Claims
- 1. A method for producing a crosslinked polyolefin comprising reacting a polyolefin which is a low density polyethylene having a density less than 0.93 and a melt index of 0.1 to 0.5 g/10 min. or a polyolefin mixture containing a low density polyethylene having a density less than 0.93 as major component, with a free radical generating compound and an organic silane having the general formula RR'SiY.sub.2, wherein R represents a monovalent olefinically unsaturated hydrocarbon or hydrocarbonoxy radical, each Y represents a hydrolyzable organic radical, and R' represents a monovalent hydrocarbon radical with the exception of aliphatically unsaturated hydrocarbon radicals, or a Y radical, to form a silane-grafted polyolefin, then mixing said silane-grafted polyolefin with a silanol condensation catalyst, and heating the mixture in the absence of water.
- 2. A method for producing a crosslinked polyolefin comprising reacting a polyolefin which is a low density polyethylene having a density less than 0.93 and a melt index of 0.1 to 0.5 g/10 min., or a polyolefin mixture having a melt index of 0.1 to 0.5 g/10 min. and consisting of a low density polyethylene having a density less than 0.93, polyproplyene or a high density polyethylene in an amount of not more than 15% by weight based on the total weight of the polyolefin mixture, with a free radical generating compound and an organic silane having the general formula RR'SiY.sub.2, wherein R represents a monovalent olefinically unsaturated hydrocarbon or hydrocarbonoxy radical, each Y represents a hydrolyzable organic radical, and R' represents a monovalent hydrocarbon radical except aliphatically unsaturated hydrocarbon radicals, or a Y radical, to form a silane-grafted polyolefin, then mixing said silane-grafted polyolefin with a silanol condensation catalyst, and heating the mixture in the absence of water.
- 3. A method as described in claim 2 wherein said organic silane is vinyltrimethoxysilane or vinyltriethoxysilane, and the organic silane is employed in an amount of 1-10 parts by weight per 100 parts by weight of said polyolefin.
- 4. A method as described in claim 2 wherein said free radical generating compound has a half-life of not more than 6 minutes at a temperature of 140.degree. C. or more, and the free radical generating compound is employed in an amount of from 0.0002 to 0.002 moles per 100 g of said polyolefin.
- 5. A method as described in claim 2 wherein said silanol condensation catalyst is an organometallic compound, and the silanol condensation catalyst is used in an amount of 0.05 to 0.5 parts by weight per 100 parts by weight of said silane-grafted polyolefin.
- 6. A method for producing a crosslinked polyethylene comprising reacting a polyethylene mixture consisting of a low density polyethylene having a density less than 0.93 in an amount of 50 to 99% by weight and a high density polyethylene having a density not less than 0.93 in an amount of 50 to 1% by weight, with a free radical generating compound and an organic silane having the general formula RR'SiY.sub.2, wherein R represents a monovalent olefinically unsaturated hydrocarbon or hydrocarbonoxy radical, each Y represents a hydrolyzable organic radical, and R' represents a monovalent hydrocarbon radical with the exception of aliphatically unsaturated hydrocarbon radicals, or a Y radical, to form a silane-grafted polyethylene, then mixing said silane-grafted polyethylene with a silanol condensation catalyst, and heating in the absence of water.
- 7. A method as described in claim 6 wherein said organic silane is vinyltrimethoxysilane, or vinyltriethoxysilane, and the organic silane is employed in an amount of 1 to 10 parts by weight per 100 parts by weight of said polyethylene mixture.
- 8. A method as described in claim 6 wherein said free radical generating compound has a half-life of not more than 6 minutes at a temperature of 140.degree. C. or more, and the free radical generating compound is employed in an amount of from 0.0002 to 0.002 moles per 100 g of said polyethylene mixture.
- 9. A method as described in claim 6 wherein said silanol condensation catalyst is an organometallic compound, and the silanol condensation catalyst is used in an amount of 0.05 to 0.5 parts by weight per 100 parts by weight of said silane-grafted polyethylene.
Priority Claims (2)
Number |
Date |
Country |
Kind |
51-150190 |
Dec 1976 |
JPX |
|
52-83206 |
Dec 1977 |
JPX |
|
Parent Case Info
This is a continuation of application Ser. No. 859,693, filed Dec. 12, 1977, now abandoned.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
3936523 |
Kleeberg et al. |
Feb 1976 |
|
4058583 |
Glander et al. |
Nov 1977 |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
859693 |
Dec 1977 |
|