The present disclosure relates to a carbonaceous sorbent for removal of mercury from flue gas and a process for making the carbonaceous sorbent.
Various methods for mercury control in coal-fired power plants are being developed and demonstrated to meet current and impending mercury emission regulations. These technologies include activated carbon (AC) injection, coal and flue gas additives, catalytic and electro-catalytic mercury oxidation with subsequent capture in scrubbers, and in-situ mercury sorbent generation from coal. Among these, injection of powdered AC is one of the more mature technologies for mercury control.
Carbonaceous sorbents such as AC have been proposed for controlling vapor phase mercury emissions in power plant flue gases. In a conventional method, carbonaceous sorbents are injected in the flue gas duct upstream of particulate removal device such as baghouses and electrostatic precipitators and downstream of air heaters.
One example of a method for controlling mercury emissions in power plant flue gases is provided in co-pending U.S. patent application Ser. No. 10/961,697, filed Oct. 8, 2004 and entitled “Control of Mercury Emissions From Solid Fuel Combustion”, which is incorporated by reference herein in its entirety.
In demonstration projects, it has been observed that high injection rates of plain (untreated) AC were needed to achieve reasonable levels of mercury removal, particularly for low-chlorine containing sub-bituminous (Powder River Basin-PRB) and lignite coals. The low removal levels could be ascribed to a high proportion of elemental mercury in the flue gas when firing these coals. Researchers and technology developers have since determined that the use of halogenated carbon sorbents significantly improves the mercury collection efficiency as compared to plain AC.
U.S. Pat. No. 6,953,494 to Nelson, Jr., which is incorporated by reference herein in its entirety, describes a process that impregnates gas phase bromine (Br2) or hydrogen bromide (HBr) onto the AC particle. Data that has been presented to date indicates that the sorbent prepared in this manner resulted in improved mercury capture performance as compared to plain AC. U.S. Pat. No. 4,500,327 to Nishino et al., which is incorporated by reference herein in its entirety, describes a sorbent comprising an activated carbon having supported thereon a two or more component compound, where one components is selected from sulfur and various sulfates and nitrates of Al, V, Fe, Co, Ni. Cu, Zn or NH4, and another component is selected from: oxide of iodine, oxyacid corresponding to the oxide of iodine, salt of said oxyacid, and bromide and iodide of K, Na or NH4.
While use of halogenated carbon sorbents has resulted in improved mercury capture, there remains a need for further improvement.
A method for removing mercury from flue gas comprises: applying a precursor of a sticky substance to surfaces of carbonaceous sorbent particles; injecting the carbonaceous sorbent particles into contact with flue gas, wherein the carbonaceous sorbent particles adsorb mercury from the flue gas and at least one of a temperature of the flue gas and a component of the flue gas changes the precursor into the sticky substance that increases the stickiness of the carbonaceous sorbent particles; and removing the carbonaceous sorbent particles having mercury adsorbed thereon from the flue gas. In one embodiment, the precursor is ammonia or an ammonia compound and the sticky substance is ammonium sulfate.
The method may further comprise applying bromine or a bromine compound to the carbonaceous sorbent particles. In one embodiment, the precursor of the sticky substance is NH4Br, and the injecting step includes injecting the carbonaceous particles into contact with flue gas having a temperature at an initial point of contact with the carbonaceous sorbent of at least 400 degrees F. to decompose ammonia and bromine from the NH4Br. The precursor may be applied on-site at the plant where the carbonaceous sorbent particles are to be used for mercury removal
The above described and other features are exemplified by the following figures and detailed description.
Referring now to the figures, which are exemplary embodiments, and wherein the like elements are numbered alike:
A unique sorbent formulation, as described herein, is believed to show significant improvement with respect to mercury capture from flue gas as compared to plain activated carbon (AC) as well as other halogenated sorbents. In accordance with the invention, a precursor of a sticky substance is applied to surfaces of carbonaceous sorbent particles before injecting the carbonaceous sorbent particles into contact with the flue gas. The carbonaceous sorbent particles adsorb mercury from the flue gas and at least one of a temperature of the flue gas and a component of the flue gas changes the precursor into the sticky substance that increases the stickiness of the carbonaceous sorbent particles. In one embodiment, the precursor is ammonia or an ammonia compound and the sticky substance is ammonium sulfate. Preferably, a bromine or bromine compound is also applied to the carbonaceous sorbent. For example, ammonium bromide (NH4Br) may be applied to the carbonaceous sorbent substrate. As used herein, the term “sticky” means having the ability to adhere to surfaces in the flue gas path or to other sorbent particles. The stickiness of the sorbent is believed to increase residence time of the sorbent in the flue gas stream (e.g., by adhering to surfaces encountered by the flue gas stream), which results in increased mercury removal capability.
Referring to the flow chart of
While the above example describes the use of GAC as the carbonaceous sorbent substrate, it is contemplated that different materials can be used. By way of example, but not intending to be limiting, possible carbonaceous sorbent substrate materials comprise: activated carbon in powdered or raw form, activated charcoal, activated coke, char, and unburned or partially-burned carbon from a combustion process. The important features of the sorbent substrate material are that it is significantly composed of carbon and that it has an adequate degree of porosity or surface area to enable it to provide mercury removal in the process. In the method of
In the plant 10, solid fuel 14 is fed to a pulverizer/crusher 16 where the solid fuel 14 is reduced to particulate size. Primary air carries the solid fuel 14 particulates from the pulverizer/crusher 16 to a boiler 18, where the solid fuel 14 is burned to convert water into steam. The temperature of the flue gases leaving the boiler 18 may range from about 1400 to about 2200° F. The flue gases are cooled in a superheater and convective pass 20 (economizer/re-heater) to a temperature of about 600 to about 800° F. before entering an air preheater 22. Flue gas temperatures exiting the air preheater 22 and entering a particle separator (e.g., electrostatic precipitator (ESP), fabric filter, cyclone, or the like) 24 may range from about 220 to about 370° F.
Sorbent 28 treated using the process described above may be stored in a silo 30. The sorbent 28 may be fed by a feeder 32 to an optional separation device 34, which comminutes (if necessary) and de-agglomerates the sorbent particles 28 into a contact batch of carbonaceous sorbent and a retained batch of carbonaceous sorbent. This device 34 may be a particle-particle separator or a jet mill, where compressed air or high-pressure steam is the energy source. In addition to handling thereof by the separation device 34, it is contemplated that the sorbent particles 28 may be subjected to one or more optional processes (not shown) before they are injected into the stream of flue gas. The sorbent 28 may then be introduced into the flue gas stream by one or more distributors 38 (e.g. nozzles, lances, or other mechanical devices) under the force of a blower 36. Preferably, there is no storage of the carbonaceous sorbent particles 28 between the time the particles are de-agglomerated by separation device 34 and the time they are injected into the flue gas stream by the distributors 38, thereby preventing re-agglomeration of the particles and a resulting reduction in their mercury removal ability.
The sorbent 28 may be injected into the flue gas stream 12 at any one or more points between the boiler 18 and the convective pass/superheater 20, between the convective pass/superheater 20 and the air preheater 22, or between the air preheater 22 and the ESP/fabric filter 24.
Preferably, the sorbent is injected at a location where interaction between injected sorbent and mercury in flue gas is maximized both for (1) oxidation of mercury on sorbent surface and for (2) its subsequent capture by sorbent. The following three types of temperatures may be taken into account in determining the sorbent injection location: injection temperature, collection temperature and exposure temperature range. In this regard, the injection temperature is deemed to be the temperature of the location at which the sorbent and the flue gas are first in contact with one another. Also, the collection temperature is deemed to be the temperature of a given collection location at which carbonaceous sorbent having mercury absorbed thereon is separated from the flue gas either with or without other solids, gases, or liquids entrained with the flue gas. Accordingly, a given collection location may be a respective known particulate removal device such as a cyclone, an electrostatic precipitator (ESP), a baghouse, or a particulate scrubber.
In one embodiment, the injection temperature may be from about 400 to about 1100° F., and the sorbent collection temperature from about 100 to about 800° F. The exposure temperature range is bound by the injection temperature—namely, the flue gas temperature at which sorbent is injected—and the collection temperature—namely, the flue gas temperature at which the majority of the sorbent is removed from the flue gas. In this embodiment, the exposure temperature range (injection temperature minus collection temperature) is preferably greater than about 50° F., preferably greater than about 100° F., and more preferably greater than about 200° F. (temperature drop due to spray dryer excluded).
It is believed that with the injection of activated carbon at temperatures higher than about 400° F. into a flue gas obtained from the combustion of coal, mercury oxidation and removal were higher than if injected at lower temperatures. However, there is an upper limit in temperature to be taken into account in selecting the injection point. The selection of this limit, which is believed to be about 1100° F., takes into account the reaction of activated carbon with oxygen in the flue gas at high temperatures, which results in the consumption of the activated carbon.
These temperature limits identify the preferred temperature range for carbon injection for mercury capture and oxidation. However, it is to be understood that the above-identified temperature limits will differ for different types of carbonaceous material, for the gas compositions they are subjected, and the residence time the carbon is exposed at the high temperature. Hence, efficacious capture of mercury in flue gas via injection of a carbonaceous sorbent at relatively higher temperatures should be expected to be constrained only by the process limits such as noted above and not by the absolute specific temperature targets.
Furthermore, testing has shown that a PAC sorbent produced using the method described with reference to
It is believed that a sorbent created using the method of
Referring to
While plant 60 of
The embodiment of
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications will be appreciated by those skilled in the art to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of US Provisional Patent Application No. 60/654,408, filed Aug. 7, 2007, pending, and is a continuation-in-part of U.S. patent application Ser. No. 10/961,697, filed Oct. 8, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/453,140, filed Jun. 3, 2003, each of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60954408 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10961697 | Oct 2004 | US |
Child | 12185478 | US | |
Parent | 10453140 | Jun 2003 | US |
Child | 10961697 | US |