This invention relates to an apparatus and method for producing absorbent articles with stretch film side panels. The invention disclosed herein relates to apparatus and methods for waste reduction and improvements to the quality and production in web processing operations, such as diaper manufacturing. While the description provided relates to diaper manufacturing, the apparatus and method are easily adaptable to other applications.
Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion.
In the creation of a diaper, multiple roll-fed web processes are typically utilized. To create an absorbent insert, the cellulose pulp is unwound from the provided raw material roll and pulverized by a pulp mill. Discrete pulp cores are formed by a core forming assembly and placed on a continuous tissue web. Optionally, super-absorbent powder may be added to the pulp core. The tissue web is wrapped around the pulp core. The wrapped core is debulked by proceeding through a calendar unit, which at least partially compresses the core, thereby increasing its density and structural integrity. After debulking, the tissue-wrapped core is passed through a segregation or knife unit, where individual wrapped cores are cut. The cut cores are conveyed, at the proper pitch, or spacing, to a boundary compression unit.
While the insert cores are being formed, other insert components are being prepared to be presented to the boundary compression unit. For instance, the poly sheet is prepared to receive a cut core. Like the cellulose pulp, poly sheet material is usually provided in roll form. The poly sheet is fed through a splicer and accumulator, coated with an adhesive in a predetermined pattern, and then presented to the boundary compression unit. In addition to the poly sheet, which may form the bottom of the insert, a two-ply top sheet may also be formed in parallel to the core formation. Representative plies are an acquisition web material and a nonwoven web material, both of which are fed from material rolls, through a splicer and accumulator. The plies are coated with adhesive, adhered together, cut to size, and presented to the boundary compression unit. Therefore, at the boundary compression unit, three components are provided for assembly: the poly bottom sheet, the core, and the two-ply top sheet.
A representative boundary compression unit includes a die roller and a platen roller. When all three insert components are provided to the boundary compression unit, the nip of the rollers properly compresses the boundary of the insert. Thus, provided at the output of the boundary compression unit is a string of interconnected diaper inserts. The diaper inserts are then separated by an insert knife assembly and properly oriented. At this point, the completed insert is ready for placement on a diaper chassis.
A representative diaper chassis comprises nonwoven web material and support structure. The diaper support structure is generally elastic and may include leg elastic, waistband elastic and belly band elastic. The support structure is usually sandwiched between layers of the nonwoven web material, which is fed from material rolls, through splicers and accumulators. The chassis may also be provided with several patches, besides the absorbent insert. Representative patches include adhesive tape tabs and resealable closures.
The process utilizes two main carrier webs; a nonwoven web which forms an inner liner web, and an outer web that forms an outwardly facing layer in the finished diaper. In a representative chassis process, the nonwoven web is slit at a slitter station by rotary knives along three lines, thereby forming four webs. One of the lines is on approximately the centerline of the web and the other two lines are parallel to and spaced a short distance from the centerline. The effect of such slicing is twofold; first, to separate the nonwoven web into two inner diaper liners. One liner will become the inside of the front of the diaper, and the second liner will become the inside of the back of that garment. Second, two separate, relatively narrow strips are formed that may be subsequently used to cover and entrap portions of the leg-hole elastics. The strips can be separated physically by an angularly disposed spreader roll and aligned laterally with their downstream target positions on the inner edges of the formed liners.
After the nonwoven web is sliced, an adhesive is applied to the liners in a predetermined pattern in preparation to receive leg-hole elastic. The leg-hole elastic is applied to the liners and then covered with the narrow strips previously separated from the nonwoven web. Adhesive is applied to the outer web, which is then combined with the assembled inner webs having elastic thereon, thereby forming the diaper chassis. Next, after the elastic members have been sandwiched between the inner and outer webs, an adhesive is applied to the chassis. The chassis is now ready to receive an insert.
To assemble the final diaper product, the insert must be combined with the chassis. The placement of the insert onto the chassis occurs on a placement drum or at a patch applicator. The inserts are provided to the chassis on the placement drum at a desired pitch or spacing. The generally flat chassis/insert combination is then folded so that the inner webs face each other, and the combination is trimmed. A sealer bonds the webs at appropriate locations prior to individual diapers being cut from the folded and sealed webs.
The current practice in applying a stretchable web such as a poly web to a second web is involved continuously feeding the poly web into the process which results in poly running full length of product, or alternatively, full length of a constructed insert core which is then placed onto a nonwoven-type chassis. Not all machine configurations can be adapted from a full length poly chassis to a poly insert configuration due to space and/or cost restrictions. It should be understood that application of the poly web along the entire length of the product, rather than only where it is useful, increases the amount of poly material which must be utilized. This is a waste of the material resource and adds additional cost to the product. It is therefore desirable to create a lower cost product by putting poly into the product only where it is useful, instead of the complete product.
However, typical slip/cut application of poly patch to a continuous web does not work well because of the elasticity of the poly web. The slip/cut process allows the poly to slip on anvil prior to being cut causing the poly to violently snap back at the moment of cut. This can result in a short patch-long patch output from the slip/cut where one or more of the resulting poly patches are extremely distorted on the carrier web. This result is useless for producing a diaper-type product and would be unacceptable to the consumer. It is therefore desirable to provide an apparatus that can cut patches from a poly web while eliminating the snap back of the poly web material.
One aspect of the invention is a method including providing a base non-woven layer, and applying thereto a character strip. Next, a stretched film is applied over the character strip/base non-woven laminate, and the stretched film is intermittently bonded to the base non-woven. Next, a cover non-woven is applied intermittently to the stretched film, thereby creating a laminate comprising the previously mentioned components.
In another embodiment, the character strip can be interchanged an image on at least one of core insert and a chassis web, for instance in the form of a pre-printed web, or a web printed upon prior to being covered with the stretch woven material.
In one embodiment, the method comprises providing a plurality of pairs of heated knives about a rotatable body, with vacuum commutation provided thereto. The stretched film is cut while stretched, the film being held to the rotating body by the vacuum commutation ports about the rotating body, until the stretched film is trimmed and the trim removed by a second source of vacuum. In this embodiment, a block is used to push material into the rotating heated knives. In an alternative embodiment, vacuum is applied to the stretchable film to drawn the material against the heated knife, thereby severing the stretchable film.
Advantages to the present invention include fewer materials in the side seam bond sandwich, such as 4 instead of the 6-10 layers currently used. Fewer layers assist and facilitate ultrasonic bonding, and result in a more uniform product, because fewer layers are required to be constructed. In alternative embodiments, the product can be configured with or without a waist band.
In another embodiment, simultaneously with the chassis formation, the insert assembly takes place. The formed insert is combined with the formed chassis web, and after this combination is made, the product can be folded and side seam bonded to form a pant style diaper if desired, or tape tabs and ears can be applied to form a wrap around style diaper.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
It is noted that the present techniques and apparatus are described herein with respect to products such as diapers, but as previously mentioned, can be applied to a wide variety of processes in which discrete components are applied sequentially.
Referring to
The illustrated method displays a core form on tissue method, where the tissue is carried by a core forming drum and the tissue is pulled into a pulp forming pocket, where air-entrained pulp is then drawn into by vacuum.
The process continues through debulking, core cutting and spacing. At a boundary compression unit, the core/tissue combination is sandwiched between a preferably 3-ply topsheet layer and a printed poly backsheet layer carrying leg elastics. The 3-ply topsheet laminate comprises an acquisition layer, designed to accept liquid insult and distribute the over a larger surface of the core to improve absorption performance and also to prevent reverse migration of liquid escaping from the core. Carried between the acquisition layer and the cuff non-woven layer is an insert non-woven layer 80.
At the compression unit, a compression roll compresses the materials around the border of the core, to create a topsheet/backsheet sandwich with the core in the middle of the topsheet and the backsheet. At this point, the insert assembly has been formed, and is prepared for introduction to the chassis web assembly shown both on
The web can undergo folding, extraction and trimming of excess material, and application of material to tighten the diaper about the waist. Eventually, the product is folded and packaged.
As seen on
At each of these operations shown in
Referring now to
It will be described later that an area of no or little bonding of the stretched film layer 12 to the character strip 14 or base non-woven 10 is achieved across generally the widths D1 and D2. In a preferred embodiment, the width D2 represents the width of character strip 14, and that a wider void space D1 is created over the character strip representative of the distance between intermittent cover non-woven pieces 16.
The area of no or little bonding of the stretched film layer 12 to the character strip 14 or base non-woven 10 is provided so that the stretched film 12 can be severed and removed from the laminate in areas where the stretched film layer 12 is not desired, such as in areas where the stretched film layer 12 has been not or minimally bonded to the other layers of the laminate.
Referring now to
Leg cutouts 18 can be provided in the base non-woven layer 10 as shown. Side seams 20 are indicated to represent discrete diaper products between successive side seams 20 in the machine direction (right to left or left to right as shown). The character strips 14 can be exposed by severing the stretched film 12 into a removable chip 22 by use of a heated knife applied at areas of roughly equal to or less than width D1 (See
Still referring to
In an alternative embodiment (See, e.g.,
In one embodiment, the non-woven 10 is slip-cut to stretched film 12 and bonded ultrasonically or adhesively (not shown). A patterned bonding roll (with vacuum) may be used if desired.
Referring now to
Preferably, the rotating body comprises a series of knifes 30, acting in pairs spaced apart a distance of approximately D1 to act upon the stretch film 12 and sever the stretch film 12 into a chip 22 that will be removed once rotated into communication with vacuum hood 36, which because only stretch film 12 (or, in addition, a small portion of character strip 14) will be removed and discarded or recycled. Preferably, the knives 30 have silicon lagging, heated knives. In this manner, the knifes can be used to heat sever stretch film 12 after being urged into contact with the heated knives by blocks 34, which are used to push the laminate of
Optionally, each of the components capable of discrete attachment, such as cover non-woven 16, character strip 14, or stretch film 12, can be applied intermittently using the technique described in relation to the methods and apparatus shown in
As shown in
The system 200 preferably includes a cutting apparatus 208 for cutting the first continuous web 204 into segments 202. The cutting apparatus may take any form known in the art.
Accumulator 220 can take any form, such as a servo driven roller that speeds up and slows down, an alternate roller configuration, a rocking roller configuration such as shown in
In the illustrated embodiment the cutting apparatus 208 includes an anvil 210 and a knife roll 212. The anvil 210 is preferably a vacuum anvil. As shown in
The system 200 preferably includes a rate adjustment apparatus 214. The rate adjustment apparatus 214 is sized and configured to adjust the rate at which the first web 204 is being fed to the anvil 210 while the rate at which the first web 204 is fed to the rate adjustment apparatus 214 remains the same. In the illustrated embodiment, the rate adjustment apparatus 214 takes the form of an infeed conveyor 216 which controls the feed rate of the first web 204 to the anvil 210.
Preferably, after each segment 202 is cut, the infeed of first web 204 to the anvil 210 is momentarily halted. After an appropriate amount of time has passed, the infeed of the first web 204 to the anvil 210 is resumed. In this manner, the segments 202 may be spaced apart when placed on the second web 206. It is contemplated that the leading edge 218 of the first web 204 will engage at least a portion of the vacuum anvil 210 after each segment 202 is cut. Preferably, the vacuum anvil 210 is provided with a relatively low amount of vacuum at that point. The vacuum is preferably sufficient to retain the leading edge 218 of the first web 204 in position, with the anvil 210 slipping below the first web 204. However, the vacuum must be low enough that it does not stretch the first web 204. It should be understood that this may achieved using any means known in the art including, but not limited to a vacuum manifold.
In a preferred embodiment, after the cut is performed at anvil 210, the supply of incoming web 204 to the anvil 218 is momentarily stalled, which results in a gap between supply of the discrete pieces of material 202 to the web 206. Preferably next, the incoming web 204 is then accelerated to feed material to match or nearly match the velocity of roll 210 until the next cut is made. In this sense, the accumulator 220 is used to create the intermittency. The purpose of the speeding and stalling is to prevent snap back of the incoming web 204.
It is further contemplated that the system 200 may include a tension control device 220. The tension control device 220 is preferably sized and configured to eliminate tension in the first web 204 prior to cutting a segment 202 from the first web 204. In this manner when the cut is made the material will not snap back as it would if the first web 204 were under tension. In the illustrated embodiment the tension control device 220 takes the form of a web accumulator 222. However, it is contemplated that the tension control device 220 could take any form known in the art capable of performing such a function. The tension control device 220 of the illustrated embodiment includes a pair of rollers 224 coupled to a pivoting member 226. The pivoting member 226 is pivotable between a first and second position. In this manner, the first web 204 is accumulated in the tension control device 220 when the rate adjustment apparatus 214 momentarily halts the infeed of the web 204 to the anvil 210 as described above.
It is contemplated that the segments 202 may be secured to the target web 206 in any manner known in the art. For example, and not by way of limitation, an adhesive may be applied to the surface of the first web 204 prior to cutting the poly web into segments as shown in
Alternatively, it is contemplated that adhesive may be applied to the surface of the second web 206 prior to placing the cut segments 202 on the second web 206 as shown in
It is further contemplated that the web segments 202 may be ultrasonically bonded to the second web 206. Bonding positions could be located at positions similar to glue head 228, but also could be repositioned in the system, or could for instance employ roll 210 as an anvil, and equipped with an additional roll to react with roll 210, for instance at the 6 o'clock position of roll 210 (not shown in Figs.) Ultrasonic or heat bonding stations could also be employed.
It is contemplated that the system 200 will provide active tension control and feed approach to change the feed of the first web 204 into the slip/cut cutting apparatus 208 at the moment of cut so the first web 204 is not under tension at the cut moment. This will result in a stable cut segment 202 that can be uniformly applied to the second web 206.
Referring now to
Beginning with
Next, as shown in
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
Referring to
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This is a continuation-in-part application of U.S. patent application Ser. No. 12/979,154, filed 27 Dec. 2010, now U.S. Pat. No. 8,460,495, which claimed the benefit of U.S. Provisional Application Ser. No. 61/335,018, filed 30 Dec. 2009.
Number | Name | Date | Kind |
---|---|---|---|
135145 | Murphy | Jan 1873 | A |
293353 | Purvis | Feb 1884 | A |
312257 | Cotton et al. | Feb 1885 | A |
410123 | Stilwell | Aug 1889 | A |
432742 | Stanley | Jul 1890 | A |
643821 | Howlett | Feb 1900 | A |
1393524 | Grupe | Oct 1921 | A |
1431315 | Le Moine | Oct 1922 | A |
1605842 | Jones | Nov 1926 | A |
1686595 | Belluche | Oct 1928 | A |
1957651 | Joa | May 1934 | A |
2009857 | Potdevin | Jul 1935 | A |
2054832 | Potdevin | Sep 1936 | A |
2117432 | Linscott | May 1938 | A |
2128746 | Joa | Aug 1938 | A |
2131808 | Joa | Oct 1938 | A |
2164408 | Joa | Jul 1939 | A |
2167179 | Joa | Jul 1939 | A |
2171741 | Cohn et al. | Sep 1939 | A |
2213431 | Joa | Sep 1940 | A |
2254290 | Joa | Sep 1941 | A |
2254291 | Joa | Sep 1941 | A |
2282477 | Joa | May 1942 | A |
2286096 | Joa | Jun 1942 | A |
2296931 | Joa | Sep 1942 | A |
2304571 | Joa | Dec 1942 | A |
2324930 | Joa | Jul 1943 | A |
2345937 | Joa | Apr 1944 | A |
2466240 | Joa | Apr 1949 | A |
2481929 | Joa | Sep 1949 | A |
2510229 | Joa | Jun 1950 | A |
2540844 | Strauss | Feb 1951 | A |
2584002 | Elser et al. | Jan 1952 | A |
2591359 | Joa | Apr 1952 | A |
2618816 | Joa | Nov 1952 | A |
2627859 | Hargrave | Feb 1953 | A |
2695025 | Andrews | Nov 1954 | A |
2702406 | Reed | Feb 1955 | A |
2721554 | Joa | Oct 1955 | A |
2730144 | Joa | Jan 1956 | A |
2772611 | Heywood | Dec 1956 | A |
2780253 | Joa | Feb 1957 | A |
2785609 | Billeb | Mar 1957 | A |
2788786 | Dexter | Apr 1957 | A |
2811905 | Kennedy, Jr. | Nov 1957 | A |
2828745 | Deutz | Apr 1958 | A |
2839059 | Joa | Jun 1958 | A |
2842169 | Joa | Jul 1958 | A |
2851934 | Heywood | Sep 1958 | A |
2875724 | Joa | Mar 1959 | A |
2890700 | Lonberg-Holm | Jun 1959 | A |
2913862 | Sabee | Nov 1959 | A |
2939461 | Joa | Jun 1960 | A |
2939646 | Stone | Jun 1960 | A |
2960143 | Joa | Nov 1960 | A |
2990081 | De Neui et al. | Jun 1961 | A |
2991739 | Joa | Jul 1961 | A |
3016207 | Comstock, III | Jan 1962 | A |
3016582 | Joa | Jan 1962 | A |
3017795 | Joa | Jan 1962 | A |
3020687 | Joa | Feb 1962 | A |
3021135 | Joa | Feb 1962 | A |
3024957 | Pinto | Mar 1962 | A |
3053427 | Wasserman | Sep 1962 | A |
3054516 | Joa | Sep 1962 | A |
3069982 | Heywood et al. | Dec 1962 | A |
3075684 | Rothmann | Jan 1963 | A |
3086253 | Joa | Apr 1963 | A |
3087689 | Heim | Apr 1963 | A |
3089494 | Schwartz | May 1963 | A |
3091408 | Schoeneman | May 1963 | A |
3114994 | Joa | Dec 1963 | A |
3122293 | Joa | Feb 1964 | A |
3128206 | Dungler | Apr 1964 | A |
3203419 | Joa | Aug 1965 | A |
3230955 | Joa | Jan 1966 | A |
3268954 | Joa | Aug 1966 | A |
3288037 | Burnett | Nov 1966 | A |
3289254 | Joa | Dec 1966 | A |
3291131 | Joa | Dec 1966 | A |
3301114 | Joa | Jan 1967 | A |
3318608 | Smrekar | May 1967 | A |
3322589 | Joa | May 1967 | A |
3342184 | Joa | Sep 1967 | A |
3356092 | Joa | Dec 1967 | A |
3360103 | Joa | Dec 1967 | A |
3336847 | Johnson | Jan 1968 | A |
3391777 | Joa | Jul 1968 | A |
3454442 | Heller, Jr. | Jul 1969 | A |
3463413 | Smith | Aug 1969 | A |
3470848 | Dreher | Oct 1969 | A |
3484275 | Lewicki, Jr. | Dec 1969 | A |
3502322 | Cran | Mar 1970 | A |
3521639 | Joa | Jul 1970 | A |
3526563 | Schott, Jr. | Sep 1970 | A |
3527123 | Dovey | Sep 1970 | A |
3538551 | Joa | Nov 1970 | A |
3540641 | Besnyo | Nov 1970 | A |
3575170 | Clark | Apr 1971 | A |
3607578 | Berg et al. | Sep 1971 | A |
3635462 | Joa | Jan 1972 | A |
3656741 | Macke et al. | Apr 1972 | A |
3666611 | Joa | May 1972 | A |
3673021 | Joa | Jun 1972 | A |
3685818 | Burger et al. | Aug 1972 | A |
3728191 | Wierzba et al. | Apr 1973 | A |
3745947 | Brocklehurst | Jul 1973 | A |
3751224 | Wackerle | Aug 1973 | A |
3758102 | Munn et al. | Sep 1973 | A |
3762542 | Grimes | Oct 1973 | A |
3772120 | Radzins | Nov 1973 | A |
3776798 | Milano | Dec 1973 | A |
3796360 | Alexeff | Mar 1974 | A |
3811987 | Wilkinson et al. | May 1974 | A |
3816210 | Aoko et al. | Jun 1974 | A |
3847710 | Blomqvist et al. | Nov 1974 | A |
3854917 | McKinney et al. | Dec 1974 | A |
3883389 | Schott, Jr. | May 1975 | A |
3888400 | Wiig | Jun 1975 | A |
3901238 | Geller et al. | Aug 1975 | A |
3903768 | Amberg et al. | Sep 1975 | A |
3904147 | Taitel et al. | Sep 1975 | A |
3918968 | Kukla et al. | Nov 1975 | A |
3921481 | Fleetwood | Nov 1975 | A |
3941038 | Bishop | Mar 1976 | A |
3960646 | Wiedamann | Jun 1976 | A |
3988194 | Babcock et al. | Oct 1976 | A |
3991994 | Farish | Nov 1976 | A |
4002005 | Mueller et al. | Jan 1977 | A |
4003298 | Schott, Jr. | Jan 1977 | A |
4009626 | Gressman | Mar 1977 | A |
4009814 | Singh | Mar 1977 | A |
4009815 | Ericson et al. | Mar 1977 | A |
4053150 | Lane | Oct 1977 | A |
4056919 | Hirsch | Nov 1977 | A |
4081301 | Buell | Mar 1978 | A |
4090516 | Schaar | May 1978 | A |
4094319 | Joa | Jun 1978 | A |
4103595 | Corse | Aug 1978 | A |
4106974 | Hirsch | Aug 1978 | A |
4108584 | Radzins et al. | Aug 1978 | A |
4136535 | Audas | Jan 1979 | A |
4141193 | Joa | Feb 1979 | A |
4141509 | Radzins | Feb 1979 | A |
4142626 | Bradley | Mar 1979 | A |
4157934 | Ryan et al. | Jun 1979 | A |
4165666 | Johnson et al. | Aug 1979 | A |
4168776 | Hoeboer | Sep 1979 | A |
4171239 | Hirsch et al. | Oct 1979 | A |
4205679 | Repke et al. | Jun 1980 | A |
4208230 | Magarian | Jun 1980 | A |
4213356 | Armitage | Jul 1980 | A |
4215827 | Roberts et al. | Aug 1980 | A |
4220237 | Mohn | Sep 1980 | A |
4222533 | Pongracz | Sep 1980 | A |
4223822 | Clitheroe | Sep 1980 | A |
4231129 | Winch | Nov 1980 | A |
4234157 | Hodgeman et al. | Nov 1980 | A |
4236955 | Prittie | Dec 1980 | A |
4275510 | George | Jun 1981 | A |
4284454 | Joa | Aug 1981 | A |
4297157 | Van Vliet | Oct 1981 | A |
4307800 | Joa | Dec 1981 | A |
4316756 | Wilson | Feb 1982 | A |
4325519 | McLean | Apr 1982 | A |
4342206 | Rommel | Aug 1982 | A |
4349140 | Passafiume | Sep 1982 | A |
4364787 | Radzins | Dec 1982 | A |
4374576 | Ryan | Feb 1983 | A |
4379008 | Gross et al. | Apr 1983 | A |
4394898 | Campbell | Jul 1983 | A |
4411721 | Wishart | Oct 1983 | A |
4426897 | Littleton | Jan 1984 | A |
4452597 | Achelpohl | Jun 1984 | A |
4479836 | Dickover et al. | Oct 1984 | A |
4492608 | Hirsch et al. | Jan 1985 | A |
4501098 | Gregory | Feb 1985 | A |
4508528 | Hirsch et al. | Apr 1985 | A |
4522853 | Szonn et al. | Jun 1985 | A |
4543152 | Nozaka | Sep 1985 | A |
4551191 | Kock et al. | Nov 1985 | A |
4578052 | Engel et al. | Mar 1986 | A |
4578133 | Oshefsky et al. | Mar 1986 | A |
4586199 | Birring | May 1986 | A |
4589945 | Polit | May 1986 | A |
4603800 | Focke et al. | Aug 1986 | A |
4606964 | Wideman | Aug 1986 | A |
4608115 | Schroth et al. | Aug 1986 | A |
4610681 | Strohbeen et al. | Sep 1986 | A |
4610682 | Kopp | Sep 1986 | A |
4614076 | Rathemacher | Sep 1986 | A |
4619357 | Radzins et al. | Oct 1986 | A |
4625612 | Oliver | Dec 1986 | A |
4634482 | Lammers | Jan 1987 | A |
4641381 | Heran et al. | Feb 1987 | A |
4642150 | Stemmler | Feb 1987 | A |
4642839 | Urban | Feb 1987 | A |
4650173 | Johnson et al. | Mar 1987 | A |
4650406 | Peters | Mar 1987 | A |
4650530 | Mahoney et al. | Mar 1987 | A |
4663220 | Wisneski et al. | May 1987 | A |
4672705 | Bors et al. | Jun 1987 | A |
4675016 | Meuli et al. | Jun 1987 | A |
4675062 | Instance | Jun 1987 | A |
4675068 | Lundmark | Jun 1987 | A |
4686136 | Homonoff et al. | Aug 1987 | A |
4693056 | Raszewski | Sep 1987 | A |
4701239 | Craig | Oct 1987 | A |
4720415 | Vander Wielen et al. | Jan 1988 | A |
4723698 | Schoonderbeek | Feb 1988 | A |
4726874 | Van Vliet | Feb 1988 | A |
4726876 | Tomsovic, Jr. | Feb 1988 | A |
4743241 | Igaue et al. | May 1988 | A |
4751997 | Hirsch | Jun 1988 | A |
4753429 | Irvine et al. | Jun 1988 | A |
4756141 | Hirsch et al. | Jul 1988 | A |
4764325 | Angstadt | Aug 1988 | A |
4765780 | Angstadt | Aug 1988 | A |
4776920 | Ryan | Oct 1988 | A |
4777513 | Nelson | Oct 1988 | A |
4782647 | Williams et al. | Nov 1988 | A |
4785986 | Daane et al. | Nov 1988 | A |
4795416 | Cogswell et al. | Jan 1989 | A |
4795451 | Buckley | Jan 1989 | A |
4795510 | Wittrock et al. | Jan 1989 | A |
4798353 | Peugh | Jan 1989 | A |
4801345 | Dussaud et al. | Jan 1989 | A |
4802570 | Hirsch et al. | Feb 1989 | A |
4826499 | Ahr | May 1989 | A |
4840609 | Jones et al. | Jun 1989 | A |
4845964 | Bors et al. | Jul 1989 | A |
4864802 | D'Angelo | Sep 1989 | A |
4880102 | Indrebo | Nov 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4892536 | Des Marais et al. | Jan 1990 | A |
4904440 | Angstadt | Feb 1990 | A |
4908175 | Angstadt | Mar 1990 | A |
4909019 | Delacretaz et al. | Mar 1990 | A |
4915767 | Rajala et al. | Apr 1990 | A |
4917746 | Kons et al. | Apr 1990 | A |
4925520 | Beaudoin et al. | May 1990 | A |
4927322 | Schweizer et al. | May 1990 | A |
4927486 | Fattal et al. | May 1990 | A |
4927582 | Bryson | May 1990 | A |
4937887 | Schreiner | Jul 1990 | A |
4963072 | Miley et al. | Oct 1990 | A |
4987940 | Straub et al. | Jan 1991 | A |
4994010 | Doderer-Winkler | Feb 1991 | A |
5000806 | Merkatoris et al. | Mar 1991 | A |
5021111 | Swenson | Jun 1991 | A |
5025910 | Lasure et al. | Jun 1991 | A |
5029505 | Holliday | Jul 1991 | A |
5045039 | Bay | Sep 1991 | A |
5045135 | Meissner et al. | Sep 1991 | A |
5062597 | Martin et al. | Nov 1991 | A |
5064179 | Martin | Nov 1991 | A |
5064492 | Friesch | Nov 1991 | A |
5080741 | Nomura et al. | Jan 1992 | A |
5094658 | Smithe et al. | Mar 1992 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5108017 | Adamski, Jr. et al. | Apr 1992 | A |
5109767 | Nyfeler et al. | May 1992 | A |
5110403 | Ehlert | May 1992 | A |
5114392 | McAdam et al. | May 1992 | A |
5127981 | Straub et al. | Jul 1992 | A |
5131525 | Musschoot | Jul 1992 | A |
5131901 | Moll | Jul 1992 | A |
5133511 | Mack | Jul 1992 | A |
5147487 | Nomura et al. | Sep 1992 | A |
5163594 | Meyer | Nov 1992 | A |
5171239 | Igaue et al. | Dec 1992 | A |
5176244 | Radzins et al. | Jan 1993 | A |
5183252 | Wolber et al. | Feb 1993 | A |
5188627 | Igaue et al. | Feb 1993 | A |
5190234 | Ezekiel | Mar 1993 | A |
5195684 | Radzins | Mar 1993 | A |
5203043 | Riedel | Apr 1993 | A |
5213645 | Nomura et al. | May 1993 | A |
5222422 | Benner, Jr. et al. | Jun 1993 | A |
5223069 | Tokuno et al. | Jun 1993 | A |
5226992 | Morman | Jul 1993 | A |
5246433 | Hasse et al. | Sep 1993 | A |
5252228 | Stokes | Oct 1993 | A |
5267933 | Precoma | Dec 1993 | A |
5273228 | Yoshida | Dec 1993 | A |
5275076 | Greenwalt | Jan 1994 | A |
5275676 | Rooyakkers et al. | Jan 1994 | A |
5308345 | Herrin | May 1994 | A |
5328438 | Crowley | Jul 1994 | A |
5334446 | Quantrille et al. | Aug 1994 | A |
5340424 | Matsushita | Aug 1994 | A |
5353909 | Mukai | Oct 1994 | A |
5368893 | Sommer et al. | Nov 1994 | A |
5389173 | Merkotoris et al. | Feb 1995 | A |
5393360 | Bridges et al. | Feb 1995 | A |
5407507 | Ball | Apr 1995 | A |
5407513 | Hayden et al. | Apr 1995 | A |
5410857 | Utley | May 1995 | A |
5415649 | Watanabe et al. | May 1995 | A |
5417132 | Cox et al. | May 1995 | A |
5421924 | Ziegelhoffer et al. | Jun 1995 | A |
5424025 | Hanschen et al. | Jun 1995 | A |
5429576 | Doderer-Winkler | Jul 1995 | A |
5435802 | Kober | Jul 1995 | A |
5435971 | Dyckman | Jul 1995 | A |
5449353 | Watanabe et al. | Sep 1995 | A |
5464401 | Hasse et al. | Nov 1995 | A |
5486253 | Otruba | Jan 1996 | A |
5494622 | Heath et al. | Feb 1996 | A |
5500075 | Herrmann | Mar 1996 | A |
5516392 | Bridges et al. | May 1996 | A |
5518566 | Bridges et al. | May 1996 | A |
5525175 | Blenke et al. | Jun 1996 | A |
5531850 | Hermann | Jul 1996 | A |
5540647 | Weiermann et al. | Jul 1996 | A |
5540796 | Fries | Jul 1996 | A |
5545275 | Herrin et al. | Aug 1996 | A |
5545285 | Johnson | Aug 1996 | A |
5552013 | Ehlert et al. | Sep 1996 | A |
5555786 | Fuller | Sep 1996 | A |
5556360 | Kober et al. | Sep 1996 | A |
5556504 | Rajala et al. | Sep 1996 | A |
5560793 | Ruscher et al. | Oct 1996 | A |
5575187 | Dieterlen | Nov 1996 | A |
5586964 | Chase | Dec 1996 | A |
5602747 | Rajala | Feb 1997 | A |
5603794 | Thomas | Feb 1997 | A |
5624420 | Bridges et al. | Apr 1997 | A |
5624428 | Sauer | Apr 1997 | A |
5628738 | Suekane | May 1997 | A |
5634917 | Fujioka et al. | Jun 1997 | A |
5636500 | Gould | Jun 1997 | A |
5643165 | Klekamp | Jul 1997 | A |
5643396 | Rajala et al. | Jul 1997 | A |
5645543 | Nomura et al. | Jul 1997 | A |
5659229 | Rajala | Aug 1997 | A |
5660657 | Rajala et al. | Aug 1997 | A |
5660665 | Jalonen | Aug 1997 | A |
5683376 | Kato et al. | Nov 1997 | A |
5683531 | Roessler et al. | Nov 1997 | A |
5685873 | Bruemmer | Nov 1997 | A |
RE35687 | Igaue et al. | Dec 1997 | E |
5693165 | Schmitz | Dec 1997 | A |
5699653 | Hartman et al. | Dec 1997 | A |
5705013 | Nease | Jan 1998 | A |
5707470 | Rajala et al. | Jan 1998 | A |
5711832 | Glaug et al. | Jan 1998 | A |
5725518 | Coates | Mar 1998 | A |
5725714 | Fujioka | Mar 1998 | A |
5743994 | Roessler et al. | Apr 1998 | A |
5745922 | Rajala et al. | May 1998 | A |
5746869 | Hayden et al. | May 1998 | A |
5749989 | Linman et al. | May 1998 | A |
5759340 | Boothe et al. | Jun 1998 | A |
5766389 | Brandon et al. | Jun 1998 | A |
5766411 | Wilson | Jun 1998 | A |
5779689 | Pfeifer et al. | Jul 1998 | A |
5788797 | Herrin et al. | Aug 1998 | A |
5817199 | Brennecke et al. | Oct 1998 | A |
5827259 | Laux et al. | Oct 1998 | A |
5829164 | Kotischke | Nov 1998 | A |
5836931 | Toyoda et al. | Nov 1998 | A |
5858012 | Yamaki et al. | Jan 1999 | A |
5865393 | Kreft et al. | Feb 1999 | A |
5868727 | Barr et al. | Feb 1999 | A |
5876027 | Fukui et al. | Mar 1999 | A |
5876792 | Caldwell | Mar 1999 | A |
5879500 | Herrin et al. | Mar 1999 | A |
5902222 | Wessman | May 1999 | A |
5902431 | Wilkinson et al. | May 1999 | A |
5904675 | Laux et al. | May 1999 | A |
5932039 | Popp et al. | Aug 1999 | A |
5935367 | Hollenbeck | Aug 1999 | A |
5938193 | Bluemle et al. | Aug 1999 | A |
5938652 | Sauer | Aug 1999 | A |
5964390 | Borresen et al. | Oct 1999 | A |
5964970 | Woolwine et al. | Oct 1999 | A |
5971134 | Trefz et al. | Oct 1999 | A |
5983764 | Hillebrand | Nov 1999 | A |
6009781 | McNeil | Jan 2000 | A |
6022443 | Rajala et al. | Feb 2000 | A |
6036805 | McNichols | Mar 2000 | A |
6043836 | Kerr et al. | Mar 2000 | A |
6050517 | Dobrescu et al. | Apr 2000 | A |
6074110 | Verlinden et al. | Jun 2000 | A |
6076442 | Arterburn et al. | Jun 2000 | A |
6080909 | Osterdahl et al. | Jun 2000 | A |
6098249 | Toney et al. | Aug 2000 | A |
6123792 | Samida et al. | Sep 2000 | A |
6138436 | Malin et al. | Oct 2000 | A |
6142048 | Bradatsch et al. | Nov 2000 | A |
6171432 | Brisebois | Jan 2001 | B1 |
6183576 | Couillard et al. | Feb 2001 | B1 |
6193054 | Henson et al. | Feb 2001 | B1 |
6193702 | Spencer | Feb 2001 | B1 |
6195850 | Melbye | Mar 2001 | B1 |
6196147 | Burton et al. | Mar 2001 | B1 |
6210386 | Inoue | Apr 2001 | B1 |
6212859 | Bielik, Jr. et al. | Apr 2001 | B1 |
6214147 | Mortellite et al. | Apr 2001 | B1 |
6250048 | Linkiewicz | Jun 2001 | B1 |
6264639 | Sauer | Jul 2001 | B1 |
6264784 | Menard et al. | Jul 2001 | B1 |
6276421 | Valenti et al. | Aug 2001 | B1 |
6276587 | Borresen | Aug 2001 | B1 |
6280373 | Lanvin | Aug 2001 | B1 |
6284081 | Vogt et al. | Sep 2001 | B1 |
6287409 | Stephany | Sep 2001 | B1 |
6305260 | Truttmann et al. | Oct 2001 | B1 |
6306122 | Narawa et al. | Oct 2001 | B1 |
6309336 | Muessig et al. | Oct 2001 | B1 |
6312420 | Sasaki et al. | Nov 2001 | B1 |
6314333 | Rajala et al. | Nov 2001 | B1 |
6315022 | Herrin et al. | Nov 2001 | B1 |
6319347 | Rajala | Nov 2001 | B1 |
6336921 | Kato et al. | Jan 2002 | B1 |
6336922 | VanGompel et al. | Jan 2002 | B1 |
6336923 | Fujioka et al. | Jan 2002 | B1 |
6358350 | Glaug et al. | Mar 2002 | B1 |
6369291 | Uchimoto et al. | Apr 2002 | B1 |
6375769 | Quereshi et al. | Apr 2002 | B1 |
6391013 | Suzuki et al. | May 2002 | B1 |
6416697 | Venturino et al. | Jul 2002 | B1 |
6425430 | Ward et al. | Jul 2002 | B1 |
6431038 | Couturier | Aug 2002 | B2 |
6440246 | Vogt et al. | Aug 2002 | B1 |
6443389 | Palone | Sep 2002 | B1 |
6446795 | Allen et al. | Sep 2002 | B1 |
6473669 | Rajala et al. | Oct 2002 | B2 |
6475325 | Parrish et al. | Nov 2002 | B1 |
6478786 | Glaug et al. | Nov 2002 | B1 |
6482278 | McCabe et al. | Nov 2002 | B1 |
6494244 | Parrish et al. | Dec 2002 | B2 |
6514233 | Glaug | Feb 2003 | B1 |
6521320 | McCabe et al. | Feb 2003 | B2 |
6523595 | Milner et al. | Feb 2003 | B1 |
6524423 | Hilt et al. | Feb 2003 | B1 |
6533879 | Quereshi et al. | Mar 2003 | B2 |
6540857 | Coenen et al. | Apr 2003 | B1 |
6547909 | Butterworth | Apr 2003 | B1 |
6550517 | Hilt et al. | Apr 2003 | B1 |
6551228 | Richards | Apr 2003 | B1 |
6551430 | Glaug et al. | Apr 2003 | B1 |
6554815 | Umebayashi | Apr 2003 | B1 |
6557466 | Codde et al. | May 2003 | B2 |
6569275 | Popp et al. | May 2003 | B1 |
6572520 | Blumle | Jun 2003 | B2 |
6581517 | Becker et al. | Jun 2003 | B1 |
6585841 | Popp et al. | Jul 2003 | B1 |
6589149 | VanEperen et al. | Jul 2003 | B1 |
6596107 | Stopher | Jul 2003 | B2 |
6596108 | McCabe | Jul 2003 | B2 |
6605172 | Anderson et al. | Aug 2003 | B1 |
6605173 | Glaug et al. | Aug 2003 | B2 |
6620276 | Kuntze et al. | Sep 2003 | B1 |
6632209 | Chmielewski | Oct 2003 | B1 |
6634269 | Eckstein et al. | Oct 2003 | B2 |
6637583 | Anderson | Oct 2003 | B1 |
6648122 | Hirsch et al. | Nov 2003 | B1 |
6649010 | Parrish et al. | Nov 2003 | B2 |
6656309 | Parker et al. | Dec 2003 | B1 |
6659150 | Perkins et al. | Dec 2003 | B1 |
6659991 | Suekane | Dec 2003 | B2 |
6675552 | Kunz et al. | Jan 2004 | B2 |
6682626 | Mlinar et al. | Jan 2004 | B2 |
6684925 | Nagate et al. | Feb 2004 | B2 |
6722494 | Nakakado | Apr 2004 | B2 |
6730189 | Franzmann | May 2004 | B1 |
6743324 | Hargett et al. | Jun 2004 | B2 |
6750466 | Guha et al. | Jun 2004 | B2 |
6758109 | Nakakado | Jul 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6779426 | Holliday | Aug 2004 | B1 |
6808582 | Popp et al. | Oct 2004 | B2 |
D497991 | Otsubo et al. | Nov 2004 | S |
6811019 | Christian et al. | Nov 2004 | B2 |
6811642 | Ochi | Nov 2004 | B2 |
6814217 | Blumenthal et al. | Nov 2004 | B2 |
6820671 | Calvert | Nov 2004 | B2 |
6823981 | Ogle et al. | Nov 2004 | B2 |
6837840 | Yonekawa et al. | Jan 2005 | B2 |
6840616 | Summers | Jan 2005 | B2 |
6852186 | Matsuda et al. | Feb 2005 | B1 |
6869494 | Roessler et al. | Mar 2005 | B2 |
6875202 | Kumasaka et al. | Apr 2005 | B2 |
6884310 | Roessler et al. | Apr 2005 | B2 |
6893528 | Middelstadt et al. | May 2005 | B2 |
6913664 | Umebayashi et al. | Jul 2005 | B2 |
6913718 | Ducker | Jul 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6976521 | Mlinar | Dec 2005 | B2 |
6978486 | Zhou et al. | Dec 2005 | B2 |
7017321 | Salvoni | Mar 2006 | B2 |
7017820 | Brunner | Mar 2006 | B1 |
7045031 | Popp et al. | May 2006 | B2 |
7047852 | Franklin et al. | May 2006 | B2 |
7048725 | Kling et al. | May 2006 | B2 |
7066586 | da Silva | Jun 2006 | B2 |
7069970 | Tomsovic et al. | Jul 2006 | B2 |
7077393 | Ishida | Jul 2006 | B2 |
7130710 | Popp et al. | Oct 2006 | B2 |
7137971 | Tanzer | Nov 2006 | B2 |
7172666 | Groves et al. | Feb 2007 | B2 |
7175584 | Maxton et al. | Feb 2007 | B2 |
7195684 | Satoh | Mar 2007 | B2 |
7201345 | Werner | Apr 2007 | B2 |
7204682 | Venturino et al. | Apr 2007 | B2 |
7214174 | Allen et al. | May 2007 | B2 |
7214287 | Shiomi et al. | May 2007 | B2 |
7220335 | Van Gompel et al. | May 2007 | B2 |
7247219 | O'Dowd | Jul 2007 | B2 |
7252730 | Hoffman et al. | Aug 2007 | B2 |
7264686 | Thorson et al. | Sep 2007 | B2 |
7303708 | Andrews et al. | Dec 2007 | B2 |
7326311 | Krueger et al. | Feb 2008 | B2 |
7332459 | Collins et al. | Feb 2008 | B2 |
7374627 | McCabe | May 2008 | B2 |
7380213 | Pokorny et al. | May 2008 | B2 |
7398870 | McCabe | Jul 2008 | B2 |
7399266 | Aiolfi et al. | Jul 2008 | B2 |
7449084 | Nakakado | Nov 2008 | B2 |
7452436 | Andrews | Nov 2008 | B2 |
7500941 | Coe et al. | Mar 2009 | B2 |
7533709 | Meyer | May 2009 | B2 |
7537215 | Beaudoin et al. | May 2009 | B2 |
7569007 | Thoma | Aug 2009 | B2 |
7587966 | Nakakado et al. | Sep 2009 | B2 |
7618513 | Meyer | Nov 2009 | B2 |
7638014 | Coose et al. | Dec 2009 | B2 |
7640962 | Meyer et al. | Jan 2010 | B2 |
7695464 | Fletcher et al. | Apr 2010 | B2 |
7703599 | Meyer | Apr 2010 | B2 |
7708849 | McCabe | May 2010 | B2 |
7770712 | McCabe | Aug 2010 | B2 |
7771407 | Umebayashi | Aug 2010 | B2 |
7780052 | McCabe | Aug 2010 | B2 |
7793772 | Schafer | Sep 2010 | B2 |
7811403 | Andrews | Oct 2010 | B2 |
7861756 | Jenquin et al. | Jan 2011 | B2 |
7871400 | Sablone et al. | Jan 2011 | B2 |
7909956 | Coose et al. | Mar 2011 | B2 |
7922983 | Prokash et al. | Apr 2011 | B2 |
7935296 | Koele et al. | May 2011 | B2 |
7975584 | McCabe | Jul 2011 | B2 |
7987964 | McCabe | Aug 2011 | B2 |
8007484 | McCabe et al. | Aug 2011 | B2 |
8007623 | Andrews | Aug 2011 | B2 |
8011493 | Giuliani et al. | Sep 2011 | B2 |
8016972 | Andrews et al. | Sep 2011 | B2 |
8025652 | Hornung et al. | Sep 2011 | B2 |
8062279 | Miyamoto | Nov 2011 | B2 |
8062459 | Nakakado et al. | Nov 2011 | B2 |
8100173 | Hornung et al. | Jan 2012 | B2 |
8172977 | Andrews et al. | May 2012 | B2 |
8176573 | Popp et al. | May 2012 | B2 |
8178035 | Edvardsson et al. | May 2012 | B2 |
8182624 | Handziak | May 2012 | B2 |
8182735 | Edvardsson | May 2012 | B2 |
8182736 | Edvardsson | May 2012 | B2 |
8257237 | Burns, Jr. et al. | Sep 2012 | B2 |
8273003 | Umebayashi et al. | Sep 2012 | B2 |
8293056 | Mccabe | Oct 2012 | B2 |
8295552 | Mirtich et al. | Oct 2012 | B2 |
8381489 | Freshwater et al. | Feb 2013 | B2 |
8398793 | Andrews et al. | Mar 2013 | B2 |
8417374 | Meyer et al. | Apr 2013 | B2 |
8439814 | Piantoni et al. | May 2013 | B2 |
8460495 | Mccabe | Jun 2013 | B2 |
8485956 | Burns, Jr. et al. | Jul 2013 | B2 |
8512496 | Makimura | Aug 2013 | B2 |
8656817 | Fritz et al. | Feb 2014 | B2 |
8663411 | McCabe | Mar 2014 | B2 |
8673098 | McCabe | Mar 2014 | B2 |
20010012813 | Bluemle | Aug 2001 | A1 |
20010017181 | Otruba et al. | Aug 2001 | A1 |
20010035332 | Zeitler | Nov 2001 | A1 |
20010042591 | Milner et al. | Nov 2001 | A1 |
20020040630 | Piazza | Apr 2002 | A1 |
20020046802 | Tachibana et al. | Apr 2002 | A1 |
20020059013 | Rajala et al. | May 2002 | A1 |
20020084568 | Codde et al. | Jul 2002 | A1 |
20020096241 | Instance | Jul 2002 | A1 |
20020125105 | Nakakado | Sep 2002 | A1 |
20020162776 | Hergeth | Nov 2002 | A1 |
20030000620 | Herrin et al. | Jan 2003 | A1 |
20030015209 | Gingras et al. | Jan 2003 | A1 |
20030051802 | Hargett et al. | Mar 2003 | A1 |
20030052148 | Rajala et al. | Mar 2003 | A1 |
20030066585 | McCabe | Apr 2003 | A1 |
20030083638 | Molee | May 2003 | A1 |
20030084984 | Glaug et al. | May 2003 | A1 |
20030089447 | Molee et al. | May 2003 | A1 |
20030115660 | Hopkins | Jun 2003 | A1 |
20030121244 | Abba | Jul 2003 | A1 |
20030121614 | Tabor et al. | Jul 2003 | A1 |
20030135189 | Umebayashi | Jul 2003 | A1 |
20030150551 | Baker | Aug 2003 | A1 |
20040007328 | Popp et al. | Jan 2004 | A1 |
20040016500 | Tachibana et al. | Jan 2004 | A1 |
20040044325 | Corneliusson | Mar 2004 | A1 |
20040073187 | Karami | Apr 2004 | A1 |
20040084468 | Kelbert et al. | May 2004 | A1 |
20040087425 | Ng et al. | May 2004 | A1 |
20040098791 | Faulks | May 2004 | A1 |
20040112517 | Groves et al. | Jun 2004 | A1 |
20040122413 | Roessler et al. | Jun 2004 | A1 |
20040157041 | Leboeuf et al. | Aug 2004 | A1 |
20040164482 | Edinger | Aug 2004 | A1 |
20040167493 | Jarpenberg et al. | Aug 2004 | A1 |
20040177737 | Adami | Sep 2004 | A1 |
20040182213 | Wagner et al. | Sep 2004 | A1 |
20040182497 | Lowrey | Sep 2004 | A1 |
20040216830 | Van Eperen | Nov 2004 | A1 |
20050000628 | Norrby | Jan 2005 | A1 |
20050022476 | Hamer | Feb 2005 | A1 |
20050026760 | Yamamoto et al. | Feb 2005 | A1 |
20050056678 | Nomura et al. | Mar 2005 | A1 |
20050077418 | Werner et al. | Apr 2005 | A1 |
20050101929 | Waksmundzki | May 2005 | A1 |
20050196538 | Sommer et al. | Sep 2005 | A1 |
20050230056 | Meyer et al. | Oct 2005 | A1 |
20050230449 | Meyer et al. | Oct 2005 | A1 |
20050233881 | Meyer | Oct 2005 | A1 |
20050234412 | Andrews et al. | Oct 2005 | A1 |
20050257881 | Coose et al. | Nov 2005 | A1 |
20050275148 | Beaudoin et al. | Dec 2005 | A1 |
20060011030 | Wagner et al. | Jan 2006 | A1 |
20060021300 | Tada et al. | Feb 2006 | A1 |
20060137298 | Oshita et al. | Jun 2006 | A1 |
20060173429 | Acors | Aug 2006 | A1 |
20060199718 | Thoma | Sep 2006 | A1 |
20060201619 | Andrews | Sep 2006 | A1 |
20060224137 | McCabe et al. | Oct 2006 | A1 |
20060265867 | Schaap | Nov 2006 | A1 |
20060266465 | Meyer | Nov 2006 | A1 |
20070074953 | McCabe | Apr 2007 | A1 |
20070131343 | Nordang | Jun 2007 | A1 |
20070131817 | Fromm | Jun 2007 | A1 |
20080041206 | Mergola et al. | Feb 2008 | A1 |
20080125738 | Tsuji et al. | May 2008 | A1 |
20080208152 | Eckstein et al. | Aug 2008 | A1 |
20080210067 | Schlinz et al. | Sep 2008 | A1 |
20080223537 | Wiedmann | Sep 2008 | A1 |
20080281286 | Peterson | Nov 2008 | A1 |
20080287898 | Guzman Reyes | Nov 2008 | A1 |
20090020211 | Andrews et al. | Jan 2009 | A1 |
20090126864 | Tachibana et al. | May 2009 | A1 |
20090198205 | Malowaniec et al. | Aug 2009 | A1 |
20090212468 | Edvardsson et al. | Aug 2009 | A1 |
20100078119 | Yamamoto | Apr 2010 | A1 |
20100078120 | Otsubo | Apr 2010 | A1 |
20100078127 | Yamamoto | Apr 2010 | A1 |
20100193135 | Eckstein et al. | Aug 2010 | A1 |
20100193138 | Eckstein | Aug 2010 | A1 |
20100193155 | Nakatani | Aug 2010 | A1 |
20100249737 | Ito et al. | Sep 2010 | A1 |
20110003673 | Piantoni et al. | Jan 2011 | A1 |
20110106042 | Sablone et al. | May 2011 | A1 |
20110155305 | McCabe | Jun 2011 | A1 |
20120079926 | Long et al. | Apr 2012 | A1 |
20120123377 | Back | May 2012 | A1 |
20120172828 | Koenig et al. | Jul 2012 | A1 |
20120270715 | Motegi et al. | Oct 2012 | A1 |
20120285306 | Weibelt | Nov 2012 | A1 |
20120310193 | Ostertag | Dec 2012 | A1 |
20120312463 | Ogasawara et al. | Dec 2012 | A1 |
20130066613 | Russell | Mar 2013 | A1 |
20130079741 | Nakashita | Mar 2013 | A1 |
20130239765 | McCabe et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1007854 | Nov 1995 | BE |
1146129 | May 1983 | CA |
1153345 | Sep 1983 | CA |
1190078 | Jul 1985 | CA |
1210744 | Sep 1986 | CA |
1212132 | Sep 1986 | CA |
1236056 | May 1988 | CA |
1249102 | Jan 1989 | CA |
1292201 | Nov 1991 | CA |
1307244 | Sep 1992 | CA |
1308015 | Sep 1992 | CA |
1310342 | Nov 1992 | CA |
2023816 | Mar 1994 | CA |
2330679 | Sep 1999 | CA |
2404154 | Oct 2001 | CA |
2541194 | Oct 2006 | CA |
2559517 | Apr 2007 | CA |
2337700 | Aug 2008 | CA |
2407867 | Jun 2010 | CA |
2699136 | Oct 2010 | CA |
142627 | Jun 2013 | CA |
2600432 | Jul 2013 | CA |
2573445 | Mar 2014 | CA |
2547464 | Apr 2014 | CA |
202105105 | Jan 2012 | CN |
60123502 | Oct 2006 | DE |
60216550 | Dec 2006 | DE |
102005035544 | Feb 2007 | DE |
1020060472-80 | Apr 2007 | DE |
102005048868 | Apr 2007 | DE |
102007063209 | Jun 2009 | DE |
0044206 | Jan 1982 | EP |
0048011 | Mar 1982 | EP |
0089106 | Sep 1983 | EP |
0099732 | Feb 1984 | EP |
0206208 | Dec 1986 | EP |
0304140 | Feb 1989 | EP |
0411287 | Feb 1991 | EP |
0439897 | Aug 1991 | EP |
0455231 | Nov 1991 | EP |
510251 | Oct 1992 | EP |
0589859 | Mar 1994 | EP |
0676352 | Apr 1995 | EP |
0652175 | May 1995 | EP |
0811473 | Dec 1997 | EP |
0901780 | Mar 1999 | EP |
0990588 | Apr 2000 | EP |
1132325 | Sep 2001 | EP |
1035818 | Apr 2002 | EP |
1199057 | Apr 2002 | EP |
1366734 | Dec 2003 | EP |
1393701 | Mar 2004 | EP |
1415628 | May 2004 | EP |
1433731 | Jun 2004 | EP |
1571249 | Sep 2005 | EP |
1619008 | Jan 2006 | EP |
1707168 | Oct 2006 | EP |
1726414 | Nov 2006 | EP |
1302424 | Dec 2006 | EP |
1801045 | Jun 2007 | EP |
1870067 | Dec 2007 | EP |
1941853 | Jul 2008 | EP |
1961403 | Aug 2008 | EP |
1994919 | Nov 2008 | EP |
2180864 | Nov 2008 | EP |
2211812 | Nov 2008 | EP |
2103427 | Sep 2009 | EP |
2233116 | Sep 2010 | EP |
2238955 | Oct 2010 | EP |
2345395 | Jul 2011 | EP |
1175880 | May 2012 | EP |
1868821 | Jan 2013 | EP |
2036522 | Mar 2013 | EP |
1272347 | Apr 2013 | EP |
2032338 | Aug 2013 | EP |
2332505 | Dec 2013 | EP |
2412348 | Mar 2014 | EP |
509706 | Nov 1982 | ES |
520559 | Dec 1983 | ES |
296211 | Dec 1987 | ES |
2310447 | Jul 2009 | ES |
2311349 | Sep 2009 | ES |
2177355 | Nov 1973 | FR |
2255961 | Jul 1975 | FR |
1132325 | Oct 2006 | FR |
2891811 | Apr 2007 | FR |
191101501 | Jan 1912 | GB |
439897 | Dec 1935 | GB |
856389 | Dec 1960 | GB |
941073 | Nov 1963 | GB |
1096373 | Dec 1967 | GB |
1126539 | Sep 1968 | GB |
1346329 | Feb 1974 | GB |
1412812 | Nov 1975 | GB |
1467470 | Mar 1977 | GB |
2045298 | Oct 1980 | GB |
2115775 | Sep 1983 | GB |
2288316 | Oct 1995 | GB |
1374910 | May 2010 | IT |
1374911 | May 2010 | IT |
428364 | Jan 1992 | JP |
542180 | Feb 1993 | JP |
576566 | Mar 1993 | JP |
626160 | Feb 1994 | JP |
626161 | Feb 1994 | JP |
6197925 | Jul 1994 | JP |
9299398 | Nov 1997 | JP |
10035621 | Feb 1998 | JP |
10-277091 | Oct 1998 | JP |
2008-161300 | Jul 2008 | JP |
0602047 | May 2007 | SE |
529295 | Jun 2007 | SE |
532059 | Oct 2009 | SE |
WO08155618 | Dec 1988 | WO |
WO9315248 | Aug 1993 | WO |
WO9403301 | Feb 1994 | WO |
WO9723398 | Jul 1997 | WO |
WO9732552 | Sep 1997 | WO |
WO9747265 | Dec 1997 | WO |
WO9747810 | Dec 1997 | WO |
WO9821134 | May 1998 | WO |
WO9855298 | Dec 1998 | WO |
WO9907319 | Feb 1999 | WO |
WO9913813 | Mar 1999 | WO |
WO9932385 | Jul 1999 | WO |
WO9965437 | Dec 1999 | WO |
WO0143682 | Jun 2001 | WO |
WO0172237 | Oct 2001 | WO |
WO03031177 | Apr 2003 | WO |
WO2004007329 | Jan 2004 | WO |
WO2005075163 | Aug 2005 | WO |
WO2006038946 | Apr 2006 | WO |
WO2007029115 | Mar 2007 | WO |
WO2007039800 | Apr 2007 | WO |
WO2007126347 | Nov 2007 | WO |
WO2008001209 | Jan 2008 | WO |
WO2008015594 | Feb 2008 | WO |
WO2008037281 | Apr 2008 | WO |
WO2008123348 | Oct 2008 | WO |
WO2009065497 | Mar 2009 | WO |
WO2009065500 | Mar 2009 | WO |
WO2010028786 | Mar 2010 | WO |
WO2011101773 | Aug 2011 | WO |
WO2012123813 | Sep 2012 | WO |
WO2014021897 | Feb 2014 | WO |
Entry |
---|
European Search Report, relating to Appln. No. EP14172017, dated Jul. 23, 2014, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130269864 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61335018 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12979154 | Dec 2010 | US |
Child | 13915388 | US |