The present invention is directed toward a method for producing an electrical contact using a kinetic spray process, and more particularly, toward a method that includes selective melting of kinetically sprayed particles.
The present invention comprises an improvement to the kinetic spray process as generally described in U.S. Pat. Nos. 6,139,913, 6,283,386 and the articles by Van Steenkiste, et al. entitled “Kinetic Spray Coatings” published in Surface and Coatings Technology Volume III, Pages 62-72, Jan. 10, 1999, and “Aluminum coatings via kinetic spray with relatively large powder particles”, published in Surface and Coatings Technology 154, pp. 237-252, 2002, all of which are herein incorporated by reference.
A new technique for producing coatings on a wide variety of substrate surfaces by kinetic spray, or cold gas dynamic spray, was recently reported in two articles by T. H. Van Steenkiste et al. The first was entitled “Kinetic Spray Coatings,” published in Surface and Coatings Technology, vol. 111, pages 62-71, Jan. 10, 1999 and the second was entitled “Aluminum coatings via kinetic spray with relatively large powder particles”, published in Surface and Coatings Technology 154, pp. 237-252, 2002. The articles discuss producing continuous layer coatings having high adhesion, low oxide content and low thermal stress. The articles describe coatings being produced by entraining metal powders in an accelerated gas stream, through a converging-diverging de Laval type nozzle and projecting them against a target substrate. The particles are accelerated in the high velocity gas stream by the drag effect. The gas used can be any of a variety of gases including air or helium. It was found that the particles that formed the coating did not melt or thermally soften prior to impingement onto the substrate. It is theorized that the particles adhere to the substrate when their kinetic energy is converted to a sufficient level of thermal and mechanical deformation. Thus, it is believed that the particle velocity must exceed a critical velocity high enough to exceed the yield stress of the particle to permit it to adhere when it strikes the substrate. It was found that the deposition efficiency of a given particle mixture was increased as the inlet air temperature was increased. Increasing the inlet air temperature decreases its density and thus increases its velocity. The velocity varies approximately as the square root of the inlet air temperature. The actual mechanism of bonding of the particles to the substrate surface is not fully known at this time. The critical velocity is dependent on the material of the particle. Once an initial layer of particles has been formed on a substrate subsequent particles bind not only to the voids between previous particles bound to the substrate but also engage in particle to particle bonds. The bonding process is not due to melting of the particles in the particles because the temperature of the particles is always below their melting temperature.
One aspect of the technique is that the particles are entrained in the converging side of the nozzle, pass through a narrow throat and then are expelled from the diverging section of the nozzle onto a substrate. One difficulty that can arise is that with certain particles sizes the throat can rapidly become plugged. In a recent related United States application, filed Apr. 5, 2002 and assigned Ser. No. 10/117,385 this was addressed through a modification of the kinetic spray technique that involves injection of the particles into the diverging region of the nozzle and then entraining them in the accelerated gas stream. The technique removes clogging of the nozzle throat as a limitation and reduces the wear on the nozzle.
Using the basic technique attempts were made to coat electrical contact substrates with tin particles. The particles adhered to and coated the electrically conductive substrates. During impact fracturing occurs in the particles as they plastically deform and adhere to a substrate and other particles. It was found, however, upon subsequent bending of the coated substrates to form them into the required terminal shape the particles broke internally along these fracture lines and left a fragment of the original tin particle at the break on the substrate. These broken particles negatively affect the substrate surface. The present invention is directed to a method of overcoming the particle fracturing behaviour and to design a coating that could withstand severe bending without damage.
In one embodiment the present invention is a method of kinetic spray coating a substrate comprising the steps of: providing particles of a tin to be sprayed; providing a supersonic nozzle having a throat located between a converging region and a diverging region; directing a flow of a gas through the nozzle, the gas having a temperature of from 1000 to 1300 degrees Fahrenheit; and injecting the particles directly into the diverging region of the nozzle at a point after the throat, entraining the particles in the flow of the gas and accelerating the particles to a velocity sufficient to result in partial melting of the particles upon impact on a substrate positioned opposite the nozzle and adherence of the particles to the substrate.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
a is a scanning electron photomicrograph of a tin particle bonded to a brass alloy substrate not according to the present invention that has not been bent;
b is a scanning electron photomicrograph of a region adjacent to that show in
a is a scanning electron photomicrograph of tin particles bonded to a brass alloy substrate according to the present invention;
b is a scanning electron photomicrograph of tin particles bonded to a brass alloy substrate according to the present invention of
a and 7b are scanning electron photomicrographs of tin particles bonded to a brass alloy substrate according to the present invention;
c is a schematic diagram of what may be occurring when particles are sprayed according to the present invention;
a and 8b are scanning electron photomicrographs of cross-sections of tin particles prior to their being sprayed;
a and 9b are scanning electron photomicrographs of cross-sections of a tin particle sprayed according to the present invention; and
Referring first to
The spray system 10 further includes an air compressor 24 capable of supplying air pressure up to 3.4 MPa (500 psi) to a high pressure air ballast tank 26. The air ballast tank 26 is connected through a line 28 to both a low pressure powder feeder 30 and a separate air heater 32. The air heater 32 supplies high pressure heated air, the main gas described below, to a kinetic spray nozzle 34. The pressure of the main gas generally is set at from 150 to 500 psi, more preferably from 300 to 400 psi. The low pressure powder feeder 30 mixes particles of a spray powder and supplies the mixture of particles to the nozzle 34. Preferably the particles are fed at a rate of from 20 to 80 grams per minute to the nozzle 34. A computer control 35 operates to control both the pressure of air supplied to the air heater 32 and the temperature of the heated main gas exiting the air heater 32.
Chamber 42 is in communication with a de Laval type supersonic nozzle 54. The nozzle 54 has a central axis 52 and an entrance cone 56 that decreases in diameter to a throat 58. The entrance cone 56 forms a converging region of the nozzle 54. Downstream of the throat 58 is an exit end 60 and a diverging region is defined between the throat 58 and the exit end 60. The largest diameter of the entrance cone 56 may range from 10 to 6 millimeters, with 7.5 millimeters being preferred. The entrance cone 56 narrows to the throat 58. The throat 58 may have a diameter of from 3.5 to 1.5 millimeters, with from 3 to 2 millimeters being preferred. The diverging region of the nozzle 54 from downstream of the throat 58 to the exit end 60 may have a variety of shapes, but in a preferred embodiment it has a rectangular cross-sectional shape. At the exit end 60 the nozzle 54 preferably has a rectangular shape with a long dimension of from 8 to 14 millimeters by a short dimension of from 2 to 6 millimeters.
The de Laval nozzle 54 is modified from previous systems in the diverging region. In the present invention a mixture of unheated low pressure air and coating powder is fed from the powder feeder 30 through one of a plurality of supplemental inlet lines 48 each of which is connected to a powder injector tube 50 comprising a tube having a predetermined inner diameter. For simplicity the actual connections between the powder feeder 30 and the inlet lines 48 are not shown. The injector tubes 50 supply the particles to the nozzle 54 in the diverging region downstream from the throat 58, which is a region of reduced pressure. The length of the nozzle 54 from the throat 58 to the exit end can vary widely and typically ranges from 100 to 400 millimeters.
As would be understood by one of ordinary skill in the art the number of injector tubes 50, the angle of their entry relative to the central axis 52 and their position downstream from the throat 58 can vary depending on any of a number of parameters. In
Using a nozzle 54 having a length of 300 millimeters from throat 58 to exit end 60, a throat of 2.8 millimeters, an exit end 60 with a rectangular opening of 5 by 12.5 millimeters, main gas pressure of 300 psi, main gas temperature of 700° F., and an injector tube 50 angle of 45 degrees, the pressure drops quickly as one goes downstream from the throat 58. The measured pressures were: 14 psi at 1 inch after the throat 58; 10 psi at 2 inches from the throat 58; 20 psi at 3 inches from the throat 58; 22 psi at 4 inches from the throat 58; 22 psi at 5 inches from the throat 58 and below atmospheric pressure beyond 6 inches from the throat 58. For the present invention it is preferred that the injector tube 50 be located a distance of from 0.5 to 5 inches from the throat, more preferably from 0.5 to 2 inches, and most preferably from 0.5 to 1 inches. These results show that one can use much lower pressures to inject the powder when the injection takes place after the throat 58. The low pressure powder feeder 30 of the present invention has a cost that is approximately ten-fold lower than the high pressure powder feeders that have been used in past systems. Generally, the low pressure powder feeder 30 is used at a pressure of 100 psi or less, most preferably from 5 to 60 psi. All that is required is that it exceed the main gas pressure at the point of injection.
The nozzle 54 preferably produces an exit velocity of the entrained particles of from 300 meters per second to 800 meters per second. The entrained particles gain kinetic and thermal energy during their flow through this nozzle 54. It will be recognized by those of skill in the art that the temperature of the particles in the gas stream will vary depending on the particle size and the main gas temperature. The main gas temperature is defined as the temperature of heated high-pressure gas at the inlet to the nozzle 54. The importance of the main gas temperature is discussed more fully below.
It is preferred that the exit end 60 of the nozzle 54 have a standoff distance of from 10 to 40 millimeters, more preferably from 15 to 30 millimeters, and most preferably from 15 to 20 millimeters from the surface of the substrate. Upon striking a substrate opposite the nozzle 54 the particles flatten into a nub-like structure with an aspect ratio of generally about 5 to 1. When the substrate is a metal and the particles are a metal the particles striking the substrate surface fracture the oxidation on the surface layer and subsequently form a direct metal-to-metal bond between the metal particle and the metal substrate. Upon impact the kinetic sprayed particles transfer substantially all of their kinetic and thermal energy to the substrate surface and stick if their yield stress has been exceeded. As discussed above, for a given particle to adhere to a substrate it is necessary that it reach or exceed its critical velocity which is defined as the velocity where at it will adhere to a substrate when it strikes the substrate after exiting the nozzle 54. This critical velocity is dependent on the material composition of the particle. In general, harder materials must achieve a higher critical velocity before they adhere to a given substrate. It is not known at this time exactly what is the nature of the particle to substrate bond; however, it is believed that a portion of the bond is due to the particles plastically deforming upon striking the substrate. Preferably the particles have an average nominal diameter of from 60 to 90 microns.
It was initially believed that the present system could be used to coat brass substrates with tin using the standard main gas temperatures of from 600 to 700° F. to coat the substrate. In the data reported below the nozzle 54 is 300 millimeters long, has a throat 58 with a diameter of 2.8 millimeters, and an exit end 60 of 12.5 millimeters by 5 millimeters. The main gas pressure is 300 psi, the main gas temperatures are as noted below, the standoff distance was 20 millimeters, and the injector tube 50 was at an angle of 45 degrees. The particles had a nominal average size of from 63 to 90 microns. The substrates were either C26000 ½ hard cartridge brass or C42500 extra spring tin brass. The C26000 has a Rockwell B hardness of 68, a yield strength of 51 ksi, and a tensile strength of 62 ksi. The C42500 is a copper alloy having a Rockwell B hardness of 92, a yield strength of 90 ksi, and a tensile strength of 92 ksi.
Several continuous tin coatings were produced on C26000 brass substrate for adhesion testing and failure mode analysis. The substrates were coated at a traverse rate of 400 feet per minute and a particle feed rate of 73 grams per minute. Adhesion measurements were made using a Romulus adhesion tester from Quad Group. Pull studs are attached onto the tin surface with epoxy, mounted in the machine and tested until failure.
It was surprisingly found that when these same spray parameters were used to attempt to coat the C42500 substrate, the coating failed. Specifically, the coating adhered to the substrate when the substrate was flat, however, when the substrate was stamped into the desired electrical terminal shape the coating failed. The typical electrical terminal is stamped out in a die that introduces several 90 degree bends into the substrate.
To test the adhesion of the tin particles to the C42500 substrate surface the substrate was bent 90 degrees and examined with the SEM.
It has been surprising found in the present invention that increasing the main gas temperature to a temperature of from 1000 to 1300° F. results in a superior bonding to C42500 and prevents delamination even upon severe bending. Additionally, the traverse speed was lowered to 30 to 50 feet/min and the feed rate was lowered to 20 to 30 grams/min. In part the harder surface of the C42500 is requiring more initial particle impacts to prepare the substrate surface for the subsequent arriving particles. If this were the only requirement, however, then one would assume that increasing the feed rate would compensate for the surface preparation. This was not observed to be true. Increasing the feed rate did not increase the number of adhered tin particles on the substrate surface. Instead the higher feed rates produced excess tin powder, which stuck to the oil layer on the substrate or went into the dust collector. The higher feed rates may also contribute to mass loading of the high velocity gas stream resulting in lower actual particle velocities.
a-b are SEM taken of tin particles sprayed at a traverse feed rate of 40 feet/min, a main gas temperature of 1040° F., and a feed rate of 22 grams/min.
In
a-b are SEM of etched cross-sections of tin particles from the initial starting powders. One can clearly distinguish the internal grain boundaries and structures of the particles before spraying. Comparing these photos with the SEMs in
a is an SEM of a tin particle sprayed using the new high temperature method described above onto C42500. In
To further enhance the present invention it is possible to pre-heat the particles in the powder feeder 30. Preferably the particles are heated to within 100° F. of their melting point. Because the particles are being injected after the throat 58 these higher temperatures are possible without causing clogging of the nozzle 54.
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and do come within the scope of the invention. Accordingly, the scope of legal protection afforded this invention can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2861900 | Smith et al. | Nov 1958 | A |
3100724 | Rocheville | Aug 1963 | A |
3876456 | Ford et al. | Apr 1975 | A |
3993411 | Babcock et al. | Nov 1976 | A |
3996398 | Manfredi | Dec 1976 | A |
4263335 | Wagner et al. | Apr 1981 | A |
4416421 | Browning et al. | Nov 1983 | A |
4606495 | Stewart, Jr. et al. | Aug 1986 | A |
4891275 | Knoll | Jan 1990 | A |
4939022 | Palanisamy | Jul 1990 | A |
5187021 | Vydra et al. | Feb 1993 | A |
5217746 | Lenling et al. | Jun 1993 | A |
5271965 | Browning | Dec 1993 | A |
5302414 | Alkhimov et al. | Apr 1994 | A |
5308463 | Hoffmann et al. | May 1994 | A |
5328751 | Komorita et al. | Jul 1994 | A |
5340015 | Hira et al. | Aug 1994 | A |
5362523 | Gorynin et al. | Nov 1994 | A |
5395679 | Myers et al. | Mar 1995 | A |
5424101 | Atkins et al. | Jun 1995 | A |
5464146 | Zalvzec et al. | Nov 1995 | A |
5465627 | Garshelis | Nov 1995 | A |
5476725 | Papich et al. | Dec 1995 | A |
5493921 | Alasafi | Feb 1996 | A |
5520059 | Garshelis | May 1996 | A |
5525570 | Chakraborty et al. | Jun 1996 | A |
5527627 | Lautzenhiser et al. | Jun 1996 | A |
5585574 | Sugihara et al. | Dec 1996 | A |
5593740 | Strumban et al. | Jan 1997 | A |
5648123 | Kuhn et al. | Jul 1997 | A |
5683615 | Munoz | Nov 1997 | A |
5706572 | Garshelis | Jan 1998 | A |
5708216 | Garshelis | Jan 1998 | A |
5725023 | Padula | Mar 1998 | A |
5795626 | Grabel et al. | Aug 1998 | A |
5854966 | Kampe et al. | Dec 1998 | A |
5887335 | Garshells | Mar 1999 | A |
5889215 | Kilmartin et al. | Mar 1999 | A |
5894054 | Paruchuri et al. | Apr 1999 | A |
5907105 | Pinkerton | May 1999 | A |
5907761 | Tohma et al. | May 1999 | A |
5952056 | Jordan et al. | Sep 1999 | A |
5965193 | Ning et al. | Oct 1999 | A |
5989310 | Chu et al. | Nov 1999 | A |
5993565 | Pinkerton | Nov 1999 | A |
6033622 | Maruyama | Mar 2000 | A |
6047605 | Garshelis | Apr 2000 | A |
6051045 | Narula et al. | Apr 2000 | A |
6051277 | Claussen et al. | Apr 2000 | A |
6074737 | Jordan et al. | Jun 2000 | A |
6098741 | Gluf | Aug 2000 | A |
6119667 | Boyer et al. | Sep 2000 | A |
6129948 | Plummer et al. | Oct 2000 | A |
6139913 | Van Steenkiste et al. | Oct 2000 | A |
6145387 | Garshelis | Nov 2000 | A |
6149736 | Sugihara | Nov 2000 | A |
6159430 | Foster | Dec 2000 | A |
6189663 | Smith et al. | Feb 2001 | B1 |
6260423 | Garshelis | Jul 2001 | B1 |
6261703 | Sasaki et al. | Jul 2001 | B1 |
6283386 | Van Steenkiste et al. | Sep 2001 | B1 |
6283859 | Carlson et al. | Sep 2001 | B1 |
6289748 | Lin et al. | Sep 2001 | B1 |
6338827 | Nelson et al. | Jan 2002 | B1 |
6344237 | Kilmer et al. | Feb 2002 | B1 |
6374664 | Bauer | Apr 2002 | B1 |
6402050 | Kashirin et al. | Jun 2002 | B1 |
6422360 | Oliver et al. | Jul 2002 | B1 |
6424896 | Lin | Jul 2002 | B1 |
6442039 | Schreiber | Aug 2002 | B1 |
6446857 | Kent et al. | Sep 2002 | B1 |
6465039 | Pinkerton et al. | Oct 2002 | B1 |
6485852 | Miller et al. | Nov 2002 | B1 |
6488115 | Ozsoylu | Dec 2002 | B1 |
6490934 | Garshelis | Dec 2002 | B2 |
6511135 | Ballinger et al. | Jan 2003 | B2 |
6537507 | Nelson et al. | Mar 2003 | B2 |
6551734 | Simpkins et al. | Apr 2003 | B1 |
6553847 | Garshelis | Apr 2003 | B2 |
6615488 | Anders | Sep 2003 | B2 |
6623704 | Roth | Sep 2003 | B1 |
6623796 | Van Steenkiste | Sep 2003 | B1 |
6624113 | LaBarge et al. | Sep 2003 | B2 |
20020071906 | Rusch | Jun 2002 | A1 |
20020073982 | Shaikh et al. | Jun 2002 | A1 |
20020102360 | Subramanian et al. | Aug 2002 | A1 |
20020110682 | Brogan | Aug 2002 | A1 |
20020112549 | Cheshmehdoost et al. | Aug 2002 | A1 |
20020182311 | Leonardi et al. | Dec 2002 | A1 |
20030039856 | Gillispie et al. | Feb 2003 | A1 |
20030190414 | Van Steenkiste | Oct 2003 | A1 |
20030219542 | Ewasyshyn et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
42 36 911 | Dec 1993 | DE |
199 59 515 | Jun 2001 | DE |
100 37 212 | Jan 2002 | DE |
101 26 100 | Dec 2002 | DE |
1 160 348 | Dec 2001 | EP |
1245854 | Feb 2002 | EP |
55031161 | Mar 1980 | JP |
61249541 | Nov 1986 | JP |
04180770 | Jun 1992 | JP |
04243524 | Aug 1992 | JP |
9822639 | May 1998 | WO |
02052064 | Jan 2002 | WO |
03009934 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040157000 A1 | Aug 2004 | US |