The invention relates generally to structural components formed of steel for automotive vehicles, and methods for manufacturing the structural components.
Steel structural components for automotive vehicles are oftentimes hot-formed and quenched to form a martensitic microstructure, which provides high hardness and strength. However, depending on the particular application of the structural component, it may be desirable to reduce the hardness or increase the ductility in certain zones of the structural component. For example, soft zones may be formed to improve the performance of the component upon impact or improve the weldability of the component. Such localized soft zones can be formed by a tempering process. However, known tempering processes require a significant amount of time and thermal energy, and thus there remains a need for more efficient tempering processes.
The invention provides a method of manufacturing a structural component, such as a component for an automotive vehicle, with an improved tempering process. The method includes providing a workpiece formed of steel material; heating and forming the workpiece; quenching the formed workpiece; and tempering at least one portion of the quenched workpiece. The tempering step includes simultaneously applying thermal energy and a magnetic field to the workpiece. This thermomagnetic tempering process is more efficient than other tempering processes, and thus reduces costs associated with manufacturing the structural component.
The invention also provides a structural component including at least one hard zone, and at least one soft zone adjacent the at least one hard zone. The at least one hard zone includes martensite and the at least one soft zone includes a mixture of ferrite and cementite.
The invention further provides a structural component formed by a process comprising the steps of: heating and forming the workpiece; quenching the formed workpiece; and tempering at least one portion of the quenched workpiece. The tempering step includes simultaneously applying thermal energy and a magnetic field to the workpiece.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
The invention provides an improved method of manufacturing a structural component 10, typically for an automotive vehicle application, such as a pillar, header, rail, twist axle, spring link, control arm, bumper, beam, side panel, or any other type of strength driven chassis component, body in white component, or safety-related component. However, the structural component 10 could alternatively be used in non-automotive applications. The structural component 10 is hot-formed, quenched, and then tempered using a thermomagnetic tempering process to form at least one localized soft zone 12 adjacent a hard zone 14, and optionally a transition zone 16.
The method begins by providing at least one workpiece, such as a sheet or blank, formed of a steel material. The steel material of the workpiece can comprise any type of steel, including low carbon steel, medium carbon steel, ultra-high strength steel (UHSS), advanced high strength steel (AHSS), or high strength steel (HSS). A dual-phase steel material or a mixture of different materials can also be used to form the structural component 10. The workpiece should have an appropriate size and thickness depending on the type of structural component 10 to be formed.
The method next includes hot forming the workpiece to achieve a predetermined shape, which depends on the type of structural component 10 to be formed. Any type of hot forming process can be used to shape the workpiece. In one example embodiment, the hot forming process first includes heating the workpiece to a predetermined temperature in a furnace. The predetermined temperature depends on the type of steel material of the workpiece, the geometry of the workpiece, the desired geometry of the structural component 10, and possibly other factors. The workpiece is typically heated to a temperature high enough to form austenite in the steel material, for example at least 900° C.
Once the workpiece reaches the predetermined temperature sufficient for hot forming, the heated workpiece is quickly transferred to a hot forming apparatus, such as a die, press, or stamping device. The hot forming apparatus typically includes an upper die presenting an upper forming surface and a lower die presenting a lower forming surface. The heated workpiece is disposed between the two forming surfaces. The shape of the upper die and lower die varies depending on the desired geometry of the structural component to be formed. The upper and lower dies are typically formed of steel, but can be formed of other materials. The upper and lower dies also typically include a cooling means, such as a plurality of cooling channels spaced from the forming surfaces.
The forming step typically begins immediately or shortly after the heated workpiece is disposed between the upper and lower dies, and while the workpiece is still at a temperature of at least 900° C., or close to the temperature achieved in the furnace. During the forming step, the upper and lower dies are pressed together to stamp, press, or otherwise form the workpiece to the desired geometry. In one embodiment, the forming step includes stamping the hot workpiece between the upper and lower dies to achieve the desired geometry, specifically by engaging the hot workpiece with the upper and lower dies and applying pressure to the hot workpiece using at least one of the upper and lower dies. In the example embodiment, the workpiece is heated to a temperature of at least 900° C. in the furnace, so that austenite is present in the steel material of the workpiece during the forming step. The workpiece can be formed to various different and complex geometries, depending on the desired application of the structural component.
Immediately after or during the forming step, the method includes quenching the workpiece, preferably in the hot forming apparatus. This step is referred to as tool-quenching. At the bottom of the forming stroke, when the upper and lower dies are pressed together, water or another cooling fluid can flow through the cooling channels of the dies to quench the workpiece. The quenching step causes a phase transformation in the steel material and increases the strength of the steel material. During the quenching step, the steel material reaches a temperature low enough to cause the austenitic microstructure to transform to a martensitic microstructure, which increases the strength of the steel material.
The method next includes the thermomagnetic tempering process to form the at least one localized soft zone 12. As alluded to above, use of the magnetic field during the tempering process accelerates tempering kinetics and achieves localized softening at a faster rate, compared to other tempering processes which do not employ magnetic fields. The thermomagnetic tempering process includes first determining which areas of the hot formed, tool-quenched workpiece should include the at least one localized soft zone 12. The predetermined area of the workpiece in which the soft zones 12 are formed depends on the desired application of the structural component 10. For example, one of the soft zones 12 could be located at a distal end of the structural component 10, or in a transition region. Any number of soft zones 12 can be formed using the improved thermomagnetic tempering process. Alternatively, the thermomagnetic tempering process can be applied to the entire workpiece to provide the soft zone 12 throughout the entirety of the structural component 10.
Once the predetermined area of the workpiece is selected, the thermomagnetic tempering process begins by disposing a magnet adjacent the predetermined area for applying the magnetic field to the predetermined areas. The method also includes disposing a heat source adjacent the predetermined area for applying the thermal energy while applying the magnetic field. Any type of magnet and any type of heat source can be used to simultaneously apply the magnetic field and thermal energy. The geometry of the magnet and heat source, however, is selected based on the geometry of the workpiece, and should be capable of providing the localized magnetic field and thermal energy to the predetermined areas. In the example embodiment, the magnetic field is provided by a superconducting magnet, in the form of a flat plate with a bore, and the predetermined area of the workpiece is disposed in the bore. Alternatively, a conventional electromagnet can be used. The workpiece is typically held in a fixture or tempering station which includes the magnet and heat source.
The thermomagnetic tempering process next includes applying the magnetic field and thermal energy to the predetermined area to form the at least one localized soft zone 12. The magnitude of the magnetic field and temperature applied to the predetermined area can vary depending on the geometry of the workpiece and the desired microstructure to be achieved in the at least one soft zone 12. Typically, during the thermomagnetic tempering process, the heat source heats the predetermined area to a temperature ranging from 300° C. to 500° C., and the magnet applies a magnetic field ranging from 1 to 3 tesla. In one example embodiment, the heat source heats the predetermined area to a temperature around 450° C., and the magnet applies a magnetic field around 2 tesla. The duration of the thermomagnetic tempering process can vary depending on the geometry of the workpiece and the desired microstructure to be achieved in the at least one soft zone 12. The temperature, magnetic field, and/or duration of the thermomagnetic tempering process can be adjusted such that the martensitic microstructure of the predetermined area transitions to the desired microstructure. The microstructure of the at least one soft zone 12 is more stable and has a hardness less than the hardness of the martensitic microstructure present prior to the tempering process.
In the example embodiment, the workpiece comprises a low carbon steel, such a Fe-0.2C alloy. The thermomagnetic tempering process of this embodiment includes disposing the workpiece in the bore of the superconducting magnet, and heating the predetermined area of the workpiece to a temperature of 450° C. while applying a magnetic field of 2 tesla for 25 minutes to form the soft zone 12. During thermomagnetic tempering process, the martensite of the hot-formed, tool-quenched workpiece transitions from a bct martensitic microstructure to a mixture of bcc iron, referred to as ferrite, and carbide (Fe3C) precipitates. It is known that the ferrite and the carbide will coarsen with increasing time and temperature, due to the reduction of interfacial energy between the precipitates and the ferrite matrix. See Reference 18 of George F. Vander Voort, ASM Handbook: Volume 9: Metallography And Microstructures, ASM International, 2004, ISBN-13:978-0871707062, ISBN-10:0871707063, referred to hereinafter as “the ASM Handbook.” No pearlite is present in the tempered microstructure of this embodiment. Preferably the hardness achieved by the thermomagnetic tempering process is 200 VHN, or about 670 MPa UTS.
A typical tempered microstructure for a Fe-0.2C alloy is shown in
The amount of softening that occurs with tempering can be altered by adding alloy elements to the steel material of the workpiece. Softening typically occurs by the diffusion-controlled coarsening of cementite, and strong carbide formers, such as chromium, molybdenum, and vanadium, can reduce the rate of coarsening. Additionally, at higher tempering temperatures, the alloying elements themselves may form carbides, leading to an increase in overall hardness. See Reference 3 of the ASM Handbook.
In addition, different morphologies of tempered martensite can form depending on the original martensite microstructure. It has been observed that packets of aligned laths in low-carbon martensite can transform into large, acicular grains, as shown in
Although the thermomagnetic tempering process typically yields soft zones 12 comprising a mixture of ferrite and carbide, wherein the carbide is cementite (Fe3C) the temperature, magnetic field, and/or duration of the thermomagnetic tempering process could be adjusted to form other microstructures and hardness levels. For example, the martensite transforms such that the microstructure of the at least one soft zone 12 could include a mixture of ferrite and pearlite. In addition, if multiple soft zones 12 are formed, different microstructures and hardness levels can be formed in each soft zone 12. The microstructure of the soft zones 12 formed by the thermomagnetic tempering process can vary depending on the application of the structural component 10.
During the thermomagnetic tempering process, select regions of the workpiece wherein soft zones 12 are not desired are protected from the thermal energy and magnetic field in order to maintain the martensitic microstructure. In other words, certain portions of the workpiece are protected to prevent the martensitic microstructure present at the end of the hot-forming and quenching steps from transforming to a softer microstructure. Any known method can be used to mask or otherwise protect these select regions from the magnetic field and thermal energy. The select regions present in the finished structural component 10 are referred to as hard zones 14, and their location varies depending on the desired application of the structural component 10.
In addition to forming the soft zones 12 by applying the magnetic field and thermal energy to predetermined regions of the workpiece, and retaining hard zones 14 by masking the select regions of the workpiece, the method can also include forming the at least one transition zone 16 by at least partially protecting or tempering certain areas of the workpiece. The areas of the workpiece wherein the transition zones 16 are desired can partially masked or partially tempered, such that they are only exposed to a portion of the magnetic field and/or thermal energy. For example, the tempering step can include masking a first portion of the workpiece to maintain the hard zone 14, simultaneously applying the thermal energy and the magnetic field each at a first level to a second portion of the workpiece to form the soft zone 12, and simultaneously applying the thermal energy and the magnetic field each at a second level lower than the first level to a third portion of the workpiece to form the transition zone 16 between the hard zone 14 and the soft zone 12.
The location of the transition zones 16 varies depending on the desired application of the structural component 10. However, each transition zone 16 is typically disposed between one of the hard zones 14 and one of the soft zones 12.
The microstructure of the transition zone 16 has a hardness which is between the hardness of the adjacent hard zone 14 and the hardness of the adjacent soft zone 12. For example, the transition zone 16 can comprise at least one of martensite, ferrite, pearlite, cementite, and bainite. Typically, the transition zone 16 comprises a mixture of different microstructures, for example a mixture of ferrite and pearlite.
The method can also optionally include a conventional tempering process in addition to the thermomagnetic tempering process. For example, a second tempered zone can be formed, wherein the second tempered zone has a microstructure and hardness different from those of the soft zones 12, the hard zones 14, and the transition zone 16.
The hot-formed, quenched, and tempered structural component 10 formed by the method can optionally be finished machined or otherwise further prepared for the desired application. For example, after the thermomagnetic tempering step, the method can include trimming, piercing, or welding the structural component 10.
As discussed above, the structural component 10 provided by the invention includes the at least one soft zone 12 formed by the thermomagnetic tempering process disposed adjacent the at least one hard zone 14. The soft zones 12 have a microstructure different from the hard zone 14, a hardness less than the hardness of the hard zone 14, and are more stable than the hard zone 14. The microstructure of the soft zones 12 typically comprises a mixture of ferrite and carbide, wherein the carbide is cementite (Fe3C). However, soft zones 12 having other microstructures could be formed by the thermomagnetic tempering process. The structural component 10 can also include the transition zone 16 and/or the second tempered zone.
Example structural components 10 with soft zones 12 formed by the thermomagnetic tempering process are shown in
An experiment was conducted to compare the thermomagnetic tempering process of the present invention to a conventional tempering process. The experiment first included measuring the Rockwell Hardness (Rc) of a first set of hot-formed, tool-quenched steel samples, as received from a forming press, before any tempering. The experiment next included measuring the Rockwell Hardness (Rc) of a second set of samples which were hot-formed and tool-quenched in the same manner as the first set, after tempering without applying a magnetic field. The temperature of the tempering process ranged from 300° C. to 450° C., and the tempering time was either 5 or 25 minutes. The experiment also included measuring the Rockwell Hardness (Rc) of a third set of samples also hot-formed and tool-quenched in the same manner as the first two sets, after tempering with a magnetic field applied at 2 tesla. The magnetic field was applied by placing each sample inside a bore of a superconducting magnetic. Other than the magnetic field, the same tempering process parameters were applied to the second and third set of samples. The results of the experiment are shown in
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the following claims.
This PCT Patent Application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/053,280 filed Sep. 22, 2014, the entire disclosure of the application being considered part of the disclosure of this application, and hereby incorporated by reference.
The Government has rights in this invention pursuant to Work for Others Agreement No. NFE-13-04839 awarded by the Department of Energy.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/002018 | 9/18/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62053280 | Sep 2014 | US |