, the ground electrode 10 is attached by welding to the front end 2 of the shell 1 such that the counterpart 14 opposes the end piece 13 of the center electrode 7.
The spark gap 18 is shown in
Inaccuracies in the spark gap 18 can be prevented with the method. For this reason, it is preferred to provisionally create the spark gap 18 such that it is narrower at every point than its nominal width. Moreover, an unwanted, incorrect orientation of the end piece 13 and counterpart 14 relative to one another is shown in
As is known, electrical discharge machining is brought about by the means that the wire 16 is electrically connected as a cathode, whereas the surface to be machined is connected as an anode. As the wire 16 approaches the surface to be machined, sparks jump from the wire 16 to the surface to be machined and bring about an erosion of the surface to be machined. The gap between the wire 16 and the surface to be machined is typically a few hundredths of a millimeter wide, depending on the level of the voltage applied and on the intensity of the current. The width of the spark gap that was expanded through wire erosion thus is the result of the diameter of the wire 16 plus the width of the gap [between the tool and the workpiece], which can be experimentally determined in advance.
During erosion, the wire can either glide along the surface of the end piece 13 or along the surface of the counterpart 14. The erosion then takes place at the particular surface from which the wire 16 maintains an appropriate distance while forming the gap [between the tool and the workpiece].
The spark gap 18 that is coming into being is delimited by two parallel surfaces, see
The surfaces delimiting the spark gap 18 need not be flat.
With an annular electrode 12, whose contour is shown greatly enlarged in
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 112 038 | Jul 2015 | DE | national |
10 2015 118 935 | Nov 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
6362562 | Rossi | Mar 2002 | B1 |
6583539 | Zamora | Jun 2003 | B1 |
7637793 | Lintunen | Dec 2009 | B2 |
8517786 | Musasa | Aug 2013 | B2 |
8519607 | Kowalski | Aug 2013 | B2 |
8912713 | DeSalvo | Dec 2014 | B2 |
20010015602 | Hori | Aug 2001 | A1 |
20020055318 | Ishiguro | May 2002 | A1 |
20090066211 | Hartmann | Mar 2009 | A1 |
20130187529 | DeSalvo | Jul 2013 | A1 |
20160141842 | Steiner | May 2016 | A1 |
Number | Date | Country |
---|---|---|
102007042790 | Mar 2009 | DE |
102015103666 | Jan 2016 | DE |
10055873 | Feb 1998 | JP |
Entry |
---|
German Office Action for Application No. 102015118935.6 dated Mar. 2, 2016, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20170025826 A1 | Jan 2017 | US |