The present invention relates to a method for producing an electric motor, and to an apparatus.
In order to insulate the slots of stators or rotors of electric machines, use is made of insulation materials which are placed into the slots. These are, for example, films made of a wide variety of materials. However, when the conductor elements are introduced or pulled into the stator or rotor, the problem may occur here of the sensitive slot insulations slipping. In particular in the case of electric motors having shaped bar technology, the effects of force during the introduction of the shaped bars into the slots may lead to displacement of the insulations. WO 2015/055445 A2 discloses in this connection an apparatus and a method that prevent an axial displacement of the slot insulations during the introduction of shaped bars. However, the proposed method and the apparatus are complex.
It is therefore an object of the present invention to specify a method for producing an electric motor, and an apparatus which permit the introduction of conductor elements, in particular of shaped bars, into coil cores of electric machines in a reliable and uncomplicated manner without the slot insulations, in particular the position thereof, being negatively affected in the process.
According to the invention, a method for producing an electric motor having at least one coil comprises the steps of:
The slot insulation can be realized in various shapes. According to one embodiment, the slot insulation has, for example, an 0 shape in cross section, wherein only the slot base is covered here. Alternatively, the slot insulation can have a B shape, as a result of which, for example, insulation can be brought about between two current-conducting conductors or conductor portions of different phases. Alternative shapes are likewise possible. A cross section of the slot insulation can for example also be open or closed, etc. The aforementioned projection of the slot insulation or of the insulation via the laminated core serves first of all in a technical respect in particular to maintain air and creepage distances. Expediently, the projection is provided at both ends of the coil core, wherein it should be noted at this juncture that the coil core is preferably a laminated core. The projection or conductor material already introduced into the slot is now advantageously used to fix or to retain the slot insulation axially during the introduction of (further) conductor material. This is made possible in particular by the fact that the conductor material is introduced coat by coat or step by step or in particular layer by layer. In other words, a “filling” of a slot cross section with conductor material takes place as it were sequentially, wherein the first layer (of conductor material) which is introduced, wherein the radial position thereof can be selected freely, is used for retaining or fixing the slot insulation.
According to a preferred embodiment, the method comprises the step of:
In other words, a force fit between the slot insulation and the first layer or the conductor material introduced in a first or preceding step is produced in the region of the projection, wherein the force fit is configured in such a manner that the slot insulation is sufficiently fixed along the longitudinal axis, i.e., in other words, axially, so as not to be displaced during the introduction of further conductor material. Expediently, the first layer or the conductor material introduced in a first step is arranged with a form fit in the slot insulation. The form fit is now advantageously supplemented by the force fit, by application of a force, for example by pushing together or squeezing together the slot insulation in the region of the projection, to the first layer, the force fit securely retaining the slot insulation in the slot.
The slot or the at least one slot has a slot cross section, wherein the first layer of the material or the conductor material introduced in a first step fills a first cross-sectional region of the slot cross section. The method advantageously comprises the step of:
This step is distinguished in particular by its simplicity since the introduction of the conductor material layer by layer or sequentially brings about the possibility of supporting the slot insulation in a simple manner on the end sides or axially in the region that is not filled with conductor material in a first or previous step.
According to one embodiment, the method comprises the step of:
The method is therefore distinguished in particular by a high degree of flexibility since the axial support of the slot insulation during the introduction of the first layer does not have to be realized unnecessarily precisely. It merely has to be ensured that the support does not prevent the introducing or insertion of the first layer into the slot insulation.
According to one embodiment, the coil core has a multiplicity of slots, and wherein the method comprises the step of:
According to a preferred embodiment, shaped bars are used as conductor material. The method advantageously comprises the step of:
A plurality of layers can thereby be introduced rapidly and reliably. Added to this is the fact that such an annular or basket-shaped shaped bar layer can be readily preassembled and, because of its inherent stability, can be readily handled.
According to one embodiment, the method comprises the step of:
A retaining element of this type can advantageously be shaped extremely simply. It does not have to have a complicated geometry, but merely has to be configured so as to secure the slot insulation against axial displacement or slipping.
According to one embodiment, the method comprises the step of:
In other words, the projection is acted upon virtually transversely with respect to the longitudinal extent thereof with a force, for example even with a squeezing force, thus creating an alternative variant for retaining or fixing the slot insulation during the introduction of the first layer or during the introduction of conductor material in a first step.
According to one embodiment, the method comprises the step of:
Therefore, during the aforementioned circumferential or radial introduction of the force to the projection, the slot insulation can be prevented from being staved in or even destroyed. Advantageously, the support element which is fixed axially can as it were take on a similar function to the first layer of conductor elements. The support element is removed or the application of the force is stopped when the first layer on being introduced or pushed in passes into the region of the projection. According to one embodiment, use is made of a tool which has a multiplicity of support elements, and therefore all of the slot insulations can be “supported” simultaneously. The support element or the tool is fitted or introduced as it were opposite that side of the coil core on which the conductor elements are introduced.
According to a preferred embodiment, the coil core is formed by a rotor or a stator of an electric motor. This advantageously involves a method for producing an electric motor, and in particular the stator and/or rotor thereof. According to a preferred embodiment, a current-excited synchronous machine is involved which comprises two coils, namely in the stator and in the rotor. According to a preferred embodiment, the two coils are both produced by the method. However, the method can be used in principle for all electric machines which have slot insulations.
The invention is also directed toward an apparatus for carrying out the method according to the invention. The advantages and features mentioned in conjunction with the method apply analogously and correspondingly to the apparatus.
Further advantages and features emerge from the description below of an embodiment of the method with respect to the attached figures.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 124 561.0 | Oct 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/075586 | 9/24/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/069902 | 4/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6609289 | Naka et al. | Aug 2003 | B2 |
20030127936 | Katou | Jul 2003 | A1 |
20050146238 | Morikaku et al. | Jul 2005 | A1 |
20050218746 | Fukasaku | Oct 2005 | A1 |
20110260572 | Hiraga et al. | Oct 2011 | A1 |
20200220438 | Ide | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
100 18 140 | Nov 2000 | DE |
103 61 670 | Aug 2005 | DE |
10 2011 017 586 | Apr 2012 | DE |
10 2014 208 077 | Oct 2015 | DE |
10 2017 123 670 | Apr 2019 | DE |
0 945 962 | Sep 1999 | EP |
1 324 461 | Jul 2003 | EP |
WO 2015055445 | Apr 2015 | WO |
WO 2017159875 | Sep 2017 | WO |
Entry |
---|
PCT/EP2019/075586, International Search Report dated Nov. 13, 2019 (Three (3) pages). |
German Search Report issued in German application No. 10 2018 124 561.0 dated Sep. 11, 2019, with Statement of Relevancy (Nine (9) pages). |
Number | Date | Country | |
---|---|---|---|
20210351677 A1 | Nov 2021 | US |