The invention relates to a method for producing a front-side emitter electrode as front contact for a crystalline silicon solar cell on a silicon wafer, and to a silicon solar cell produced by such a method.
In order to produce a front contact on a crystalline silicon solar cell, a conductor track is usually printed onto a front-side n-doped silicon layer with an antireflection layer thereon, by means of screen printing. At the present time, said conductor track can be printed with a width of approximately 120 μm to 150 μm with the result that the front contact has approximately this width. With this width it then also screens the solar cell, which has a significant and negative effect given the customary number of front contacts overall. At the present time, the production of narrower conductor tracks by means of screen printing is technically possible only with very great difficulty since screen printing methods have a certain limited resolution and narrow conductor tracks can therefore be applied only with very great difficulty. In order to reduce the shading of the front-side emitter electrode of a crystalline silicon solar cell and thus to increase the efficiency, it could admittedly be attempted nevertheless to reduce even further the structure width of the conductor tracks for the emitter electrode during the screen printing methods mentioned. However, this has the disadvantageous effect that reducing their width without simultaneously increasing the height is accompanied by a reduction in the cross-sectional area. This in turn results in a lower conductivity, as a result of which the electrical losses with regard to the series resistance increase.
It is an object of the invention to provide a method as mentioned in the introduction and a silicon solar cell produced thereby with which problems in the prior art can be avoided and, in particular, front contacts can be produced, which are as narrow as possible.
This object is achieved by means of a method comprising the features of claim 1 and also a silicon solar cell comprising the features of claim 15. Advantageous and preferred configurations of the invention are the subject matter of the further claims and are explained in greater detail below. In this case, some of the features enumerated below are mentioned only for the method or only for the silicon solar cell. However, irrespective of this they are intended to be applicable both to the method and to the silicon solar cell. The wording of the claims is incorporated by explicit reference in the content of the description.
It is provided that a depression for the front contact is produced in the front side of the silicon wafer. Afterwards, a front-side n-doped silicon layer is produced in a known manner and a customary antireflection layer is applied thereto. The depression can therefore have the form that is intended subsequently to predefine the form for the front contact, in particular therefore as an elongated narrow line. Afterwards, a paste is introduced into the depression, said paste containing electrically conductive metal particles and etching glass frit. Said paste is then momentarily heated or heat-treated, in particular for a few seconds, which can be effected for example at a temperature of approximately 800° C. As a result, the paste, in particular by virtue of the glass frit, etches through the antireflection layer as far as the n-doped silicon layer and can make electrical contact with the latter by means of the metal particles. In a further step, the front contact metal is then galvanically attached or applied onto the heat-treated paste, or the electrically conductive layer formed thereby, in the depression. The thickness of the front contact metal is then advantageously significantly higher than that of the heat-treated paste, or the electrically conductive layer formed thereby, such that this front contact metal as front contact or front-side emitter electrode then undertakes the actual task of the electrical conductivity.
The advantage of this method is that by means of the depression, which is advantageously embodied as a type of trench, or the width of said depression, the width of the front contact that then arises can be predefined. If the depression is produced with a width of between 50 μm and 100 μm, advantageously 60 μm to 80 μm, then this is actually also the maximum width of the front contact that arises. Therefore under certain circumstances, it can be half as wide as hitherto. This actually results in considerably less shading than hitherto. A depression can be produced with a depth of 15 μm to 40 μm, for example, so that their width is larger than their depth.
Specifically, one effect of the depression is, moreover, that the paste, if it is of rather low viscosity, cannot run arbitrarily as in the case of screen printing on a planar area. As a result, even pastes of very low viscosity or inks can be used. This in turn simplifies the application of the paste or ink, which advantageously is done by means of an inkjet method using a so-called inkjet printing device that is per se well-known to a person skilled in the art. This can in particular be done with a relatively high accuracy or high resolution into the narrow depressions or trenches. With a screen printing procedure, said effect may in general not be achieved in such quality and mainly failure-free over extended times without clogging of screens and as a result frequent need of maintenance.
The paste or ink, which can be per se a type of standard paste for such electrically conductive contact-connection, can contain nanoparticles comprising silver as electrically conductive particles. This can be, for example silver provided with a thin coating. Said nanoparticles can make up approximately 30% to 70% of the solids proportion of the paste or ink, advantageously approximately 40% to 60% or approximately half.
The etching glass frit in the paste can be embodied as usual, for example with lead oxide and/or cadmium oxide.
The depression can, on the one hand, be produced mechanically by scribing or the like. However, laser action has proved to be advantageous, which operates rapidly and precisely and produces depressions having the desired dimensions.
The depression does not have to be completely filled by the front contact metal; in particular, care should even be taken to avoid totally filling said depression. This is because if a certain amount of front contact metal should then additionally be attached virtually beyond the depression, there is the risk that it would be attached with a customary attachment characteristic with a width beyond the depressions. The shading would then in turn become undesirably great. For this reason, it is also considered to be sufficient for the depression to be only approximately half filled, possibly also to a somewhat greater extent. A finished metallic front contact of the silicon solar cell can then have a height of approximately 10 μm to 20 μm, which results in a sufficient electrical conductivity.
An abovementioned method for introducing the paste can ensure that the latter is actually only introduced into the depression. Undesired shading can thus also be reduced or avoided.
During the galvanic attachment or application of the front contact metal, a plurality of metals can be applied, to be precise in a specific temporal sequence. It has proved to be advantageous firstly to apply nickel as a diffusion barrier in order to prevent subsequently applied copper, which principally undertakes the electrical conductivity of the subsequent front contact, from indiffusing into the silicon. This is very important since such indiffusion of copper poisons, as it were, the silicon or the semiconductor properties thereof. Finally, tin can be applied in order to prevent oxidation of the copper. In this case, it may be provided that the proportion of applied copper is considerably greater than that of the other metals. The abovementioned three steps of the galvanic application of metals for the front contact can be carried out in succession in continuous installations. In this case, it is possible to assist this application or the electrodeposition with light or to illuminate the silicon wafers in the process. This reduces the current intensity to be introduced and applied. In this respect, reference is made to EP 542 148 A1, which explains this technique.
These and further features emerge not only from the claims but also from the description and the drawings, wherein the individual features can be realized in each case by themselves or as a plurality in the form of subcombinations in an embodiment of the invention and in other fields and can constitute advantageous and inherently protectable embodiments for which protection is claimed here. The subdivision of the application into individual sections and sub-headings do not restrict the general validity of the statements made thereunder.
An exemplary embodiment of the invention is illustrated schematically in the drawings and is explained in greater detail below. In the drawings:
In accordance with
In a further step in accordance with
In yet another step in accordance with
The front contact 22 thereby formed overall can approximately half fill the depression 14, but possibly also to a somewhat greater extent. Care should merely be taken to ensure that the front contact metal 21 does not reach the planar front side 12 and spread there. Firstly, copper could in turn pass into the silicon, which should be avoided for reasons mentioned above. Furthermore, shading of the front side 12 of a crystalline silicon solar cell fabricated from the silicon wafer 11 would then in turn increase since more than the width of the depression is actually covered.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 038 141.4 | Aug 2009 | DE | national |
This application is a continuation of PCT Application No. PCT/EP2010/061797, filed Aug. 12, 2010, and claims priority to DE 10 2009 038 141.4 filed Aug. 13, 2009, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/061797 | Aug 2010 | US |
Child | 13371139 | US |