From DE 198 52 740 A1 is known a method for the manufacture of fully ceramic bridge frameworks. According to this method, initially two copings, made for example from an alumina slip, are connected to a bridge pontic made of the same material. The green body thus fabricated is then sintered and glass-infiltrated. Not only do the manufacture and fitting of the bridge pontic require great dexterity, but also the mechanical connection at the sites of contact between the copings and the pontic may not be satisfactory due to structural problems.
Moreover, from DE 100 21 437 A1 is known an electrophoretic method for the manufacture of fully ceramic copings made of alumina, whereby the die of a working model is coated with a foil or separating agent, which is liquid at temperatures in excess of 45° C. and has a lipstick-like consistency at room temperature, a slip is applied to this coating and, after separation from the working model, the slip is dried and baked to form the framework, which is subsequently glass-infiltrated. The coating is applied by using an electrically conductive coating which is immersed in a vessel containing slip and by applying a direct voltage between the vessel and the electrically conductive coating to effect the application of the solid of the slip to the die of the working model.
As is common in ceramic science, the term, “slip”, shall denote a slurry of a ceramic material in an aqueous liquid, although, according to WO 99/50480, there is a biased opinion regarding the use of water as a suspension agent in the manufacture of ceramic copings.
It is therefore the object of the invention defined in claim 1 to refine the electrophoretic procedure of dental technology such that the deposited slip material has a desired spatial shape that requires no or little reworking. In this context it has become evident that the method according to the invention is suitable not only for the manufacture of frameworks but also for the deposition of veneering material in a desired spatial shape.
This object is met by the features of claim 1.
Advantageous embodiments are described in the dependent claims.
In the following, the invention is illustrated in detail by means of FIGS. 1 to 12:
In the figures:
The invention shall be illustrated in more detail in the following.
The reference number 5 denotes an electrically conductive chip with a T-shaped cross-section. The chip 5 can be made from a large variety of materials. It is essential for chip 5 to be electrically conductive, though. Suitable materials for the chip shall be mentioned below.
The foot part of the chip is connected to the positive pole of the electrophoresis apparatus.
In the machine, a common slip is produced to have a mixing ratio of 30 g alumina powder (manufacturer: Vita), and 5 ml of water and one drop of additive (manufacturer: Vita). The arrangement according to
During the sintering, the chip 5 burns off completely, but leaves behind a corresponding hollow space, which, after being filled with slip, is then re-sintered in a second sintering process. This hollow space can also be filled by glass during glass infiltration.
A number of options are available if it is desired to prevent the formation of a hollow space as described above. For example, the chip 5 can be made from alumina fibers or wisker. In embodiments of this type, the chip material is simply sintered into the bridge pontic. Another option is provided by a different geometry, as is shown in
As another option, the chip can be fabricated from a material comprising a metal foil between two layers of a fibrous material (e.g. paper). Though, in principle, the use of just a metal foil is also feasible, it has become evident that the strong electrical current leads to the formation of bubbles in this case, which may lead to defects in the material.
It is also evident from the explanations above that the local flow of material and thus the three-dimensional shape of the bridge framework can be influenced strongly by the geometrical shape of the chip. In general, the deposition of material depends on the amplitude of the local electrical current.
It is self-evident that the chip comprising areas with different electrical conductivities can be manufactured by a great variety of means. It is possible, for example, to use only one metal foil onto which more or less conductive areas have been applied. Alternatively, as in the example shown above, the base layer can consist for example of nylon paper or a similar, preferably non-textile, layer onto which a metallic structure is applied, for example by screen printing. Since the technology known from semi-conductor board manufacturing can be applied to this purpose, it is not difficult to fabricate even very complicated shapes.
In the two embodiments according to the invention shown in FIGS. 9 to 12, the chip is either placed on a part of the framework (coping 16 in
It is self-evident that this principle can also be implemented in the manufacture of frameworks.
For obvious reasons, the chips cannot be removed after the application of the material but rather remain in place during the sintering except where the chip is attached as a form on the outside. However, the experiments conducted thus far have shown that it is not disadvantageous for the coping to remain in place. In as far as aluminum is used, the substance is simply oxidised to alumina during the sintering process and does not interfere with the procedure. Organic material, e.g. nylon, combusts leaving virtually no residue. The hollow space occupied by the chip is filled-in completely during the glass-infiltration and, in addition, provides the advantage that it serves as a gas escape channel prior to being filled out. Thus, no reduction of mechanical strength is detectable in the finished state of the material.
Therefore, the present invention provides another step towards the cost-efficient supply of high-quality fully ceramic dental restorations to patients.
Number | Date | Country | Kind |
---|---|---|---|
102 51 369.4 | Nov 2002 | DE | national |
102 58 244.0 | Dec 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/03628 | 10/31/2003 | WO | 5/3/2005 |