1. Field of the Invention
The present invention relates to a method for producing an electron-emitting device and a method for producing an image display apparatus including such an electron-emitting device.
2. Description of the Related Art
An electron-emitting device of a field emission type is configured to field-emit electrons from the surface of a cathode by application of a voltage between the cathode and a gate. Japanese Patent Laid-Open No. 2001-167693 discloses an electron-emitting device in which a cathode is provided along the side surface of an insulation layer formed on a substrate and the insulation layer has a recessed portion.
Such an electron-emitting device disclosed in Japanese Patent Laid-Open No. 2001-167693 suffers from unintended flow of current (leakage current) between the cathode and the gate depending on a method used to produce the device.
Higher electron emission efficiency has been demanded. Herein, electron emission efficiency (η) is given by the following expression with current (If) flowing between a cathode electrode and a gate electrode and current (Ie) being drawn into a vacuum upon application of a driving voltage to an electron-emitting device: Efficiency η=Ie/(If+Ie).
The present invention provides a method for producing an electron-emitting device having high electron emission efficiency and high reliability in which leakage current is suppressed.
Accordingly, a method for producing an electron-emitting device according to the present invention includes: a first step of forming an electrode above a top surface of an insulation layer including the top surface and a side surface connected to the top surface; a second step of forming a first conductive film on the insulation layer so as to be separated from the electrode and extend from the top surface to the side surface; a third step of forming a second conductive film on the first conductive film so as to extend from the top surface to the side surface; and a fourth step of etching the second conductive film such that a gap is formed between the electrode and the second conductive film, wherein, in the second step, the first conductive film is formed such that a portion of the first conductive film on the top surface has a higher film density than a portion of the first conductive film on the side surface.
According to the present invention, leakage current can be suppressed and the electron emission efficiency and the reliability of an electron-emitting device can be enhanced.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The properties of elements such as sizes, materials, shapes, relative configurations, and the like described in the embodiments are not intended to restrict the scope of the present invention unless otherwise specified.
The configuration of an electron-emitting device produced by a method of an embodiment described below will be described with reference to
A cathode electrode 2 and a step-forming member 34 are provided side by side on a substrate 1. The step-forming member 34 is an insulation member constituted by the stack of a first insulation layer 3 and a second insulation layer 4. As specifically illustrated in
The side surface 31 of the first insulation layer 3 constituting the step-forming member 34 includes an inclined surface. In a production method according to the present invention, the side surface 31 is desirably an inclined surface (inclined surface 31) having an angle of less than 90° with respect to the surface of the substrate 1. Note that the angle between a side surface 41 of the second insulation layer 4 and the substrate 1 is not particularly restricted as long as electron emission is not hampered.
A gate electrode 5 is provided above (in the +Z direction) the first insulation layer 3 with the second insulation layer 4 therebetween such that the gate electrode 5 is separated from the first insulation layer 3 by a predetermined distance (thickness of the second insulation layer 4). In this embodiment, a gate conductive film 12 is provided on the gate electrode 5. The gate conductive film 12 in this embodiment includes a third conductive film 8 and a fourth conductive film 9 that are formed by a production method described below.
A recessed portion 42 is surrounded by the first insulation layer 3, the second insulation layer 4, and the gate electrode 5. Referring to
The cathode conductive film 10 covers a corner portion 33 along which the side surface 31 of the first insulation layer 3 and the top surface 32 of the first insulation layer 3 are connected to each other. The cathode conductive film 10 is provided not only on the side surface 31 of the first insulation layer 3 but also on the top surface 32 of the first insulation layer 3. Stated another way, a portion of the cathode conductive film 10 is in the cathode electrode 2 and the cathode conductive film 10 extends into the recessed portion 42. That is, the cathode conductive film 10 extends from the cathode electrode 2 along the side surface 31 of the first insulation layer 3 to the top surface 32 of the first insulation layer 3.
As illustrated in
The entry of the cathode conductive film 10 by the distance x into the recessed portion 42 provides the following three merits: (1) the area in which the cathode conductive film 10 serving as an electron emission portion is in contact with the first insulation layer 3 is large, which enhances mechanical adhesion (adhesion strength) between the cathode conductive film 10 and the first insulation layer 3; (2) the area in which the cathode conductive film 10 serving as an electron emission portion is in contact with the first insulation layer 3 is large, which permits heat generated in the electron emission portion to dissipate efficiently (reduction in thermal resistance); and (3) an inclination of the cathode conductive film 10 with respect to the top surface 32 of the first insulation layer 3 leads to reduction in the intensity of an electric field generated at the triple point in the interface between the insulator, vacuum, and the conductor, which permits the suppression of discharge phenomenon caused by generation of an abnormal electric field.
An end portion of the cathode conductive film 10 includes a projected portion positioned on the corner portion 33 of the first insulation layer 3. Stated another way, the projected portion is positioned so as to straddle the inclined surface 31 of the first insulation layer 3 and the top surface 32 of the first insulation layer 3. The tip of the projected portion is away from the surface of the substrate 1 by a distance larger than the distance between the top surface 32 of the first insulation layer 3 and the surface of the substrate 1. The tip of the projected portion is sharpened. That is, the projected portion is projected upward (+Z direction) to a level higher than the top surface 32 of the first insulation layer 3. Accordingly, the projected portion can be defined as a portion of the cathode conductive film 10, the portion being positioned at a level higher than the level of the top surface 32 of the first insulation layer 3. The other end portion of the cathode conductive film 10 is connected to the cathode electrode 2.
The gate conductive film 12 is provided on a side surface 51 of the gate electrode 5 and on a top surface 52 of the gate electrode 5. A conductive member 13 at least including the gate electrode 5 and, if necessary, the gate conductive film 12, can be collectively referred to as a gate. The gate 13 including the gate electrode 5 (and the gate conductive film 12) faces the tip of the projected portion of the cathode conductive film 10 with a gap 11 between the gate 13 and the tip. The gap dimension of the gap 11 is represented by a symbol d (see
The position with which emitted electrons often collide in the gate electrode 5 and the gate conductive film 12 is in the gate conductive film 12 on the side surface 51 of the gate electrode 5.
As described above, the gate electrode 5 (and the gate conductive film 12) should be provided so as to be away from the cathode conductive film 10 at a predetermined gap dimension d (gap 11) so that an electric field that can cause field emission can be applied to the cathode conductive film 10. When such an electric field can be applied with the gate electrode 5, the gate conductive film 12 is not necessarily provided on the gate electrode 5. To efficiently obtain field-emitted electrons, the gate 13 is provided at a level higher than the level of the cathode conductive film 10, that is, on a side closer to the anode electrode 20. The gate electrode 5 (and the gate conductive film 12) should be provided above the top surface 32 of the first insulation layer 3 by a predetermined distance (thickness of the second insulation layer 4). Stated another way, the second insulation layer 4 is a member that defines the distance between the gate electrode 5 (and the gate conductive film 12) and the top surface 32 of the first insulation layer 3.
Hereinafter, the projected portion of the cathode conductive film 10 will be described in terms of features and a desired form with reference to
The tip of the projected portion of the cathode conductive film 10 includes a portion defined with radius r of curvature, the portion corresponding to a dotted circle in
Hereinafter, a method for producing an electron-emitting device according to the present embodiment will be described with an electron-emitting device having the above-described configuration serving as an example with reference to
A series of steps in a production method according to the present embodiment will be briefly described and then the steps will be described in detail.
An insulation layer 30 to serve as the first insulation layer 3 is formed on a surface of the substrate 1. An insulation layer 40 to serve as the second insulation layer 4 is then formed on the top surface of the insulation layer 30. A conductive layer 50 to serve as the gate electrode 5 is subsequently formed on the top surface of the insulation layer 40 (
The conductive layer 50, the insulation layer 40, and the insulation layer 30 are then subjected to an etching treatment (first etching treatment). The first etching treatment is mainly intended to form the gate electrode 5 and the side surface 31 of the first insulation layer 3.
Specifically, the first etching treatment is conducted as follows: a resist pattern is formed on the conductive layer 50 by a photolithographic technique or the like, and then, the conductive layer 50, the insulation layer 40, and the insulation layer 30 are etched. As a result of Step 2, the first insulation layer 3 and the gate electrode 5 in the electron-emitting device illustrated in
As illustrated in
The insulation layer 44 formed in Step 2 is then subjected to an etching treatment (second etching treatment). The second etching treatment is mainly intended to form the recessed portion 42.
As a result of Step 3, the second insulation layer 4 in the electron-emitting device illustrated in
Subsequently, steps for forming the cathode conductive film 10 (and the gate conductive film 12) will be described. Note that, in the following description, the side surface of the first insulation layer 3 is an inclined surface (inclined surface 31).
The first conductive film 6 is formed of a conductive material so as to extend from the top surface 32 of the first insulation layer 3 to the inclined surface 31 of the first insulation layer 3 (
For simplicity, in the following description, “a portion of the first conductive film 6 on the inclined surface 31 of the first insulation layer 3” is referred to as “the first conductive film 6 on the inclined surface 31”. “A portion of the first conductive film 6 on the top surface 32 of the first insulation layer 3” is referred to as “the first conductive film 6 on the top surface 32”.
In Step 4, the third conductive film 8 composed of the same material as the first conductive film 6 may be formed on the gate electrode 5 simultaneously when the first conductive film 6 is formed. However, the third conductive film 8 is not necessarily formed in Step 4.
As illustrated in
The “gate 13” referred to in Step 4 at least includes the gate electrode 5; and when the third conductive film 8 is formed, the “gate 13” in Step 4 includes the gate electrode 5 and the third conductive film 8.
That is, the first conductive film 6 is formed such that the first conductive film 6 and the gate electrode 5 are separated from each other with a gap therebetween. When the third conductive film 8 is formed, the first conductive film 6 is formed such that the first conductive film 6 is also not in contact with the third conductive film 8 with a gap therebetween.
In this way, the first conductive film 6 (and the third conductive film 8) is formed.
The second conductive film 7 is subsequently formed so as to extend from the top surface 32 of the first insulation layer 3 to the inclined surface 31 of the first insulation layer 3 (
However, this should not be understood that the second conductive film 7 is provided only on the first conductive film 6. The second conductive film 7 may have a portion in contact with the top surface 32 of the first insulation layer 3. The second conductive film 7 is desirably formed so as to cover the surface of the first conductive film 6.
Step 5 is conducted for the purpose of suppressing an excessive decrease in the electrical conductivity of the portion of the cathode conductive film 10 on the inclined surface 31 in Step 6 described below.
For example, the second conductive film 7 should be formed such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density higher than that of the portion of the first conductive film 6 on the inclined surface 31 of the first insulation layer 3. This technique is particularly advantageous when the first conductive film 6 and the second conductive film 7 are formed of the same material. Specifically, at least the portion (having a low film density) of the first conductive film 6 on the inclined surface 31 of the first insulation layer 3 is covered by the second conductive film 7 having a high film density.
More desirably, the second conductive film 7 is formed such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density equal to or higher than the film density of the portion of the second conductive film 7 on the top surface 32 of the first insulation layer 3. Specifically, the second conductive film 7 is formed such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density higher than the film density of the portion of the second conductive film 7 on the top surface 32 of the first insulation layer 3; or the second conductive film 7 is formed such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density equal to the film density of the portion of the second conductive film 7 on the top surface 32 of the first insulation layer 3. By forming the second conductive film 7 in this way, controllability of the gap dimension d of the gap 11 by the third etching treatment described below is enhanced.
The second conductive film 7 may be formed of a material with which the resultant second conductive film 7 is etched by the third etching treatment described below at an etching rate lower than the etching rate at which the first conductive film 6 is etched by the third etching treatment. In this case, such a material may be appropriately selected depending on an etchant used in the third etching treatment.
In Step 5, the fourth conductive film 9 composed of the same material as the second conductive film 7 is desirably formed on the gate electrode 5 or the third conductive film 8 simultaneously when the second conductive film 7 is formed.
For simplicity, in the following description, “a portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3” is referred to as “the second conductive film 7 on the inclined surface 31”; and “a portion of the second conductive film 7 on the top surface 32 of the first insulation layer 3” is referred to as “the second conductive film 7 on the top surface 32”. Naturally, “the second conductive film 7 on the inclined surface 31” and “the second conductive film 7 on the top surface 32” are underlain by the first conductive film 6. Stated another way, the first conductive film 6 is provided between “the second conductive film 7 on the inclined surface 31” and the inclined surface 31. When the second conductive film 7 is provided so as to cover the first conductive film 6, there may be a case where “the second conductive film 7 on the top surface 32” is in contact with the top surface 32.
In Step 5, there may be a case where the second conductive film 7 and the gate 13 are not in contact with each other. However, as illustrated in
The “gate 13” referred to in Step 5 at least includes the gate electrode 5; and when the fourth conductive film 9 is formed, the “gate 13” in Step 5 includes the gate electrode 5 and the fourth conductive film 9. When the third conductive film 8 is formed in Step 4, the “gate 13” further includes the third conductive film 8. In summary, the second conductive film 7 is desirably formed such that the second conductive film 7 is (electrically) connected with the gate electrode 5. When the second conductive film 7 is made be in contact with at least any one of the gate electrode 5, the third conductive film 8, and the fourth conductive film 9, the second conductive film 7 is (electrically) connected with the gate electrode 5.
Typically, as illustrated in
In this way, the second conductive film 7 (and the fourth conductive film 9) is formed.
The second conductive film 7 is then subjected to an etching treatment (third etching treatment) (
The second conductive film 7 is etched in the film-thickness direction by the third etching treatment. Note that the second conductive film 7 is not completely removed by the third etching treatment. After the third etching treatment is conducted, the second conductive film 7 remains on the first conductive film 6 (at least on the projected portion).
As a result of the third etching treatment, the gap 11 is formed between the second conductive film 7 and the gate 13 so as to have a desired gap dimension d. That is, the gap 11 for field emitting electrons can be formed. By forming the gap 11 with the third etching treatment, controllability over the gap dimension d of the gap 11 can be enhanced and the electron emission efficiency of the electron-emitting device can be enhanced. Since the gate 13 is a member at least including the gate electrode 5, it can also be stated that, as a result of the third etching treatment, a gap having a desired gap dimension is formed between the gate electrode 5 and the second conductive film 7. When the third conductive film 8 and/or the fourth conductive film 9 is formed, a gap having a desired gap dimension is also formed between these films and the second conductive film 7.
In Step 6, unnecessary material of the second conductive film 7 having entered the recessed portion 42 in Step 5 can be removed. As a result, residue of the conductive material in the recessed portion 42 is reduced to thereby enhance the reliability of the electron-emitting device.
Even when the second conductive film 7 is formed so as not to be in contact with the gate 13 in Step 5, the second conductive film 7 and the gate 13 may be in contact with each other in an unintended portion, which can cause a short-circuit defect or leakage current. Such a portion can be removed by the third etching treatment. As a result, the reliability of the electron-emitting device can be enhanced.
When the second conductive film 7 is formed so as not to be in contact with the gate 13 in Step 5, as a result of the third etching treatment, the second conductive film 7 and the gate 13 are further separated from each other and the gap therebetween is widened. Thus, even when the second conductive film 7 is formed so as not to be in contact with the gate 13 in Step 5, Step 6 corresponds to a step of forming the gap 11 having a desired gap dimension d.
When the second conductive film 7 is formed so as to be in contact with the gate 13 in Step 5, as a result of the third etching treatment, the second conductive film 7 and the gate 13 are separated from each other and the gap 11 having a desired gap dimension d can be formed therebetween. Thus, the gap dimension d of the gap 11 can be controlled with higher accuracy. Typically, the second conductive film 7 is in contact with the fourth conductive film 9 in Step 5, and the second conductive film 7 is separated from the fourth conductive film 9 in Step 6 to thereby form the gap 11 having a desired gap dimension d.
The first conductive film 6 is formed in Step 4 such that the portion on the inclined surface 31 of the first insulation layer 3 has a film density lower than that of the portion on the top surface 32 of the first insulation layer 3.
Film density and etching rate are in inverse proportion in the third etching treatment, and a portion having a low film density is etched at a high etching rate (etched by a large amount). In the present invention, the term “etching rate” refers to the amount of decrease in the thickness of a film per unit of time caused by etching. FIG. 10A shows the relationship between an angle at which a material for forming a molybdenum film was applied with respect to a surface on which the film was to be formed, and an etching rate at which the film formed at the application angle was etched under predetermined etching conditions. In
Thus, when the third etching treatment is conducted without formation of the second conductive film 7, the first conductive film 6 on the inclined surface 31 (this portion of the first conductive film 6 has a low film density) is etched at a higher etching rate than the first conductive film 6 on the top surface 32 (this portion of the first conductive film 6 has a high film density). Stated another way, the amount of decrease in the film thickness of the portion of the first conductive film 6 on the inclined surface 31 is larger than the amount of decrease in the film thickness of the portion of the first conductive film 6 on the top surface 32. As a result, the electrical conductivity of the portion of the first conductive film 6 on the inclined surface 31 is decreased (resistivity is increased).
However, in the present invention, as a result of Step 5 described above, the second conductive film 7 (the second conductive film 7 on the inclined surface 31) is formed at least on the first conductive film 6 on the inclined surface 31. In this configuration, the electrical conductivity of a portion of the cathode conductive film 10 on the inclined surface 31 of the first insulation layer 3 can be ensured even after the third etching treatment is conducted. Stated another way, a decrease in the electrical conductivity of the cathode conductive film 10 caused by the third etching treatment is suppressed by the presence of the second conductive film 7. Thus, the second conductive film 7 formed on the inclined surface 31 in Step 5 has a function of suppressing a decrease in the electrical conductivity of the cathode conductive film 10.
The cathode electrode 2 for feeding electrons to the cathode conductive film 10 is formed (
Hereinafter, each Step will be described in further detail.
The substrate 1 may be composed of silica glass, glass having a reduced content of impurities such as Na, soda-lime glass, or the like. The substrate 1 needs to have not only high mechanical strength but also resistance to dry etching, wet etching, and alkali and acid serving as developers or the like. When the substrate 1 is used for an image display apparatus, the substrate 1 is subjected to a heating step and the like and hence the substrate 1 desirably has a thermal expansion coefficient that is not considerably different from the thermal expansion coefficients of members to be stacked on the substrate 1. In consideration of a heat treatment, the substrate 1 is desirably composed of a glass material from which an alkaline element or the like is less likely to disperse into an electron-emitting device.
The insulation layer 30 (first insulation layer 3) is composed of an insulation material having high processability, for example, silicon nitride (typically Si3N4) or silicon oxide (typically SiO2). The insulation layer 30 can be formed by a general vacuum film-formation method such as a sputtering method, a CVD method, or a vacuum deposition method. The insulation layer 30 is made to have a thickness in the range of several nanometers to several tens of micrometers, desirably in the range of several tens of nanometers to several hundreds of nanometers.
The insulation layer 40 (second insulation layer 4) is composed of an insulation material having high processability, for example, silicon nitride (typically Si3N4) or silicon oxide (typically SiO2). The insulation layer 40 can be formed by a general vacuum film-formation method such as a sputtering method, a CVD method, or a vacuum deposition method. The insulation layer 40 is made to have a thickness smaller than that of the insulation layer 30 and in the range of several nanometers to several hundreds of nanometers, desirably in the range of several nanometers to several tens of nanometers.
After the insulation layer 30 and the insulation layer 40 are stacked on the substrate 1, the recessed portion 42 needs to be formed in Step 3. For this reason, the insulation layer 30 and the insulation layer 40 are formed such that the amount of the insulation layer 40 to be etched in the second etching treatment is larger than the amount of the insulation layer 30 to be etched in the second etching treatment. In the second etching treatment, the ratio of the amount of the insulation layer 40 to be etched to the amount of the insulation layer 30 to be etched is desirably 10 or more, more desirably, 50 or more.
To achieve such a ratio in terms of amount to be etched, for example, the insulation layer 30 is formed of silicon nitride while the insulation layer 40 is formed of silicon oxide. Alternatively, the insulation layer 30 is formed of silicon nitride while the insulation layer 40 is formed of PSG (phosphorus silicate glass) having a high phosphorus concentration, BSG (boron silicate glass) having a high boron concentration, or the like.
The conductive layer 50 (gate electrode 5) has electrical conductivity and is formed by a general vacuum film-formation method such as a deposition method or a sputtering method.
The conductive layer 50 to serve as the gate electrode 5 is desirably composed of a material having electrical conductivity, high thermal conductivity, and a high melting point. Such a material is, for example, a metal or an alloy of Be, Mg, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Al, Cu, Ni, Cr, Au, Pt, or Pd; a carbide, a boride, a nitride, or a semiconductor composed of Si, Ge, or the like.
The conductive layer 50 (gate electrode 5) is made to have a thickness in the range of several nanometers to several hundreds of nanometers, desirably in the range of several tens of nanometers to several hundreds of nanometers.
Since the conductive layer 50 to serve as the gate electrode 5 may be made to have a thickness smaller than the thickness of the cathode electrode 2, the conductive layer 50 is desirably composed of a material having a resistance lower than that of the material of the cathode electrode 2.
The first etching treatment is desirably conducted by RIE (reactive ion etching) in which etching gas is turned into plasma and radiated to a material to thereby permit precise etching of the material.
As for a gas used for RIE, when a member to be etched is composed of a material that can turn into a fluoride, a fluorine-based gas such as CF4, CHF3, or SF6 is selected. When a member to be etched is composed of a material such as Si or Al that can turn into a chloride, a chlorine-based gas such as Cl2 or BCl3 is selected. To achieve a sufficiently high selectivity ratio between a material to be etched and resist, to ensure the flatness of an etched surface, or to increase etching speed, at least one of hydrogen, oxygen, and argon gas is desirably added to an etching gas.
As a result of Step 2, the same or substantially the same shapes as in the first insulation layer 3 and the gate electrode 5 in the electron-emitting device illustrated in
The angle (illustrated as θ in
Since the corner portion 33 is formed as described above, the angle formed between the top surface 32 of the first insulation layer 3 and the surface of the substrate 1 is smaller than the angle θ formed between the side surface 31 and the surface of the substrate 1. Since the first insulation layer 3 is formed on the surface of the substrate 1 by a commonly used film-formation method, the top surface 32 of the first insulation layer 3 is substantially parallel to the surface of the substrate 1. Specifically, there may be a case where the top surface 32 of the first insulation layer 3 is completely parallel to the surface of the substrate 1 and a case where the top surface 32 of the first insulation layer 3 is slightly inclined with respect to the surface of the substrate 1 due to environments, conditions, or the like in film formation. Both of these cases are understood to be in the scope of “substantially parallel”.
An angle (illustrated as φ in
In Step 3, an etchant is selected such that the amount of the first insulation layer 3 to be etched by the etchant is considerably smaller than the amount of the insulation layer 44 to be etched by the etchant. That is, the second etching treatment is desirably conducted by wet etching.
The second etching treatment may be conducted with, for example, an etchant of commonly called buffered hydrofluoric acid (BHF) when the insulation layer 44 (second insulation layer 4) is composed of silicon oxide and the insulation layer 30 (first insulation layer 3) is composed of silicon nitride. The buffered hydrofluoric acid (BHF) is a mixed solution of ammonium fluoride and hydrofluoric acid. Alternatively, when the insulation layer 44 (second insulation layer 4) is composed of silicon nitride and the insulation layer 30 (first insulation layer 3) is composed of silicon oxide, the second etching treatment may be conducted with a hot phosphoric acid-based etchant.
As a result of Step 3, the same or substantially the same shape as in the second insulation layer 4 in the electron-emitting device illustrated in
The depth of the recessed portion 42 (the distance in the X direction in which the insulation layer 44 is etched) considerably relates to leakage current occurring in the electron-emitting device. The deeper the recessed portion 42 is formed, the smaller leakage current occurring becomes. However, when the recessed portion 42 is formed to have an excessively large depth, problems such as deformation of the gate electrode 5 may be caused. For this reason, the recessed portion 42 is practically made to have a depth of 30 nm or more and 200 nm or less. Stated another way, the depth of the recessed portion 42 is a distance from the corner portion 33 of the first insulation layer 3 to the side surface 41 of the second insulation layer 4.
An example where the step-forming member 34 is constituted by the stack of the first insulation layer 3 and the second insulation layer 4 has been described so far. Alternatively, the step-forming member 34 may also be constituted by three or more layers. Specifically, another insulation layer may be further formed on the second insulation layer 4 defining the recessed portion 42. For example, such an insulation layer formed on the second insulation layer 4 may be composed of the same material as that of the first insulation layer 3. In this case, the bottom surface 53 of the gate electrode 5 is not exposed in the configuration obtained as a result of Step 3. Whatever the case may be, the gate electrode 5 is provided above the top surface 32 of the first insulation layer 3.
In Step 4, the material of the first conductive film 6 should be selected from materials having electrical conductivity and allowing field emission, desirably from materials having a high melting point of 2000° C. or more. The first conductive film 6 is desirably formed of a material that has a work function of 5 eV or less and whose oxide can be readily etched off. Such a material is, for example, a metal or an alloy of Hf, V, Nb, Ta, Mo, W, Au, Pt, or Pd; a carbide, a boride, or a nitride. In particular, Mo or W is desirably used.
The first conductive film 6 can be formed by a vacuum film-formation method such as a sputtering method or a deposition method. As described above, the first conductive film 6 is desirably formed in Step 4 such that the first conductive film 6 on the top surface 32 has a film density higher than the film density of the first conductive film 6 on the inclined surface 31.
To perform such film formation, the first conductive film 6 is formed by a film formation technique having high directivity such as a directional sputtering method or a deposition method. Use of a film formation technique having high directivity allows control of an angle at which the material of the first conductive film 6 is applied to the top surface 32 and the inclined surface 31 of the first insulation layer 3 (and the top surface 52 and the side surface 51 of the gate electrode 5).
When a directional sputtering method is conducted, for example, the angle between the substrate 1 and a target is set and another arrangement is conducted in which a shielding plate is provided between the substrate 1 and the target, the distance between the substrate 1 and the target is set at about the mean free path of sputtering particles, or the like. A collimated sputtering method (collimation sputtering method) in which a collimator imparting directivity to sputtering particles may also be used as a directional sputtering method. In this way, sputtering particles serving as a material for forming a film are applied to the substrate 1 (typically the top surface 32 and the inclined surface 31 of the first insulation layer 3) at restricted angles. The term “sputtering particles” refers to atoms being sputtered from a target or particles being sputtered from a target.
Specifically, the angle at which sputtering particles serving as a film formation material are applied to the inclined surface 31 of the first insulation layer 3 is made smaller than the angle at which the sputtering particles serving as the film formation material are applied to the top surface 32 (corner portion 33) of the first insulation layer 3. Note that the angle at which the sputtering particles are applied to the top surface 32 (corner portion 33) of the first insulation layer 3 is made closer to 90° than the angle at which the sputtering particles are applied to the inclined surface 31 of the first insulation layer 3. In this way, the sputtering particles can be applied to the top surface 32 (corner portion 33) of the first insulation layer 3 more perpendicularly than to the inclined surface 31 of the first insulation layer 3. As a result, the second conductive film 7 on the top surface 32 has a film density higher than that of the second conductive film 7 on the inclined surface 31. As a result of such film formation, as described above, the second conductive film 7 on the top surface 32 (corner portion 33) of the first insulation layer 3 can be made to have a projected profile (projected portion).
When a film is formed by a deposition method in a high vacuum at a degree of vacuum of about 10−2 to 10−4 Pa, a vaporized material serving as a film formation material and being vaporized from a vaporization source has a low probability of collision. Additionally, since such a vaporized material has a mean free path of about several hundreds of millimeters to several meters, the vaporized material is applied to a substrate while the directivity of the vaporized material upon vaporization from the vaporization source is maintained. Thus, a deposition method is also a film formation method having high directivity. A technique used for vaporizing such a vaporization source is, for example, resistance heating, high-frequency induction heating, electron beam heating, or the like. However, in view of the range of usable materials and the area to be heated, a technique of using electron beams is desirable.
When the first conductive film 6 is formed of molybdenum, the first conductive film 6 on the top surface 32 desirably has a density (film density) of 9.5 g/cm3 or more and 10.2 g/cm3 or less, and the first conductive film 6 on the inclined surface 31 desirably has a density (film density) of 7.5 g/cm3 or more and 8.0 g/cm3 or less.
These ranges are practically set in consideration of resistivity and film thickness (since the low-density film is formed on the inclined surface, the low-density film portion has a small thickness with respect to the inclined surface) in terms of the films.
In general, film density is determined by XRR (X-ray reflectometry); however, there is a case where it is difficult to determine film density in an actual electron-emitting device. In such a case, film density may be determined by, for example, the following technique. The density of a film (target film) can be obtained by analyzing atoms of the target film quantitatively with a high-resolution electron energy loss spectroscopy electron microscope in which a transmission electron microscope (TEM) is combined with electron energy loss spectroscopy (EELS), and calculating the density of the target film on the basis of a calibration curve by comparison of the analytical result with the analytical result of a film having a known film density.
As described above, by making the angle θ less than 90° in Step 2, the side surface 51 (on the cathode electrode 2 side) of the gate electrode 5 is more recessed than the side surface 31 (on the cathode electrode 2 side) of the first insulation layer 3. Thus, as a result of the above-described highly directional film formation in Step 4, a projected portion constituted by a film having a density higher than that of the film on the inclined surface 31 is formed on the top surface 32 (corner portion 33).
Accordingly, by making the angle θ formed by the first etching treatment in Step 2 smaller, the first conductive film 6 can be formed in larger area on the top surface 32 of the first insulation layer 3. Stated another way, by making the side surface 51 (on the cathode electrode 2 side) of the gate electrode 5 more recessed with respect to the side surface 31 (on the cathode electrode 2 side) of the first insulation layer 3, the first conductive film 6 having a larger high-density portion can be formed on the top surface 32 of the first insulation layer 3. In this case, the entry distance x of the cathode conductive film 10 can also be increased.
The third conductive film 8 is desirably composed of the same material as the first conductive film 6. The third conductive film 8 and the first conductive film 6 are desirably simultaneously formed in Step 4.
As described above, the first conductive film 6 is formed in Step 4 such that the first conductive film 6 on the top surface 32 has a film density higher than that of the first conductive film 6 on the inclined surface 31. When the film formation method is used, similar situation also occurs for the third conductive film 8 on the gate electrode 5.
As described above, the second conductive film 7 is desirably formed such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density higher than that of the portion of the first conductive film 6 on the inclined surface 31 of the first insulation layer 3.
This is achieved by, for example, making an angle at which the material of the second conductive film 7 is applied to the inclined surface 31 closer to 90° than an angle at which the material of the first conductive film 6 is applied to the inclined surface 31. The second conductive film 7 can be formed in this way by the above-described film-formation method having high directivity such as a directional sputtering method or a deposition method in which the angle at which the material of the second conductive film 7 is applied to the inclined surface 31 is made close to 90°.
In particular, the second conductive film 7 can be formed such that the second conductive film 7 on the top surface 32 and the second conductive film 7 on the inclined surface 31 have the same film density by applying the material of the second conductive film 7 in the direction in which the angle formed between the top surface 32 and the inclined surface 31 of the first insulation layer 3 is equally divided. When the top surface 32 is parallel to the substrate 1, the second conductive film 7 can be formed such that the second conductive film 7 on the top surface 32 and the second conductive film 7 on the inclined surface 31 have the same film density by applying the material of the second conductive film 7 to the substrate 1 at an angle of (180°-θ)/2 by a highly directional film formation method. By applying the material of the second conductive film 7 to the substrate 1 at an angle of more than (180°-θ)/2, the resultant second conductive film 7 on the inclined surface 31 can be made to have a film density higher than the film density of the second conductive film 7 on the top surface 32.
Alternatively, the second conductive film 7 can also be formed by a film-formation method having low directivity with respect to the surface on which the film is to be formed. Specifically, the film is formed such that sputtering particles are applied at angles distributed equally with respect to the top surface 32 and the inclined surface 31. As a result, the second conductive film 7 can be formed such that the second conductive film 7 on the top surface 32 and the second conductive film 7 on the inclined surface 31 have the same film density. Thus, the difference between the film density of the second conductive film 7 on the inclined surface 31 and the film density of the second conductive film 7 on the top surface 32 can be made smaller than the difference between the film density of the first conductive film 6 on the inclined surface 31 and the film density of the first conductive film 6 on the top surface 32. Additionally, the second conductive film 7 on the inclined surface 31 has a film density higher than that of the first conductive film 6 on the inclined surface 31. As for such a film-formation method having low directivity, a standard sputtering method (non-collimated sputtering method) in which a shielding plate and a collimator are not provided between a target and a substrate can be used.
As a result, even when the cathode conductive film 10 is etched by a predetermined amount by the third etching treatment, an increase in the resistance of the portion of the cathode conductive film 10 on the inclined surface 31 due to excessive etching can be suppressed. Stated another way, even when the second conductive film 7 on the projected portion of the first conductive film 6 is etched by a predetermined amount by the third etching treatment, an increase in the resistance of the portion of the cathode conductive film 10 on the inclined surface 31 can be suppressed.
The third etching treatment may be conducted by dry etching or wet etching. However, in consideration of ease of controlling a selectivity ratio between a target material and another material in etching, wet etching with an etchant is desirably conducted.
Since the gap dimension d of the gap 11 is desirably small of about several nanometers, in consideration of controllability of the amount to be etched, an etching rate is desirably 1 nm or less per minute. As described above, after the third etching treatment is conducted, the second conductive film 7 remains on the first conductive film 6 (at least on the projected portion). Accordingly, the gap 11 is defined as a gap between the second conductive film 7 and the gate 13.
The number of atoms removed by the third etching treatment per unit of time is solely determined by the material of the second conductive film 7 and etching conditions (in particular, an etchant). Accordingly, film density and etching rate are in inverse proportion. In the present invention, the term “etching rate” refers to the amount of variation in the thickness of a film per unit of time caused by etching.
As a result of the third etching treatment, the gap 11 is formed between the second conductive film 7 and the gate electrode 5. When the second conductive film 7 and the fourth conductive film 9 are formed in Step 5 so as to be connected to each other, the gap 11 is formed therebetween in Step 6 for the first time.
When the second conductive film 7 and the fourth conductive film 9 are formed in Step 5 so as not to be connected to each other or the fourth conductive film 9 is not formed in Step 5, the gap is widened by the third etching treatment to provide the predetermined gap 11.
By forming the gap 11 with the third etching treatment, controllability over the gap dimension d of the gap 11 can be enhanced and the electron emission efficiency of the electron-emitting device can be enhanced.
Since the portion of the first conductive film 6 on the inclined surface 31 (this portion having a low film density) is covered by the second conductive film 7, selective etching of the portion of the first conductive film 6 on the inclined surface 31 by the third etching treatment can be suppressed. As a result, the cathode conductive film 10 on the inclined surface 31 can be maintained to have high electrical conductivity even after the third etching treatment and an electron-emitting device having high reliability and high efficiency can be obtained.
The combination of the material for forming the second conductive film 7 (and the fourth conductive film 9) and an etchant used for the third etching treatment is not particularly restricted in the present invention. For example, when the second conductive film 7 (and the fourth conductive film 9) is composed of molybdenum, an etchant usable for these films is an alkaline solution such as tetramethyl ammonium hydroxide (TMAH) or aqueous ammonia. Alternatively, an etchant such as a mixture of 2-(2-n-butoxyethoxy)ethanol and alkanolamine, or dimethyl sulfoxide (DMSO) may also be used.
When the second conductive film 7 is composed of tungsten, an etchant usable for the film is nitric acid, hydrofluoric acid, a solution of sodium hydroxide, or the like.
As described above, the third etching treatment is desirably conducted by standard wet etching. Alternatively, the third etching treatment is also desirably conducted by an oxidation step of oxidizing the surface of the second conductive film 7 and a removal step of removing a part of or the entirety of the oxidized portion.
This is because, by forming an oxide film having a desired thickness in the surface of the second conductive film 7 in the oxidation step and subsequently removing the oxide film by etching, the effect of enhancing the uniformity (reproducibility) of the amount of the film to be etched can be expected.
The amount of a film to be oxidized (thickness of the resultant oxide film) is inversely proportional to the density of the film. For this reason, when the second conductive film 7 is subjected to an oxidation treatment, the surface layers of portions having low film density are mainly (selectively) oxidized. For this reason, as described above, the second conductive film 7 is formed in Step 5 such that the portion of the second conductive film 7 on the inclined surface 31 of the first insulation layer 3 has a film density equal to or higher than the film density of the portion of the second conductive film 7 on the top surface 32 of the first insulation layer 3. In this configuration, by conducting the oxidation treatment and the etching treatment, the accuracy of controlling the etching of the tip portion (projected portion) of the second conductive film 7 can be enhanced. Additionally, selective etching of the portion of the cathode conductive film 10 on the inclined surface 31 can be suppressed. In this case, when the second conductive film 7 and the gate 13 are in contact with each other in Step 5, the gap 11 can be formed with higher accuracy.
A technique used for the oxidation is not particularly restricted as long as use of the technique can result in oxidation of the surface of the second conductive film 7 in the depth of several nanometers to several tens of nanometers. Specifically, ozone oxidation (excimer UV exposure, low-pressure mercury exposure, a corona discharge treatment, or the like), thermal oxidation, or the like may be used. Desirably, excimer UV exposure, which is excellent in terms of quantitativeness of oxidation, is used. When the second conductive film 7 is composed of molybdenum, use of excimer UV exposure is advantageous in that an oxide film composed of MoO3, which can be readily removed, is mainly generated.
The removal step of an oxide film may be conducted by a dry process or a wet process, desirably by a wet etching treatment. The removal step (etching step) of an oxide film is conducted for the purpose of removing (etching) only an oxide film serving as a surface layer. Accordingly, an etchant used for this step is desirably an etchant with which only an oxide film is removed but an underlying metal layer (unoxidized layer) is not substantially influenced, or an etchant with which an oxide film is etched at an etching rate much higher (by an order or orders of magnitude) than the etching rate of a metal layer (unoxidized layer). Specifically, when the second conductive film 7 is composed of molybdenum, an etchant for the film is diluted TMAH (desirably having a concentration of 0.238% or less), hot water (desirably having a temperature of 40° C. or more), or the like. When the second conductive film 7 is composed of tungsten, an etchant for the film is buffered hydrofluoric acid, diluted hydrochloric acid, hot water, or the like.
Step 7 is not necessarily conducted after Step 6. Step 7 may be conducted before Step 6.
The cathode electrode 2 has electrical conductivity and can be formed by a general vacuum film-formation method such as a deposition method or a sputtering method or a photolithographic technique. The cathode electrode 2 may be composed of a material that is the same as or different from the material of the gate electrode 5. Alternatively, the cathode conductive film 10 may also function as the cathode electrode 2.
The cathode electrode 2 has a thickness in the range of several tens of nanometers to several micrometers, desirably in the range of several tens of nanometers to several hundreds of nanometers.
Hereinafter, an image display apparatus including an electron source in which a plurality of the electron-emitting devices are arranged will be described with to
Referring to
The X-direction wires 102 are constituted by m wires: DX1, DX2, . . . , DXm. The X-direction wires 102 can be formed of an electrically conducive material such as metal by a vacuum deposition method, a printing method, a sputtering method, or the like. The material, the film thickness, and the width of the X-direction wires 102 are appropriately designed.
The Y-direction wires 103 are constituted by n wires: DY1, DY2, . . . , DYn. The Y-direction wires 103 are formed in a manner similar to that in which the X-direction wires 102 are formed. An interlayer insulation layer (not shown) is provided between the m X-direction wires 102 and the n Y-direction wires 103 to thereby electrically separate the X-direction wires 102 and the Y-direction wires 103 from each other (m and n are positive integers).
The interlayer insulation layer (not shown) can be formed by a vacuum deposition method, a printing method, a sputtering method, or the like. For example, the interlayer insulation layer is formed in a desired shape in the entirety of or in a part of the surface of the substrate 101 on which the X-direction wires 102 are formed. In particular, the film thickness, the material, and the formation method of the interlayer insulation layer are appropriately designed so that the resultant interlayer insulation layer withstands the potential difference in the portions of the intersections of the X-direction wires 102 and the Y-direction wires 103. The X-direction wires 102 and the Y-direction wires 103 extend to form external terminals.
A material for forming the wires 102, a material for forming the wires 103, a material for forming the connections 105, a material for forming a cathode, and a material for forming a gate may share a part of or the entirety of the constituent elements, or may be different from each other.
The X-direction wires 102 are connected to a scanning signal application unit (not shown) configured to apply scanning signals for selecting a row of the electron-emitting devices 104 arranged in the X direction. The Y-direction wires 103 are connected to a modulating signal generation unit (not shown) configured to modulate each column of the electron-emitting devices 104 arranged in the Y direction in response to input signals.
A driving voltage applied to each electron-emitting device is fed as the voltage difference between the scanning signals and the modulating signals applied to each electron-emitting device.
In the above-described configuration, each device can be made independently operational by selecting each device with simple matrix wiring.
Referring to
In
In
An electron-emitting device 104 corresponds to the electron-emitting device illustrated in
As described above, the image display panel 117 includes the face plate 116, the support frame 112, and the rear plate 111. The rear plate 111 is provided mainly for the purpose of enhancing the strength of the substrate 101. For this reason, when the substrate 101 itself has sufficiently high strength, the rear plate 111 is not necessarily provided.
Specifically, the envelope may be formed by directly seal-bonding the support frame 112 to the substrate 101 and seal-bonding the support frame 112 to the face plate 116. Alternatively, the image display panel 117 having sufficiently high strength against the atmospheric pressure can be formed by providing a support member referred to as a spacer (not shown) between the face plate 116 and the rear plate 111.
Hereinafter, an example of the configuration of a driving circuit for displaying television images on the basis of television signals on the image display panel 117 will be described with reference to
In
The image display panel 117 is connected to external electric circuits via terminals Dox1 to Doxm, terminals Doy1 to Doyn, and a high-voltage terminal Hv.
Scanning signals for sequentially driving an electron source provided in the image display panel 117, that is, a group of electron-emitting devices wired in a matrix with M rows and N columns on a row-by-row basis (each row including N devices), are applied to the terminals Dox1 to Doxm.
Modulating signals for controlling electron beams output from electron-emitting devices in a row selected by the scanning signals, are applied to the terminals Doy1 to Doyn.
A direct voltage of, for example, 10 [kV] is fed to the high-voltage terminal Hv from the direct voltage source Va.
As described above, image displaying can be achieved with scanning signals and modulating signals by applying a high voltage to the anode to thereby accelerate and radiate emitted electrons onto the fluorescent material.
Hereinafter, more specific examples based on the above-described embodiments will be described.
An example of a method for producing an electron-emitting device according to an embodiment of the present invention will be described with reference to
Referring to
As for the insulation layer 30, a Si3N4 film that was composed of a material having excellent processability and served as an insulation film was formed by a sputtering method. The insulation layer 30 had a thickness of 500 nm. As for the insulation layer 40, a SiO2 film that was composed of a material having excellent processability and served as an insulation film was formed by a sputtering method. The insulation layer 40 had a thickness of 30 nm. As for the conductive layer 50, a TaN film was formed by a sputtering method. The conductive layer 50 had a thickness of 30 nm.
Referring to
A gas used for processing the insulation layers 30 and 40 and the conductive layer 50 in the first etching treatment was a CF4-based gas. As a result of conducting RIE with this gas, the side surface 31 of the first insulation layer 3, the insulation layer 44, and the gate electrode 5 after the etching had an angle of about 80° with respect to the surface (horizontal surface) of the substrate 1. That is, the side surface 31 was an inclined surface.
After the resist was stripped off, referring to
In Example 1, the conductive films 6, 7, 8, and 9 were formed by a two-step film-formation method described below. Referring to
Referring to
Specifically, as a first-step film formation, Mo was applied in a direction perpendicular to the surface of the substrate 1 (a direction of a line normal to the top surface 32) by electron-beam deposition in which mean free path is long and the distribution of angles at which a film-formation material (Mo particles) is applied to a film-formation surface is small. As a result, the first conductive film 6 and the third conductive film 8 were formed. At this time, a projected portion was formed at an end portion of the first conductive film 6. The first conductive film 6 and the third conductive film 8 were not connected to each other. The first conductive film 6 and the gate electrode 5 were not connected to each other.
As a second-step film formation, the material of the second conductive film 7 was applied in a direction perpendicular to the inclined surface 31 of the first insulation layer 3 by electron-beam deposition. As a result, the second conductive film 7 having a film density higher than the film density of a portion of the first conductive film 6 on the inclined surface 31 (the portion being formed in the first-step film formation) was formed on the portion of the first conductive film 6 on the inclined surface 31. At this time, the second conductive film 7 was also formed on the projected portion of the first conductive film 6. The fourth conductive film 9 was also formed on the third conductive film 8. The second conductive film 7 was formed so as to be connected to the fourth conductive film 9.
As illustrated in
Thus, by conducting the two-step film-formation, an electron-emitting structure having high efficiency can be obtained and excessive etching of the portion of the cathode conductive film 10 on the inclined surface 31 can be suppressed.
A resist pattern was then formed on the second conductive film 7 and the fourth conductive film 9 by a photolithographic technique so as to be a line and space pattern having a width of 3 μm. Referring to
At this stage, as illustrated in
Referring to
Finally, the cathode electrode 2 for connecting the sections of the cathode conductive film 10 was formed. The cathode electrode 2 was formed of copper (Cu) by a sputtering method so as to have a thickness of 500 nm.
An electron-emitting device was thus produced by the above-described method. The electron-emitting device was then evaluated in terms of electron emission characteristics with the configuration illustrated in
In this evaluation of electron emission characteristics, the potential of the gate electrode 5 was set at +34 V and the potential of the cathode electrode 2 was set at 0 V. Thus, a driving voltage Vf of 34 V was applied between the gate electrode 5 and the cathode electrode 2. As a result, the electron-emitting device had an average electron emission current Ie of 20 μA and an average electron emission efficiency of 15%. No leakage current due to contact between the cathode conductive film 10 and the gate conductive film 12 was detected.
For comparison, another electron-emitting device was produced by the same method as in Example 1 except that the second conductive film 7 and the fourth conductive film 9 were not formed. Compared with this comparison electron-emitting device, an increase in the resistance of the portion of the cathode conductive film 10 on the inclined surface 31 was suppressed in the electron-emitting device in Example 1. Stable electron emission was also achieved in the electron-emitting device in Example 1.
An image display apparatus including the electron-emitting device produced in Example 1 that was excellent in terms of formability of electron beams was provided. Additionally, an image display apparatus displaying good images was achieved and, as a result of enhancement of the efficiency, an image display apparatus having low power consumption was provided.
Example 2 was the same as Example 1 except that the second-step film formation in Example 1 was changed, and hence, the production method of Example 2 will be described only in terms of the second-step film formation, which was different from Example 1.
As the second-step film formation, non-collimated sputtering in which the distribution of angles at which a film-formation material (Mo particles) is applied is large was conducted. As a result, the second conductive film 7 having a film density higher than the film density of a portion of the first conductive film 6 on the inclined surface 31 of the first insulation layer 3 (the portion being formed in the first-step film formation) was formed so as to cover the portion of the first conductive film 6 on the inclined surface 31.
Note that, when the first conductive film 6 is formed only by non-collimated sputtering, the first conductive film 6 having good quality can be formed on the inclined surface 31. However, in this case, the film-formation material was deposited in the recessed portion 42 in a large amount and leakage current was not suppressed. Additionally, a projected profile having a large field multiplication factor was not formed in an end portion of the first conductive film 6.
In contrast, in Example 2 in which the two-step film formation was conducted and the second conductive film 7 was formed by non-collimated sputtering, an electron-emitting device having high efficiency was obtained. Excessive etching of the portion of the cathode conductive film 10 on the inclined surface 31 was also suppressed.
Electron emission characteristics of the electron-emitting device produced in Example 2 were evaluated as in Example 1. This evaluation revealed that the electron-emitting device had an electron emission efficiency slightly lower than that in Example 1, but the electron-emitting device had good electron emission characteristics.
Example 3 was the same as Example 1 except that the two-step film formation in Example 1 was changed, and hence, the production method of Example 3 will be described only in terms of the two-step film formation, which was different from Example 1.
As a first-step film formation, Mo was applied in a direction perpendicular to the surface of the substrate 1 (a direction of a line normal to the top surface 32) by collimated sputtering in which the distribution of angles at which the film-formation material (Mo particles) was applied to the surface on which a film was to be formed was made small. As a result, the first conductive film 6 and the third conductive film 8 were formed. At this time, a projected portion was formed at an end portion of the first conductive film 6. The first conductive film 6 and the third conductive film 8 were not connected to each other. The first conductive film 6 and the gate electrode 5 were not connected to each other.
As the second-step film formation, non-collimated sputtering in which the distribution of angles at which a film-formation material (Mo particles) is applied to a surface on which a film is to be formed is large was conducted. As a result, the second conductive film 7 was formed so as to cover the first conductive film 6 formed in the first-step film formation. The portion of the second conductive film 7 on the inclined surface 31 had substantially the same film density as the portion of the second conductive film 7 on the top surface 32.
In the collimated sputtering, the projected portion was formed at the end portion of the first conductive film 6 by applying the material in the direction perpendicular to the surface of the substrate 1 (the top surface 32 of the first insulation layer 3) by a principle similar to that of the electron-beam deposition in Example 1.
A Mo film formed by non-collimated sputtering has high film density in its entirety and is etched at sufficiently low etching rate. For this reason, an electron-emitting structure having high efficiency was obtained and excessive etching of the portion of the cathode conductive film 10 on the inclined surface 31 was suppressed.
Electron emission characteristics of the electron-emitting device produced in Example 3 were evaluated as in Example 1. This evaluation revealed that the electron-emitting device had good electron emission characteristics as in Example 2.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2008-324467 filed Dec. 19, 2008, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-324467 | Dec 2008 | JP | national |