Claims
- 1. A method for producing engineered materials from salt/polymer aqueous solutions comprising: (a) mixing an aqueous continuous phase comprising at least one metal cation salt with a hydrophilic organic polymeric disperse phase, thus forming a metal cation/polymer gel, (b) forming said metal cation/polymer gel into a structural mass precursor, and (c) heating said structural mass precursor, thus forming a structural mass.
- 2. A method in accordance with claim 1, wherein said hydrophilic organic polymeric disperse phase comprises an organic material selected from the group consisting of carbohydrates, polymers, proteins derived from animal protein gelatins, and mixtures thereof.
- 3. A method in accordance with claim 1, wherein said at least one metal cation salt is selected from the group consisting of chlorides, carbonates, hydroxides, isopropoxides, nitrates, acetates, epoxides, oxalates, and mixtures thereof.
- 4. A method in accordance with claim 1, wherein said metal cations are selected from the group consisting of at least one metal of Group 1A, 2A, 3A, 4A, 5A, 6A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, and 8 of the Periodic Table, lanthanides, actinides, and mixtures thereof.
- 5. A method in accordance with claim 1, wherein said structural mass precursor is formed by (a) applying said metal cation/polymer gel to a substrate surface, thus forming a continuous film, (b) drying said continuous film to form a dried continuous film, and (c) heating said dried continuous film, thus forming a continuous ceramic layer on said substrate surface.
- 6. A method in accordance with claim 1, wherein said structural mass precursor is formed by (a) placing said metal cation/polymer gel in a hydrothermal reaction vessel, (b) increasing a pressure inside said hydrothermal reaction vessel by heating said hydrothermal reaction vessel, thus forming a colloidal suspension, (c) removing said colloidal suspension from said hydrothermal reaction vessel, and (d) heating said colloidal suspension, thus forming a plurality of spherical granules.
- 7. A method in accordance with claim 1, wherein said structural mass precursor is formed by (a) dissolving said metal cation/gel in water, thus forming a metal cation/polymer solution, (b) immersing a porous preform in said metal cation/polymer solution whereby at least a portion of said metal cation/polymer solution is absorbed by said porous preform, thus forming a saturated porous preform, (c) drying said saturated porous preform, thus forming a dried, saturated porous preform, and (d) heating said dried, saturated porous preform, thereby burning out at least a portion of said porous preform, and leaving behind a porous structure having a shape and porosity corresponding to said porous preform.
- 8. A method in accordance with claim 5, wherein said hydrophilic organic polymeric disperse phase is polyethylene glycol.
- 9. A method in accordance with claim 6, wherein said hydrophilic organic polymeric disperse phase is polyethylene glycol.
- 10. A method in accordance with claim 7, wherein said hydrophilic organic polymeric disperse phase is polyethylene glycol.
- 11. A method in accordance with claim 7, wherein said porous preform is a metal or a ceramic and heating of said metal or said ceramic forms a compound or a composite with said at least one metal cation salt in said metal cation/polymer solution.
- 12. A method in accordance with claim 7, wherein said porous preform is a material selected from the group consisting of paper, fabric, foam, and monoliths.
- 13. A method for producing engineered structural materials comprising the steps of: (a) mixing an aqueous solution comprising at least one metal cation salt with a hydrophilic organic material, thus forming a metal cation/polymer gel; (b) forming said metal cation/polymer gel into a structural mass precursor; and (c) heating said structural mass precursors, thus forming a structural mass.
- 14. A method in accordance with claim 13, wherein said hydrophilic organic material is selected from the group consisting of carbohydrates, polymers, proteins derived from animal protein gelatins, and mixtures thereof.
- 15. A method in accordance with claim 14, wherein said organic material is polyethylene glycol.
- 16. A method in accordance with claim 13, wherein said at least one metal cation salt is selected from the group consisting of chlorides, carbonates, hydroxides, isopropoxides, nitrates, acetates, epoxides, oxalates, and mixtures thereof.
- 17. A method in accordance with claim 13, wherein said metal cations are selected from the group consisting of at least one metal of Group 1A, 2A, 3A, 4A, 5A, 6A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, and 8 of the Periodic Table, lanthanides, actinides, and mixtures thereof.
- 18. A method in accordance with claim 13, wherein said structural mass precursor is formed by (a) applying said metal cation/polymer gel to a substrate surface, thus forming a continuous film, (b) driving said continuous film, thus forming a dried continuous film, and (c) heating said dried continuous film, thus forming a continuous ceramic layer on said substrate surface.
- 19. A method in accordance with claim 13, wherein said structural mass precursor is formed by (a) placing said metal cation/polymer gel in a hydrothermal reaction vessel, (b) increasing a pressure inside said hydrothermal reaction vessel by heating said hydrothermal reaction vessel, thus forming a colloidal suspension, (c) removing said colloidal suspension from said hydrothermal reaction vessel, and (d) heating of said colloidal suspension, thus forming a plurality of substantially spherical granules.
- 20. A method in accordance with claim 13, wherein said structural mass precursor is formed by (a) dissolving said metal cation/gel in water, thus forming a metal cation/polymer solution, (b) immersing a porous preform in said metal cation/polymer solution, whereby at least a portion of said metal cation/polymer solution is absorbed by said porous preform, thus forming a saturated porous preform, (c) drying said saturated porous preform, thus forming a dried saturated porous preform, and (d) heating said dried, saturated porous preform, thereby burning out at least a portion of said porous preform, leaving behind a porous structure having a shape and porosity corresponding to said porous preform.
CROSS REFERENCE TO RELATED APPLICATION
This application is a Continuation-in-Part application of my application having Ser. No. 08/406,173, filed 17 Mar. 1995 U.S. Pat. No. 5,698483.
US Referenced Citations (17)
Foreign Referenced Citations (3)
Number |
Date |
Country |
2091398 |
Jan 1972 |
FRX |
8801990 |
Mar 1988 |
WOX |
9416989 |
Aug 1994 |
WOX |
Non-Patent Literature Citations (1)
Entry |
Chick, L.A. et al., Synthesis of Air-Sinterable Lanthanum Chromite Powders, Proceedings of the First International Symposium on Solid Oxide Fuel Cells, vol. 89-11, pp. 171-187. (Date Unknown). |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
406173 |
Mar 1995 |
|