METHOD FOR PRODUCING CERAMIC FIBERS OF A COMPOSITION IN THE SIC RANGE AND FOR PRODUCING SIC FIBERS

Abstract
A method for producing ceramic fibers of a composition in the SiC range, starts from a spinning material that contains a polysilane-polycarbosilane copolymer solution. The spinning material is extruded through spinnerets in a dry spinning method and spun through a spinning duct into green fibers, and the green fibers are subsequently pyrolyzed. Accordingly, the polysilane-polycarbosilane solution contains between 75 wt. % and 95 wt. %, in particular between 80 and 90 wt. %, of an indifferent solvent, and the spinnerets have a capillary diameter between 20 and 70 μm, in particular between 30 and 60 μm, in particular between 40 and 50 μm.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to a method for the production of silicon carbide fibers from a polysilane-polycarbosilane copolymer solution.


A method of this type is already known. As an example, published, non-prosecuted German patent application DE 10 2004 042 531 A1, corresponding to U.S. patent publication No. 2008/0207430, concerns the production of a polysilane-polycarbosilane copolymer solution and spinning that solution to green fibers that are transformed into SiC fibers by pyrolysis. The starting material for the production of the copolymer itself is formed by mixtures of methylchlorodisilanes with the composition Si2MenCl6-n (n=1-4). In this regard, preferred methylchlorodisilanes that are used are those that are formed as the high boiling point fraction in the Müller-Rochow synthesis; since they are therefore by-products, they constitute inexpensive raw materials. They usually consist of a mixture of 1,1,2,2-tetrachlorodimethyldisilane and 1,1,2-trichlorotrimethyldisilane with less than 10% molar of other ingredients. The crude polysilane is produced by disproportionation of the disilane mixture using an organic nitrogen compound as a Lewis base as the homogeneous catalyst, preferably at a raised temperature, with the monosilane mixture that forms during the reaction as the cleavage product being continuously distilled off. After a subsequent heat treatment, the raw polysilane is rendered infusible by increasing the average molecular weight and then is converted, via a rearrangement reaction, into a polysilane-polycarbosilane copolymer (hereinafter abbreviated to “PPC”). Next, the PPC is dissolved in an inert solvent.


According to DE 10 2004 042 531 A1, fibers can be spun from a solution of this type that can be transformed into SiC fibers by a pyrolysis step. To this end, the solutions must have a 30% to 95% by weight polysilane-polycarbosilane copolymer content in order to be spinnable and thus to be able to be used as a spin dope. Because of their substantially lower viscosity, on the other hand, according to DE 10 2004 042 531 A1, solutions with substantially lower PPC contents, for example 20% by weight, can only be turned into ceramic matrixes by employing a liquid phase infiltration method.


The known method for the production of SiC fibers has the disadvantage in that with the PPC concentrations employed, relatively large capillary diameters of 75 to 300 μm are required in the spin nozzles used for spinning in order to be able to force the relatively viscous spin dope with a 30% to 95% by weight PPC content through. Thus, the green fibers obtained in the spinning duct immediately after leaving the spin nozzles have a relatively large diameter, also approximately between 75 and 300 μm. However, fibers with a final diameter after pyrolysis of substantially under 40 μm, preferably approximately 10 μm, are desired. Thus, the filaments coming out of the spin nozzles have to be stretched by very high draw rates of up to 500 m/min.


However, if as yet still unaligned lumps of polysilane-polycarbosilane copolymer molecules are present in the fiber formed from the original spin dope, they have to be straightened out by drawing them through a godet. An alignment of that type, however, contributes greatly to obtaining a high Young's modulus (abbreviated to Y modulus). In addition, a high tensile strength of the pyrolyzed fibers is favored by aligned PPC molecules, which are highly ordered within the green fibers.


Furthermore, a high degree of stretching stresses the green fibers formed a great deal and is at the origin of surface defects and other damage to the green fibers.


The known method for the production of SiC fibers also suffers from the disadvantage that trouble-free spinning is not possible. Breaks occur frequently at the nozzles so that at least for a fraction of the spin nozzles used, a joining has to be made, which either breaks a complete fiber bundle at that location or results in extremely severe inhomogeneities within the bundle. Thus, the known method cannot be used to produce a fiber bundle of homogeneous quality; in particular, the individual fibers do not all have the same diameter.


Furthermore, the SiC fibers produced using the method described in DE 10 2004 042 531 A1 have a kidney-shaped cross section. In addition, a diameter of 30 μm is relatively large.


SUMMARY OF THE INVENTION

The aim of the invention is to overcome the disadvantages mentioned above, in particular to provide a method for the production of SiC fibers, which means that the green fibers can be spun in a circumspect manner, so that undamaged or only slightly damaged SiC fibers can be obtained following transformation into ceramic fibers by pyrolysis; moreover, they have a near-circular cross section and also a high Y modulus and high strength.


In accordance with the invention, low viscosity PPC solutions with PPC contents of below 25% by weight, which previously were used only in liquid phase infiltration, can surprisingly be spun if they are extruded through nozzles with capillary diameters of 20 to 70 m, in particular 30 to 60 μm, more particularly in the range 40 to 50 μm.


This type of small nozzle capillary diameter means that, even when the spin dope leaves the nozzles, the green fibers formed have a smaller diameter that is already almost that of the target diameter of the green fibers. In this manner, the fibers do not have to be stretched much more in order to reach the desired diameter. This conserves the green fibers and results in less damage and fewer surface defects.


It is surprising that filaments can even form from the low viscosity spin dope with an extremely high solvent fraction. This is presumably only possible because the spin dope is extruded through spin nozzles with a very small nozzle capillary diameter and the filaments coming out of the spin nozzles, which have a correspondingly small filament diameter, have a high surface to volume ratio. Therefore the solvent evaporates quickly and the spin dope that is now in the form of fibers gels rapidly, and thus becomes firm enough for it not to lose its fibrous shape. Despite the small nozzle capillary diameter, and because of the low viscosity, very high throughputs are obtained so that the fibers that are formed have to be drawn at high rates just to “catch” the volume of material that is being discharged.


Furthermore, the spinning process is trouble-free and without fiber breakage using the method of the invention. Presumably gas inclusions in the low viscosity spin dope can escape upwards more easily than in higher viscosity spin dopes so that the high solvent content prevents the fibers from breaking. The small spin nozzle diameter also means that the spin dope cannot flow out of the nozzles unhindered, but have to be put under a certain (albeit very low) pressure.


In the first stretching phase, the spin dope is stretched while in free fall. Then the solvent evaporates; this can be encouraged by appropriate adjustment of the spinning duct and spin dope parameters. In this manner, sufficient solvent is removed from the fiber to result in gelling, i.e. solidification of the fiber to an extent such that it can no longer run away. In a second stretching zone, drawing at a certain winding rate can further stretch the gelled fibers. By the method of the invention, fibers are produced that have particularly good mechanical properties following pyrolysis.


Furthermore, the fibers obtained surprisingly have a generally circular cross section. It is known that prior art fibers with a kidney-shaped cross section are obtained because initially, only the sheath area of the green fibers leaving the nozzles solidifies, while the remaining core is still liquid. In the context of the invention, it has been observed that too much stretching when drawing means that the forces on the green fibers in the longitudinal direction deform the fibers. Since the core is still liquid inside the solidified sheath zone, on stretching, here and there the forces cause the fibers to collapse so that the cross section becomes kidney-shaped. This problem is surprisingly overcome in the method of the invention because the green fibers exiting the nozzles are already thin. Because of this, severe stretching using the damaging forces described is not necessary and a fiber retains the round cross section it possesses when it exits the nozzle right up to when it is wound, for example onto take-up rolls.


The term “SiC fibers” as used in the present invention means fibers with a chemical composition that is in the silicon carbide range, but wherein the atomic ratio of silicon to carbon is not necessarily exactly 1:1 but may deviate from this to a higher Si content or a higher C content, as well as other elements or compounds as impurities.


Advantageously, spinning is carried out at a draw rate in the range 50 m/min to 1000 m/min, in particular in the range 100 to 750 m/min, preferably in the range 200 to 500 m/min. These high rates mean that filament formation from a spin dope with a high solvent content is improved.


The spin dope has a viscosity in the range 0.1 to 6 Pas, in particular in the range 0.5 to 4 Pas at temperatures in the range 20° C. to 80° C. With the nozzle diameters employed, the spin dope preferably flows from the spin nozzles even at pressures from 1 bar, such as in the range 1 to 40 bar. In this manner, there is very little danger that gas under high pressure will be dissolved or included in the low viscosity spin dope and result in breakage at the spin nozzle.


Advantageously, spinning is carried out at a shear rate in the range 10,000 s−1 to 60,000 s−1, in particular in the range 20,000 to 40,000 s−1. By running the spin dope through spin nozzles with a very small capillary diameter at very high shear rates, the polymer molecules are forced to become highly aligned.


Preferably, the spinning duct temperature is adjusted such that after the spin dope exits the spin nozzles, the solvent evaporates even faster from the green fibers being formed. Temperatures in the range 30° C. to 160° C., in particular in the range 50° C. to 100° C., particularly preferably in the range 60° C. to 80° C. are preferred. These should be optimized for each individual case as a function of the vapor pressure curve of the solvent or solvents employed.


Preferably, a high partial counter pressure of the solvent, which is also present in the PPC solution and is usual in the prior art, is not set up in the spinning duct; in contrast, the solvent that comes out of the green fibers in the course of formation is removed more rapidly by flushing the spinning duct with a flushing gas that is free of solvent. Preferably, an inert gas is used as the flushing gas, such as nitrogen (N2) or argon (Ar).


Furthermore, rapid evaporation of the solvent can be encouraged by not injecting the inert gas used during spinning as a counter-current, but by injecting it in the same direction as the fibers, from top to bottom. This prevents solvent that is evaporating from the fiber from being applied again to the fibers further up in the spinning duct and being taken up by them or at least making evaporation of the solvent from the fibers more difficult by building up a high partial pressure.


Preferred solvents for the PPC composition are: a saturated hydrocarbon selected from the group formed by n-pentane, n-hexane, cyclohexane, n-heptane, n-octane, an aromatic hydrocarbon selected from the group formed by benzene, toluene, o-xylene, syn-mesitylene, a chlorinated hydrocarbon selected from the group formed by methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, chlorobenzene or an ether selected from the group formed by diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane or a mixture of two or more of these solvents.


If toluene is used as the solvent, the temperatures in the spinning duct are preferably in the range 50° C. to 100° C., in particular in the range 60° C. to 80° C.; the temperature of the PPC solution in the spinning vessel is preferably in the range 20° C. to 40° C., in particular in the range 25° C. to 35° C. When using another solvent, the preferred temperatures of the PPC solution and the spinning duct are adjusted accordingly, in particular as a function of the vapor pressure curves for the relevant solvent; the temperatures selected are those that provide similar vapor pressures to those obtained for toluene in the cited temperature ranges.


The PPC solution may be supplemented with an organic polymer as a spinning aid. This has the advantage that even with low spinning parameters, a spinning process is possible since the spinning aid improves the viscoelastic properties of the spin dope. This spinning aid is preferably selected from the group consisting of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyacrylonitrile and poly(4-vinyl pyridine). The quantity of spinning aid in the solution with respect to the substitutive fraction of the PPC (i.e. reduced by a corresponding quantity) preferably amounts to in the range 0.5% to 10% by weight.


Alternatively, PPC solutions can be spun without spinning aid. This has the advantage that no additional substances are present in the fiber for pyrolysis that do not contribute to the target stoichiometry of the SiC fibers and/or that reduce the density of the pyrolyzed fibers.


The green fibers are preferably pyrolyzed in an inert atmosphere such as nitrogen and/or argon, or in a reducing atmosphere, in particular in a gas mixture consisting of argon and hydrogen or nitrogen and carbon monoxide or similar combinations formed from at least one carrier gas and at least one reducing gas. The pyrolysis is preferably carried out at temperatures over 200° C., in particular over 300° C., in particular in the range 700° C. to 1,700° C., more particularly in the range 900° C. to 1,300° C.


The pyrolyzed fibers can advantageously be sintered at temperatures in the range 1,000° C. to 1,500° C. when, for example, a lower porosity or larger grain size is desired.


Production of the spin dope has been comprehensively described in DE 10 2004 042 531 A1 regarding the starting substances and the chemical processes resulting in or occurring in the spin dope. For this reason, the features of the PPC solution as the spin dope and the method for the production of the PPC solution mentioned in this document are hereby incorporated by reference. Regarding the solid concentration, the quantity of spinning aid, the quantity of solvent and further quantitative details that describe the spin dope and its production, in the event of discrepancies, the details given in the present text are to be considered to be the substantive details.


Fibers in the SiC zone have an oxygen content of less than 1% by weight, in particular in the range 0.3% to 0.9% by weight, an Y modulus of more than 130 GPa, in particular more than 150 GPa and a tensile strength of more than 1.5 GPa, in particular 2 GPa, more particularly more than 3.1 GPa. These particularly good mechanical properties are surprisingly attainable by means of the method of the invention.


Preferably, SiC fibers produced in accordance with the method of the invention have a diameter in the range 5 to 50 μm, in particular in the range 6 to 40 μm, preferably in the range 7 to 20 μm.


The Si content of the SiC fibers is advantageously in the range 30% to 70% atomic; the C content is in the range 30% to 70% atomic; particularly preferably, each is in the range 40% to 60% by weight, in order to approximate to the stoichiometric ratio as closely as possible; advantageously, the C is in slight excess.


Because of the small number of breaks, green fiber bundles and the pyrolyzed SiC fiber bundles formed therefrom are produced with a uniform number of fibers. Because the problem of constantly having to join on new individual fibers has been overcome, the bundles are also free of occasional increased diameters or bulges.


In this manner, the aim of the invention is also achieved by a SiC fiber bundle formed from 10 to 50,000, in particular 100 to 10,000, in particular 200 to 2,000 individual SiC fibers that are highly regular. The term “highly regular” as used in the context of the invention in particular means that of the individual fibers, fewer than 20% have a diameter that deviates from the mean fiber diameter of the bundle, for example in the range 5 to 50 μm, by more than 30%. Advantageously, fewer than 10% deviate by more than 20%, and in particular, fewer than 10% deviate by more than 10%. A high regularity of this type means that the overall bundle has very good mechanical properties and very good processability.


Other features which are considered as characteristic for the invention are set forth in the appended claims.


Although the invention is described herein as embodied in a method for producing ceramic fibers of a composition in the SiC range and for producing SiC fibers, it is nevertheless not intended to be limited to the details described, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.


The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments.







DETAILED DESCRIPTION OF THE INVENTION

A polysilane-polycarbosilane copolymer was prepared in accordance with DE 10 2004 042 531 A1, starting from a methylchlorodisilane mixture from the Müller-Rochow process. The polysilane-polycarbosilane copolymer was converted into a solution containing less than 25% by weight of PPC using toluene as the solvent, for example. In this example, the PPC content was 20% by weight. However, it could advantageously be even lower, for example in the range 15% by weight to 20% by weight or in the range 10% to 15% by weight.


The polysilane-polycarbosilane copolymer solution was used as the spin dope and was placed in a pressure vessel of a spinning apparatus under nitrogen as the inert gas and heated to 40° C. to 70° C. The spin dope was fed by a spinning pump to a spinneret which had 500 individual spin nozzles with a nozzle capillary diameter of 40 μm in this example. The spin dope was extruded through the spin nozzles and drawn using a godet roll (galette) through a spinning duct. The draw rate varied between 50 and 500 m/min. At all spinning speeds, the spinning process was very regular and there were no breaks in the green fibers at the spinneret.


A 1000 m long fiber bundle was spun at a speed of 200 m/min. A plurality of 50 cm long sections taken from the green fiber bundle at regular distances along its length were taken and heated, under nitrogen as the inert gas atmosphere at a heating rate of 250 K/min, to 1,300° C. and pyrolyzed for 1 min at this temperature. Alternatively, the whole fiber bundle could have been pyrolyzed in a single continuous process step. If densification was required, a sintering step could have been carried out subsequently at up to 1,500° C. for 1 min, for example.


The individual fibers of the SiC fiber bundle obtained were highly regular, both between themselves and also along the longitudinal direction. Fewer than 5% of the fibers in the fiber bundle deviated by more than 10% from the mean value of the fiber diameter, determined to be 12 μm.


A mean Y modulus for the SiC fibers of 140 GPa and a tensile strength of 2.5 GPa were determined. The oxygen content was 0.4%. The cross section of the fibers was essentially circular.


The invention is not limited to the combination of the features mentioned, but encompasses all conceivable combinations of the described features, insofar as they do not contradict the ambit of the invention.


The invention also encompasses spinning spin dopes with a lower solvent content wherein, however, an appropriately low viscosity is obtained by measures other than the solvent content, such as a lower molecular mass, viscosity-reducing additives or the like. In these cases, despite the relatively low solvent content, viscosities are obtained that correspond to those of the high solvent content solutions of the invention. In these cases too, cooperation with a small nozzle capillary diameter results in a trouble-free spinning process with a regular fiber bundle, wherein the viewing window fibers obtained have a high Y modulus and a high tensile strength because of the alignment of the polysilane-polycarbosilane copolymers.


Furthermore, instead of the PPC spin dopes obtained from the Müller-Rochow process, the invention also encompasses spinning other spin dopes containing polysilane and/or polycarbosilane with a high solvent content and/or low viscosity and small nozzle capillary diameters and thus to obtain a trouble-free spinning process and to produce a regular SiC fiber bundle that contains high modulus ceramic fibers with a high tensile strength.

Claims
  • 1. A method for producing ceramic fibers with a composition in an SiC range formed from a spin dope containing a polysilane-polycarbosilane copolymer solution, which comprises the steps of: providing the spin dope containing the polysilane-polycarbosilane copolymer solution in a range 75% by weight to 95% by weight of an inert solvent;extruding the spin dope through spin nozzles in a dry spinning process and spun through a spinning duct resulting in green fibers, the spin nozzles having a capillary diameter in a range 20 to 70 μm; andpyrolyzing the green fibers resulting in pyrolyzed fibers.
  • 2. The method according to claim 1, which further comprises carrying out the dry spinning process at a draw rate in a of range 50 m/min to 1,000 m/min.
  • 3. The method according to claim 1, which further comprises setting a viscosity of the spin dope in a range of 0.1 to 6 Pas.
  • 4. The method according to claim 1, which further comprises carrying out the dry spinning process with 50 to 50,000 spin nozzles.
  • 5. The method according to claim 1, which further comprises carrying out the dry spinning process at shear rates in a range of 10,000 s−1 to 60,000 s−1.
  • 6. The method according to claim 1, wherein the spin dope contains a spinning aid selected from the group consisting of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyacrylonitrile and poly(4-vinyl pyridine).
  • 7. The method according to claim 6, which further comprises supplying a spinning aid fraction having a 0.5% to 10% by weight.
  • 8. The method according to claim 1, which further comprises setting a spinning duct temperature to be in a range of 40° C. to 160° C.
  • 9. The method according to claim 8, which further comprises flushing the spinning duct with an inert flushing gas that is free of solvent.
  • 10. The method according to claim 9, which further comprises moving the inert flushing gas in a same direction as the ceramic fibers.
  • 11. The method according to claim 1, which further comprises selecting the inert solvent from a saturated hydrocarbon selected from the group consisting of n-pentane, n-hexane, cyclohexane, n-heptane, n-octane, and an aromatic hydrocarbon selected from the group consisting of benzene, toluene, o-xylene, syn-mesitylene, a chlorinated hydrocarbon selected from the group consisting of methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, chlorobenzene and an ether selected from the group consisting of diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane and a mixture of at least two these inert solvents.
  • 12. The method according to claim 1, which further comprises carrying out the pyrolyzing step in one of an inert atmosphere or in a reducing atmosphere at temperatures in the range 700° C. to 1,700° C.
  • 13. The method according to claim 1, which further comprises sintering the pyrolyzed fibers at temperatures in a range of 1,000° C. to 1,500° C.
  • 14. The method according to claim 1, which further comprises: providing the polysilane-polycarbosilane copolymer solution in a range 80% by weight to 90% by weight of the inert solvent; andproviding the spin nozzles to have the capillary diameter in a range 40 to 50 μm.
  • 15. The method according to claim 1, which further comprises carrying out the dry spinning process at a draw rate in a range of 100 to 750 m/min.
  • 16. The method according to claim 1, which further comprises carrying out the dry spinning process at a draw rate in a range of 200 to 500 m/min.
  • 17. The method according to claim 1, which further comprises setting a viscosity of the spin dope in a range of 0.5 to 4 Pas.
  • 18. The method according to claim 1, which further comprises carrying out the dry spinning process with 100 to 30,000 spin nozzles.
  • 19. The method according to claim 1, which further comprises carrying out the dry spinning process with 200 to 2,000 spin nozzles.
  • 20. The method according to claim 1, which further comprises carrying out the dry spinning process at shear rates in a range of 20,000 to 40,000 s−1.
  • 21. The method according to claim 6, further comprising supplying a spinning aid fraction having a 1% to 5% by weight.
  • 22. The method according to claim 6, further comprising supplying a spinning aid fraction having a 2.5% to 4% by weight.
  • 23. The method according to claim 1, which further comprises setting a spinning duct temperature to be in a range of 50° C. to 100° C.
  • 24. The method according to claim 12, which further comprises: selecting the inert atmosphere from the group consisting of nitrogen and argon;selecting the reducing atmosphere from the group consisting of a gas mixture consisting of argon, hydrogen, nitrogen, carbon monoxide, at least one carrier gas and at least one reducing gas; andsetting the temperatures in the range of 900° C. to 1,300° C.
  • 25. SiC fibers produced according to the method of claim 1, wherein the SiC fibers have a Y modulus being more than 130 GPa, a tensile strength being more than 1.5 GPa, and a diameter in a range of 5 to 50 μm.
  • 26. The SiC fibers according to claim 25, wherein the SiC fibers have an oxygen content of less than 1% by weight.
  • 27. The SiC fibers according to claim 25, wherein the Y modulus is more than 150 GPa and the tensile strength is more than 2 GPa.
  • 28. The SiC fibers according to claim 25, wherein the Y modulus is more than 200 GPa and the tensile strength is more than 3.1 GPa.
  • 29. The SiC fibers according to claim 14, wherein the SiC fibers have an oxygen content in a range 0.2% to 0.8% by weight.
  • 30. A fiber bundle, comprising: SiC fibers produced according to the method of claim 1 and having a Y modulus being more than 130 GPa, a tensile strength being more than 1.5 GPa, and a diameter in a range of 5 to 50 μm, the fiber bundle containing 10 to 50,000 of the SiC fibers.
  • 31. The fiber bundle according to claim 30, wherein the fiber bundle contains 100 to 30,000 of the SiC fibers having a high regularity.
  • 32. The fiber bundle according to claim 30, wherein the fiber bundle contains 200 to 2,000 of the SiC fibers.
Priority Claims (1)
Number Date Country Kind
102009055429.7 Dec 2009 DE national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation, under 35 U.S.C. §120, of copending international application No. PCT/EP2010/070430, filed Dec. 21, 2010, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German patent application No. DE 10 2009 055 429.7, filed Dec. 30, 2009; the prior applications are herewith incorporated by reference in their entirety.

Continuations (1)
Number Date Country
Parent PCT/EP2010/070430 Dec 2010 US
Child 13539662 US